Compounded Product Integration rules on (0, +∞)

Abstract

The paper deals with the approximation of integrals of the type where f is a sufficiently smooth function and the kernel k collects criticisms of many different types (highly oscillating, weakly singular, "nearly" singular, etc.). We propose an extended product rule based on the approximation of f by an extended Lagrange process at Laguerre zeros. We prove that the rule is stable and convergent with order of the best polynomial approximation in suitable function spaces. Furthermore, by combining the stated rule with a related product formula, we define a pattern that allows a significant saving in number of function evaluations. We give details on the construction of the coefficients of the rule for some selected kernels. Finally, some numerical tests are proposed to show the efficiency of the compounded quadrature scheme.

Occorsio D., Mezzanotte D. (2022) "Compounded Product Integration rules on (0, +∞) " Dolomites Research Notes on Approximation, 15(3), 78-92. DOI: 10.14658/PUPJ-DRNA-2022-3-8  
Year of Publication
2022
Journal
Dolomites Research Notes on Approximation
Volume
15
Issue Number
3
Start Page
78
Last Page
92
Date Published
10/2022
ISSN Number
2035-6803
Serial Article Number
8
DOI
10.14658/PUPJ-DRNA-2022-3-8
Issue
Section
SpecialIssue3