Biblio Index

Export 50 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Angeloni, L., Conti, C., De Marchi, S., Francomano, E., & Vinti, G.. (2021). Multivariate Approximation: Theory and Applications 2020. Dolomites Research Notes on Approximation, 14(2), 1-2. presented at the 04/2021. Retrieved from https://drna.padovauniversitypress.it/2021/2/1
PDF icon PrefaceMATA2020.pdf (352.38 KB)
Costarelli, D., Piconi, M., & Vinti, G.. (2023). The multivariate Durrmeyer-sampling type operators in functional spaces. Dolomites Research Notes on Approximation, 15, 128-144. presented at the 01/2023. doi:10.14658/pupj-drna-2022-5-11
PDF icon COSTARELLI_et_al.pdf (783.82 KB)
N
Cesarano, C., Ramírez, W., & Khan, S.. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation. presented at the 04/2022, Padova, IT: Padova University Press. doi:10.14658/pupj-drna-2022-1-1
PDF icon CesaranoRamirezKhan_2022_DAH.pdf (225.93 KB)
Çetin, N., Costarelli, D., Natale, M., & Vinti, G.. (2022). Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces. Dolomites Research Notes on Approximation, 15(3), 12-25. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-3
PDF icon 03_cetin.pdf (279.75 KB)
Çetin, N., Costarelli, D., Natale, M., & Vinti, G.. (2022). Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces. Dolomites Research Notes on Approximation, 15(3), 12-25. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-3
PDF icon 03_cetin.pdf (279.75 KB)
P
Conte, D., Guarino, N., Pagano, G., & Paternoster, B.. (2022). Positivity-preserving and elementary stable nonstandard method for a COVID-19 SIR model. Dolomites Research Notes on Approximation, 15(5), 65-77. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-7
PDF icon CONTE_et_al.pdf (370.75 KB)
R
Cuomo, S., DeRossi, A., Rizzo, L., & Sica, F.. (2022). Reconstruction of volatility surfaces: a first computational study. Dolomites Research Notes on Approximation, 15(3), 37-48. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-5
PDF icon 05_cuomo.pdf (1.98 MB)
Agarwal, P., Ahsan, S., Akbar, M., Nawaz, R., & Cesarano, C.. (2021). A Reliable Algorithm for solution of Higher Dimensional Nonlinear (1 + 1) and (2 + 1) Dimensional Volterra-Fredholm Integral Equations. Dolomites Research Notes on Approximation, 14(2), 18-25. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-4
PDF icon CesaranoetalMATA2020.pdf (220.94 KB)
S
Caratelli, D., & Ricci, P. E.. (2022). On a set of sine and cosine Fourier transforms of nested functions. Dolomites Research Notes on Approximation, 15(1), 11-19. presented at the 11/2022. doi:10.14658/pupj-drna-2022-1-2
PDF icon CaratelliRicci_2022_FTNF.pdf (11.18 MB)
Campagna, R., Conti, C., & Cuomo, S.. (2019). Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Research Notes on Approximation, 12(1), 86-100. presented at the 09/2019. doi:10.14658/pupj-drna-2019-1-9
PDF icon CampagnaContiCuomo_2019_SES.pdf (666.05 KB)
Campagna, R., Conti, C., & Cuomo, S.. (2019). Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Research Notes on Approximation, 12(1), 86-100. presented at the 09/2019. doi:10.14658/pupj-drna-2019-1-9
PDF icon CampagnaContiCuomo_2019_SES.pdf (666.05 KB)
Campagna, R., Conti, C., & Cuomo, S.. (2019). Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Research Notes on Approximation, 12(1), 86-100. presented at the 09/2019. doi:10.14658/pupj-drna-2019-1-9
PDF icon CampagnaContiCuomo_2019_SES.pdf (666.05 KB)
Cavoretto, R., & De Rossi, A.. (2022). Software for Approximation 2022 (SA2022). Dolomites Research Notes on Approximation, 15(2), I-II. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-0
PDF icon 00_DRNA_SA2022.pdf (972.15 KB)
Cavoretto, R., De Rossi, A., Lancellotti, S., & Perracchione, E.. (2022). Software Implementation of the Partition of Unity Method. Dolomites Research Notes on Approximation, 15(2), 35-46. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-4
PDF icon 04_DRNA_SA2022.pdf (655.36 KB)
Cantarini, M., Costarelli, D., & Vinti, G.. (2020). A solution of the problem of inverse approximation for the sampling Kantorovich operators in case of Lipschitz functions. Dolomites Research Notes on Approximation, 13(1), 30-35. presented at the 03/2019. doi:10.14658/PUPJ-DRNA-2020-1-4
PDF icon CantariniCostarelliVinti_2020_SPI.pdf (183.69 KB)
Cantarini, M., Costarelli, D., & Vinti, G.. (2020). A solution of the problem of inverse approximation for the sampling Kantorovich operators in case of Lipschitz functions. Dolomites Research Notes on Approximation, 13(1), 30-35. presented at the 03/2019. doi:10.14658/PUPJ-DRNA-2020-1-4
PDF icon CantariniCostarelliVinti_2020_SPI.pdf (183.69 KB)
Chen, M., Ling, L., & Su, Y.. (2022). Solving interpolation problems on surfaces stochastically and greedily. Dolomites Research Notes on Approximation, 15(3), 26-36. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-4
PDF icon 04_chen.pdf (1.3 MB)
Cuyt, A., & Lee, W. -shin. (2014). Sparse Interpolation. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon canazei2014-prn.pdf (3.98 MB)
Chen, Q., & Prautzsch, H.. (2013). Subdivision by WAVES – Weighted AVEraging Schemes. Dolomites Research Notes on Approximation, 6(Special_Issue), 9-19. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-3
PDF icon ChenPrautzsch-2013-SBW.pdf (872.17 KB)PDF icon ChenPrautzsch.2013.SBW_Erratum.pdf (47.18 KB)
Bayraktar, T., Coman, D., Herrmann, H., & Marinescu, G.. (2018). A survey on zeros of random holomorphic sections. Dolomites Research Notes on Approximation, 11(4), 1-19. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-1
PDF icon Bayraktar_etal_DRNA2018.pdf (481.24 KB)
T
Conte, D., Pagano, G., & Paternoster, B.. (2022). Two classes of linearly implicit numerical methods for stiff problems: analysis and MATLAB software. Dolomites Research Notes on Approximation, 15(2), 66-80. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-6
PDF icon 06_DRNA_SA2022.pdf (470.3 KB)
Candito, P., D’Aguì, G., & Livrea, R.. (2021). Two positive solutions for a nonlinear parameter-depending algebraic system. Dolomites Research Notes on Approximation, 14(2), 10-17. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-3
PDF icon CanditoDaguiLivreaMATA2020.pdf (144.55 KB)
Amoroso, E., Candito, P., & D’Aguì, G.. (2022). Two positive solutions for a nonlinear Robin problem involving the discrete p−Laplacian. Dolomites Research Notes on Approximation, 15(5), 1-7. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-1
PDF icon AMOROSO_et_al.pdf (241.24 KB)
U
Campagna, R., Bayona, V., & Cuomo, S.. (2020). Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomites Research Notes on Approximation, 13(1), 55-64. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-7
PDF icon CampagnaBayonaCuomo_2020_UPA.pdf (288.27 KB)
Campagna, R., Bayona, V., & Cuomo, S.. (2020). Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomites Research Notes on Approximation, 13(1), 55-64. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-7
PDF icon CampagnaBayonaCuomo_2020_UPA.pdf (288.27 KB)

Pages