Biblio Index

Export 235 results:
Author Title [ Type(Desc)] Year
Journal Article
Baran, M., Kowalska, A., Milówka, B., & Ozorka, P.. (2015). Identities for a derivation operator and their applications. Dolomites Research Notes on Approximation, 8(Special_Issue), 102-110. presented at the 12/2015. doi:10.14658/pupj-drna-2015-Special_Issue-10
PDF icon BKMO_10YPDPTS.pdf (237.39 KB)
Suryanarayana, G., Cools, R., & Nuyens, D.. (2015). Integration and Approximation with Fibonacci lattice points. Dolomites Research Notes on Approximation, 8(Special_Issue), 92-101. presented at the 12/2015. doi:10.14658/pupj-drna-2015-Special_Issue-9
PDF icon Cools_etal_10YPDPTS.pdf (2.13 MB)
Acar, T. (2023). International E-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting 2022 (ICOMSS’22). Dolomites Research Notes on Approximation, 16(2), I-III. presented at the 01/2023. Retrieved from https://drna.padovauniversitypress.it/2023/2/0
PDF icon 00_COMSS_22_intro.pdf (4.62 MB)
Rossini, M. (2018). Interpolating functions with gradient discontinuities via Variably Scaled Kernels. Dolomites Research Notes on Approximation, 11(2), 3-14. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-2
PDF icon Rossini_DRNA2018.pdf (1.89 MB)
Deng, C., Meng, H., & Xu, H.. (2017). Interpolating given tangent vectors or curvatures by preprocessed incenter subdivision scheme. Dolomites Research Notes on Approximation, 10(1), 51-57. presented at the 10/2017. doi:10.14658/pupj-drna-2017-1-7
PDF icon DengMengXu_2017_IGT.pdf (489.81 KB)
Albrecht, G., Beccari, C. V., & Romani, L.. (2022). Interpolating sequences of 3D-data with C^2 quintic PH B-spline curves. Dolomites Research Notes on Approximation, 15(3), 1-11. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-2
PDF icon 02_albrecht.pdf (1.52 MB)
Bos, L., & Lagu, I.. (2013). Interpolation on Real Algebraic Curves to Polynomial Data. Dolomites Research Notes on Approximation, 6(1), 1-25. presented at the 09/2013. doi:10.14658/pupj-drna-2013-1-1
PDF icon BosLagu-2013-IRA.pdf (310.71 KB)
Elefante, G., Erb, W., Marchetti, F., Perracchione, E., Poggiali, D., & Santin, G.. (2022). Interpolation with the polynomial kernels. Dolomites Research Notes on Approximation, 15(4), 45-60. presented at the 12/2022. doi:10.14658/pupj-drna-2022-4-5
PDF icon 05_60thDM.pdf (558.9 KB)
Wittwar, D., Santin, G., & Haasdonk, B.. (2018). Interpolation with uncoupled separable matrix-valued kernels. Dolomites Research Notes on Approximation, 11(3), 23-39. presented at the 11/2018. doi:10.14658/pupj-drna-2018-3-4
PDF icon Wittwaretal_DRNA2018.pdf (341.66 KB)
Fasshauer, G. (2008). Introduction. Dolomites Research Notes on Approximation, 1(1). presented at the 09/2008.
PDF icon Fasshauer-2008-Lecture1.pdf (1.6 MB)
Dencker, P., & Erb, W.. (2017). Introduction to Lissajous curves and d-dimensional polynomial interpolation. Dolomites Research Notes on Approximation, 10(Special_Issue).
PDF icon DRNA2017_Erb_ILC.pdf (1.58 MB)
Larsson, E., & Sundin, U.. (2020). An investigation of global radial basis function collocation methods applied to Helmholtz problems. Dolomites Research Notes on Approximation, 13(1), 65-85. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-8
PDF icon LarssonSundin_2020_IGR.pdf (974.09 KB)
Kherchouche, K., Bellour, A., & Lima, P.. (2021). Iterative Collocation Method for Solving a class of Nonlinear Weakly Singular Volterra Integral Equations. Dolomites Research Notes on Approximation, 14(1), 33-41. presented at the 04/2021. doi:10.14658/pupj-drna-2021-1-4
PDF icon KherchoucheBellourLima_2021_WSV.pdf (152.8 KB)
Kosek, M. (2021). Joukowski and Green, Chebyshev and Julia. Dolomites Research Notes on Approximation, 14(3), 59-65. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-7
PDF icon Kosek_MB_2021.pdf (257.42 KB)
Wright, G. (2013). Kernel approximation on the sphere with applications to computational geosciences. Dolomites Research Notes on Approximation, 6(Special_Issue).
PDF icon Wright-2013-Lecture01.pdf (28.92 MB)
Buhmann, M. D., De Marchi, S., & Plonka-Hoch, G.. (2011). Kernel Functions and Meshless Methods. Dolomites Research Notes on Approximation, 4(Special_Issue), 1-63. presented at the 09/2011. doi:10.14658/pupj-drna-2011-Special_Issue-1
PDF icon SpecialIssue-2011-KFA.pdf (8.79 MB)
PDF icon Wright-2013-Lecture05and06.pdf (7.28 MB)
Wright, G. (2013). Kernel methods for more general surfaces. Dolomites Research Notes on Approximation, 6 (Special_Issue).
PDF icon Wright-2013-Lecture07.pdf (23.11 MB)
De Marchi, S., Iske, A., & Sironi, A.. (2016). Kernel-based Image Reconstruction from Scattered Radon Data. Dolomites Research Notes on Approximation, 9(Special_Issue), 19-31. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-4
PDF icon DeMarchiIskeSironi_KMFA2016.pdf (1.48 MB)
Cavoretto, R., & De Rossi, A.. (2016). Kernel-based Methods and Function Approximation 2016. Dolomites Research Notes on Approximation, 9(Special_Issue), 1-2. presented at the 09/2016. Retrieved from http://drna.padovauniversitypress.it/2016/specialissue/1
PDF icon CavorettoDeRossi_KMFA2016.pdf (629.87 KB)
Campiti, M. (2022). Korovkin-type approximation of set-valued functions with convex graphs. Dolomites Research Notes on Approximation, 15(5), 51-55. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-5
PDF icon CAMPITI.pdf (227.12 KB)
Carnicer, J., & Godés, C.. (2015). Lagrange polynomials of lower sets. Dolomites Research Notes on Approximation, 8(Special_Issue), 1-10. presented at the 11/2015. doi: 10.14658/pupj-drna-2015-Special_Issue-1
PDF icon CarnicerGodes_10YPDPTS.pdf (367.47 KB)
Hormann, K. (2012). The Laurent polynomial formalism. Dolomites Research Notes on Approximation, 5(Special_Issue). presented at the 09/2012.
PDF icon Hormann-2012-Lecture2.pdf (315.42 KB)
Aminian Shahrokhabadi, M., Neisy, A., Perracchione, E., & Polato, M.. (2019). Learning with subsampled kernel-based methods: Environmental and financial applications. Dolomites Research Notes on Approximation, 12(1), 17-27. presented at the 04/2019. doi:10.14658/pupj-drna-2019-1-3
PDF icon Shahrokhabadietal_2019_LSK.pdf (1.58 MB)
Bandiziol, C., & De Marchi, S.. (2019). On the Lebesgue constant of the trigonometric Floater-Hormann rational interpolant at equally spaced nodes. Dolomites Research Notes on Approximation, 12(1), 51-67. presented at the 06/2019. doi:10.14658/pupj-drna-2019-1-6
PDF icon BandiziolDeMarchi_2019_LCT.pdf (580.6 KB)

Pages