Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

Annie Cuyt and Wen-shin Lee

Canazei Workshop 7-12/9/2014

Universiteit Antwerpen Department of Mathematics and Computer Science

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Motivation

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

interpolate

$$f(x) = \alpha_1 + \alpha_2 x^{100}$$

- Newton/Lagrange interpolation: 101 samples
- only 4 unknowns: α_1 , α_2 , x^0 , x^{100} !
- how to solve it from 4 samples?

Motivation

Motivation

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

- exponential analysis
- generalized eigenvalue problems
- computer algebra
- orthogonal polynomials
- signal processing
- moment problems
- nonlinear approximation theory
- many applications . . .

Motivation

Basics: exponential

Basics: polynomial

Approximatio theory

Applications

References

$$x_s = s\Delta$$
, $s = 0, 1, 2, \dots$

$$\sum_{i=1}^n \alpha_i x_s^{k_i} = f_s, \quad n \ll \max(k_i), \quad k_i \in \mathbb{N}$$

$$\sum_{i=1}^{n_1} \alpha_{i,1} \cos(\phi_{i,1} x_s) + \sum_{i=1}^{n_2} \alpha_{i,2} \sin(\phi_{i,2} x_s) = f_s$$

$$\sum_{i=1}^n \alpha_i \exp(\phi_i x_s) = f_s, \quad \phi_i \in \mathbb{C}$$

Motivation

Motivation

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

- 1. Univariate exponential sparse interpolation (Exercise)
- 2. Multivariate polynomial sparse interpolation (Exercise)
- 3. Connection with rational approximation theory (Exercise)
- 4. Applications unlimited

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Basics: exponential

Figure: Gaspard Riche de Prony [1795]

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

interpolation problem:

n

$$\sum_{i=1}^{n} \alpha_i \exp(\phi_i x_s) = f_s, \quad s = 0, \dots, 2n-1$$

$$\begin{aligned} x_s &= s \frac{2\pi}{M}, \quad \omega = 2\pi/M \\ |\Im(\phi_i)| &< M/2, \quad \Omega_i = \exp(\phi_i \omega), \\ f_s &= \sum_{i=1}^n \alpha_i \Omega_i^s, \quad s = 0, \dots, 2n-1 \end{aligned}$$

$$\begin{cases} \alpha_1 + \dots + \alpha_n = f_0 \\ \alpha_1 \Omega_1 + \dots + \alpha_n \Omega_n = f_1 \\ \vdots \\ \alpha_1 \Omega_1^{2n-1} + \dots + \alpha_n \Omega_n^{2n-1} = f_{2n-1} \end{cases}$$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

finding Ω_i :

$$\prod_{i=1}^{n} (z - \Omega_i) = z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$$

)

$$0 = \sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{s} (\Omega_{i}^{n} + b_{n-1} \Omega_{i}^{n-1} + \dots + b_{0}$$
$$= \sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{n+s} + \sum_{j=0}^{n-1} b_{j} \left(\sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{j+s} \right)$$
$$= f_{s+n} + \sum_{j=0}^{n-1} b_{j} f_{s+j}$$

Basics: exponential

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$$\begin{pmatrix} f_0 & \dots & f_{n-1} \\ \vdots & \ddots & \vdots \\ f_{n-1} & \dots & f_{2n-2} \end{pmatrix} \begin{pmatrix} b_0 \\ \vdots \\ b_{n-1} \end{pmatrix} = - \begin{pmatrix} f_n \\ \vdots \\ f_{2n-1} \end{pmatrix}$$

Hankel matrix:

$$H_n^{(r)} = \begin{pmatrix} f_r & \dots & f_{r+n-1} \\ \vdots & \ddots & \vdots \\ f_{r+n-1} & \dots & f_{r+2n-2} \end{pmatrix}$$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Hadamard polynomial:

$$H_n^{(0)}(z) = \begin{vmatrix} f_0 & \dots & f_{n-1} & f_n \\ \vdots & \ddots & \vdots & \vdots \\ f_{n-1} & \dots & f_{2n-2} & f_{2n-1} \\ 1 & \dots & z^{n-1} & z^n \end{vmatrix}$$

$$\prod_{i=1}^{n} (z - \Omega_i) = \frac{H_n^{(0)}(z)}{|H_n^{(0)}|}$$
$$= z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

formally orthogonal polynomial:

$$\gamma: z^{s} \to f_{s}, \quad s = 0, 1, \dots$$

$$\gamma: \exp(\phi_{i} x_{s}) = \Omega_{i}^{s} \to \sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{s} = f_{s}$$

$$\gamma: z^{i} \frac{H_{n}^{(0)}(z)}{|H_{n}^{(0)}|} \to 0, \quad i = 0, \dots, n-1$$

$$\frac{H_n^{(0)}(z)}{\left|H_n^{(0)}\right|} \perp_{\gamma} z^i, \quad i = 0, \dots, n-1$$

[Henrici, 1974]

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

roots of
$$\frac{H_n^{(0)}(z)}{|H_n^{(0)}|}$$
 from GEP:

$$H_n^{(0)} = \begin{pmatrix} 1 & \dots & 1 \\ \Omega_1 & \Omega_2 & \dots & \Omega_n \\ \vdots & & \vdots \\ \Omega_1^{n-1} & \dots & \Omega_n^{n-1} \end{pmatrix} \begin{pmatrix} \alpha_1 & & \\ & \ddots & \\ & & \\ & & \alpha_n \end{pmatrix} \begin{pmatrix} 1 & \Omega_1 & \dots & \Omega_1^{n-1} \\ \vdots & \Omega_2 & & \vdots \\ \vdots & & \vdots \\ 1 & \Omega_n & \dots & \Omega_n^{n-1} \end{pmatrix}$$
$$= V_n^T D_\alpha V_n$$

$$H_n^{(1)} = V_n^{\mathsf{T}} D_\alpha \begin{pmatrix} \Omega_1 & & \\ & \ddots & \\ & & \Omega_n \end{pmatrix} V_n$$

Basics: exponential

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

$$\det \left(H_n^{(1)} - \lambda H_n^{(0)} \right) = \det \left(V_n^T D_\alpha \begin{pmatrix} \Omega_1 - \lambda & \\ & \ddots & \\ & & \Omega_n - \lambda \end{pmatrix} V_n \right)$$
$$= 0 \text{ for } \lambda = \Omega_i, \quad i = 1, \dots, n$$

[Hua and Sarkar, 1990]

Motivation

Basics: exponential

Basics: polynomial

Approximatic theory

Applications

References

finding ϕ_i :

$$\begin{split} \exp(\phi_i) &= \exp(\mathfrak{R}(\phi_i))e^{\mathfrak{i}\mathfrak{I}(\phi_i)} \\ |\mathfrak{I}(\phi_i)| < \frac{M}{2}: \\ \arg(\Omega_i) &= \arg(\exp(\phi_i\omega)) \\ &= \mathfrak{I}(\phi_i) \ \frac{2\pi}{M} \in \left] -\pi, \pi\right[\end{split}$$

Motivation

Basics: exponential

Basics: polynomial

Approximatic theory

Applications

References

finding α_i :

$$\sum_{i=1}^{n} \alpha_i \Omega_i^{s+j} = f_{s+j}, \quad s = 0, \dots, n-1, \quad 0 \le j \le n$$

$$\begin{pmatrix} \Omega_1^j & \dots & \Omega_n^j \\ \vdots & & \vdots \\ \Omega_1^{j+n-1} & \dots & \Omega_n^{j+n-1} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} f_j \\ \vdots \\ f_{j+n-1} \end{pmatrix}$$

remaining interpolation conditions are linearly dependent

Motivation

Basics: exponential

Basics: polynomial

Approximatic theory

Applications

References

finding *n*:

$$N < n : \left| H_N^{(r)} \right| \neq 0, \quad r = 0, 1, \dots$$

$$N = n : \left| H_N^{(r)} \right| \neq 0 \quad \text{if } \Omega_i \neq \Omega_j \text{ for } i \neq j \quad \text{[Kaltofen and Lee, 2003]}$$

$$N > n : \left| H_N^{(r)} \right| \equiv 0, \quad r = 0, 1, \dots$$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$\phi(x) = \sum_{i=1}^{4} \alpha_i \exp(\phi_i x)$

$\alpha_1 = 1$	$\phi_1 = 0$
$\alpha_2 = 2.4$	$\phi_2 = -5 + 19.97$ i
$\alpha_3 = -2.1$	$\phi_3 = 3 + 45i$
$\alpha_4 = 0.2$	$\phi_{4} = 5.3i$

evaluate at $x_s = s \frac{2\pi}{100}$, M = 100, $|\Im(\phi_i)| < 50$

sequence f_0, \ldots, f_7, \ldots is linearly generated

Example: exponential

Motivation

Basics: exponential

Basics: polynomial

Approximatio theory

Applications

References

Example: exponential

Figure: $H_N^{(0)}$ singular, N = 6

$$\frac{\left|\widetilde{\Omega_j} - \Omega_j\right|}{\left|\Omega_j\right|} \le 2 \times 10^{-12}, \qquad \frac{\left|\widetilde{\phi_j} - \phi_j\right|}{\left|\phi_j\right|} \le 2 \times 10^{-12}$$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$\phi(x) = \alpha_1 \exp(\phi_1 x) + \alpha_2 \exp(\phi_2 x)$

4 unknowns $\phi_1, \phi_2, \alpha_1, \alpha_2$

identify $\phi(x)$ from

$$\phi(0) = \alpha_1 + \alpha_2$$

$$\phi'(0) = \alpha_1\phi_1 + \alpha_2\phi_2$$

$$\phi''(0) = \alpha_1\phi_1^2 + \alpha_2\phi_2^2$$

$$\phi'''(0) = \alpha_1\phi_1^3 + \alpha_2\phi_2^3$$

solution:

$$\begin{vmatrix} H_3^{(0)} \end{vmatrix} = \begin{vmatrix} \phi_0 & \phi'_0 & \phi''_0 \\ \phi'_0 & \phi''_0 & \phi'''_0 \\ \phi''_0 & \phi'''_0 & \phi''_0 \end{vmatrix} = 0 \quad \text{symbolically}$$

$$n = 2$$

Exercise: exponential

٠.

$$H_{3} := \begin{bmatrix} \alpha_{1} + \alpha_{2} & \alpha_{1} \phi_{1} + \alpha_{2} \phi_{2} & \alpha_{1} \phi_{1}^{2} + \alpha_{2} \phi_{2}^{2} \\ \alpha_{1} \phi_{1} + \alpha_{2} \phi_{2} & \alpha_{1} \phi_{1}^{2} + \alpha_{2} \phi_{2}^{2} & \alpha_{1} \phi_{1}^{3} + \alpha_{2} \phi_{2}^{3} \\ \alpha_{1} \phi_{1}^{2} + \alpha_{2} \phi_{2}^{2} & \alpha_{1} \phi_{1}^{3} + \alpha_{2} \phi_{2}^{3} & \alpha_{1} \phi_{1}^{4} + \alpha_{2} \phi_{2}^{4} \end{bmatrix}$$
Determinant(H[3]);
$$0 \qquad (5)$$

> H[2] := HankelMatrix([f[0],f[1],f[2]],2);

$$H_{2} = \begin{bmatrix} \alpha_{1} + \alpha_{2} & \alpha_{1} \phi_{1} + \alpha_{2} \phi_{2} \\ \alpha_{1} \phi_{1} + \alpha_{2} \phi_{2} & \alpha_{1} \phi_{1}^{2} + \alpha_{2} \phi_{2}^{2} \end{bmatrix}$$
(6)

> F2 := Matrix([[f[2]],[f[3]]]);

+

> B polv := z^2

$$F_{2} := \begin{bmatrix} \alpha_{1} \phi_{1}^{2} + \alpha_{2} \phi_{2}^{2} \\ \alpha_{1} \phi_{1}^{3} + \alpha_{2} \phi_{2}^{3} \end{bmatrix}$$
(7)

> B:=LinearSolve(H[2],-F2); $B := \begin{bmatrix} \phi_1 \phi_2 \\ -\phi_1 - \phi_2 \end{bmatrix}$ (8 B(2)*z + B(1); $B \ nolv = z^2 + (-\phi_1 - \phi_2) z + \phi_1 \phi_2$ (9

$$L_poy_1 = 2 + \left(\frac{1}{\sqrt{1-\frac{1}{\sqrt{2}}}} + \frac{1}{\sqrt{1-\frac{1}{\sqrt{2}}}} \right)^2 + \frac{1}{\sqrt{1-\frac{1}{\sqrt{2}}}}$$

$$z_root:=solve(B_poly=0, z);$$

$$z_root:=\phi_2, \phi_1$$
(10)
$$V := Transpose(VandermondeMatrix([z_root[1], z_root[2]], 2, 2));$$

$$V := \begin{bmatrix} 1 & 1 \\ \phi_2 & \phi_1 \end{bmatrix}$$
(11)

$$F0 := Matrix([[f[0]], [f[1]]]);$$

$$F0 := \begin{bmatrix} \alpha_1 + \alpha_2 \\ \alpha_1 \phi_1 + \alpha_2 \phi_2 \end{bmatrix}$$
(12
$$A := \begin{bmatrix} \alpha_2 \\ \alpha_1 \end{bmatrix}$$
(13
$$A := \begin{bmatrix} \alpha_2 \\ \alpha_1 \end{bmatrix}$$
(13
$$A := \begin{bmatrix} \alpha_2 \\ \alpha_1 \end{bmatrix}$$
(14
$$A := \begin{bmatrix} \alpha_2 \\ \alpha_1 \end{bmatrix}$$
(15
$$A := \begin{bmatrix} \alpha_1 + \alpha_2 \\ \alpha_1 \end{bmatrix}$$
(15

$$F_{2} := Matrix([f[0], f[1], f[2], f[3], f[4]], 3);$$

$$H_{3} := \begin{bmatrix} \pi + 5 & 2\pi - \frac{5}{7} & 4\pi + \frac{5}{49} \\ 2\pi - \frac{5}{7} & 4\pi + \frac{5}{49} & 8\pi - \frac{5}{343} \\ 4\pi + \frac{5}{49} & 8\pi - \frac{5}{343} & 16\pi + \frac{5}{2401} \end{bmatrix}$$

$$F_{2} := Matrix([f[0], f[1], f[2]], 2);$$

$$H_{2} := \begin{bmatrix} \pi + 5 & 2\pi - \frac{5}{7} \\ 2\pi - \frac{5}{7} & 4\pi + \frac{5}{49} \\ 2\pi - \frac{5}{7} & 4\pi + \frac{5}{49} \end{bmatrix}$$

$$F_{2} := Matrix([[f[2]], [f[3]]]);$$

$$F_{2} := Matrix([[f[2]], [f[3]]]);$$

$$F_{2} := Matrix([[f[2]], -F2);$$

$$B := LinearSolve(H[2], -F2);$$

$$C_{1} := \frac{27}{7} = \frac{13}{7} = -\frac{2}{7}$$

$$C_{2} := \frac{2}{7} = \frac{13}{7} = -\frac{2}{7}$$

$$z_{root} := 2, -\frac{1}{7}$$
 (22)

> V := Transpose(VandermondeMatrix([z_root[1],z_root[2]],2,2));

$$V \coloneqq \begin{bmatrix} 1 & 1 \\ 2 & -\frac{1}{7} \end{bmatrix}$$
(23)

> F0 := Matrix([[f[0]],[f[1]]]);

$$F0 = \begin{bmatrix} \pi + 5\\ 2\pi - \frac{5}{7} \end{bmatrix}$$

$$A = \begin{bmatrix} \pi\\ 5 \end{bmatrix}$$
(24)

> A:=LinearSolve(V,F0);

(25

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Basics: polynomial

Basics: polynomial

Figure: Michael Ben-Or and Prasoon Tiwari [1988]

Sparse

Interpolation

Basics: polynomial

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

interpolation problem:

$$\sum_{(k_1,\ldots,k_d)\in K} \alpha_{k_1,\ldots,k_d} x_1^{k_1} \cdots x_d^{k_d}, \quad \#K = n$$

evaluate at

$$\begin{aligned} &(x_1, \dots, x_d) = (\omega_1^s, \dots, \omega_d^s) \\ &\omega_j = \exp(2\pi i/p_j), \quad p_j > \partial_j p(x_1, \dots, x_d), \quad p_j \text{ mutually prime} \end{aligned}$$

$$p(\omega_1^s, \dots, \omega_d^s) = f_s, \quad 0 \le s \le 2n - 1$$

$$\Omega_i = \omega_1^{k_1^{(i)}} \cdots \omega_d^{k_d^{(i)}}, \quad i = 1, \dots, n$$

[Giesbrecht, Labahn, and Lee, 2006]

Basics: polynomial

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

finding Ω_i :

$$\prod_{i=1}^{n} (z - \Omega_i) = z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$$

$$0 = \sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{s} (\Omega_{i}^{n} + b_{n-1} \Omega_{i}^{n-1} + \dots + b_{0})$$

=
$$\sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{n+s} + \sum_{j=0}^{n-1} b_{j} \left(\sum_{i=1}^{n} \alpha_{i} \Omega_{i}^{j+s} \right)$$

=
$$f_{s+n} + \sum_{j=0}^{n-1} b_{j} f_{s+j}$$

Basics: polynomial

Basics: polynomial

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

$$\begin{pmatrix} f_0 & \dots & f_{n-1} \\ \vdots & \ddots & \vdots \\ f_{n-1} & \dots & f_{2n-2} \end{pmatrix} \begin{pmatrix} b_0 \\ \vdots \\ b_{n-1} \end{pmatrix} = - \begin{pmatrix} f_n \\ \vdots \\ f_{2n-1} \end{pmatrix}$$

 Ω_i : zeros of formally orthogonal Hadamard polynomial

$$\prod_{i=1}^{n} (z - \Omega_i) = \frac{H_n^{(0)}(z)}{|H_n^{(0)}|}$$

Motivation

Basics: exponential

Basics: polynomial

Approximatio theory

Applications

References

reverse Chinese remainder theorem

$$\begin{split} m &= p_1 \cdots p_d \\ \Omega_i &= \omega^{k(i)}, \quad \omega = \exp\left(\frac{2\pi i}{\prod_{j=1}^d p_j}\right), \end{split}$$

$$k(i) = k_1^{(i)} \frac{m}{p_1} + \dots + k_d^{(i)} \frac{m}{p_d}$$

$$k_j^{(i)} \frac{m}{p_j} \mod p_j = k(i) \mod p_j,$$

$$k_j^{(i)} < p_j, \quad \gcd(p_j, m/p_j) = 1, \quad j = 1, \dots, d$$

Basics: polynomial

Motivation

Basics: exponential

Basics: polynomial

- Approximatio theory
- Applications
- References

Basics: polynomial

finding
$$\alpha_i = \alpha_{k_1^{(i)}, \dots, k_d^{(i)}}$$
:

$$\sum_{i=1}^{n} \alpha_i \Omega_i^{s+j} = f_{s+j}, \quad s = 0, \dots, n-1, \quad 0 \le j \le n$$

$$\begin{pmatrix} \Omega_1^j & \dots & \Omega_n^j \\ \vdots & & \vdots \\ \Omega_1^{j+n-1} & \dots & \Omega_n^{j+n-1} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} f_j \\ \vdots \\ f_{j+n-1} \end{pmatrix}$$

remaining interpolation conditions are linearly dependent

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

finding *n*:

floating-point arithmetic:

$$\left|H_N^{(r)}\right| \equiv 0, \quad N > n, \quad r = 0, 1, \dots$$

exact arithmetic: increase n till

$$\delta_s := f_s + b_{n-1}f_{s-1} + \dots + b_0f_{s-n}$$

equals 0, $s \ge 2n$

[Massey, 1969]

Basics: polynomial

р

Motivation

Basics: exponential

Basics: polynomial

Approximatio theory

Applications

References

Example: polynomial

$$(x, y) = x^5 y + 2.2 x^4 y^4 - 0.5 x y^{11} + 0.1 x y^{12}$$

$$p_1 = 6$$
, $p_2 = 13$, $\omega_1 = \exp(2\pi i/6)$, $\omega_2 = \exp(2\pi i/13)$,

$$p(\omega_1^s, \omega_2^s), \quad s = 0, ..., 7$$
 (floating-point)
or
 $p(p_1^s, p_2^s), \quad s = 0, ..., 7$ (exact arithmetic)

sequence $f_0, f_1, \ldots, f_7, \ldots$ is linearly generated and $\delta_8 = 0$

Hadamard polynomial:

$$z^{4} + (-3.67 + 0.0799i)z^{3} + (5.35 - 0.216i)z^{2}$$
$$(-3.67 + 0.216i)z + (0.997 - 0.0805i)$$

Basics: polynomial

Interpolation

Sparse

Basics: exponential

Basics: polynomial

- Approximation theory
- Applications

References

$$\begin{split} m &= 78, \qquad \omega = \exp(2\pi i/78), \\ \Omega_1 &= \omega^{k(1)} = \omega^{71} = \omega^{5 \times 13 + 1 \times 6} \\ \Omega_2 &= \omega^{k(2)} = \omega^{76} = \omega^{4 \times 13 + 4 \times 6} \\ \Omega_3 &= \omega^{k(3)} = \omega^{79} = \omega^{1 \times 13 + 11 \times 6} \\ \Omega_4 &= \omega^{k(4)} = \omega^{85} = \omega^{1 \times 13 + 12 \times 6} \\ \mathcal{K} &= \{(5, 1), (4, 4), (1, 11), (1, 12)\} \Rightarrow \text{ terms } x^5 y, x^4 y^4, xy^{11}, xy^{12} \end{split}$$

Vandermonde system

$$\sum_{i=1}^4 \alpha_i \Omega_i^{s+j} = f_{s+j}, \quad s = 0, \dots, n-1, \quad 0 \le j \le n$$

Exercise: polynomial

$$p(x, y) = (x - 3)^{5}(y + 5) + 2.2(x - 3)^{4}(y + 5)^{4}$$

- 0.5(x - 3)(y + 5)¹¹ + 0.1(x - 3)(y + 5)¹²
= u⁵v + 2.2u⁴v⁴ - 0.5uv¹¹ + 0.1uv¹²,
u = x - 3, v = y + 5

$$p_1 = 6, \qquad p_2 = 13, \\ \omega_1 = \exp(2\pi i/6), \qquad \omega_2 = \exp(2\pi i/13), \\ u = \omega_1^s, \qquad v = \omega_2^s$$

$$p(\omega_1^s + 3, \omega_2^s - 5), \quad s = 0, \dots, 7$$

Sparse

Interpolation

Basics: polynomial

$$\begin{bmatrix} \mathbf{y} & \mathbf{y}$$

 $f_1 := 2.602841017834476 - 0.87415734576045771$ $f_2 := 2.064816858508122 - 1.589980617941464$ I $f_2 := 1.329941999443174 - 2.035486797328322 I$ $f_{\rm c} := 0.5888159453592064 - 2.177111443869176 \,\mathrm{I}$ $f_{\varepsilon} := 0.02061376974983473 - 2.067629883507751$ I $f_{\epsilon} := -0.2610215691867326 - 1.827541993129119$ I $f_{2} := -0.2414681965457515 - 1.605741666597298 I$ (6 > H0[4] := HankelMatrix([f[0],f[1],f[2],f[3],f[4],f[5],f[6]],4); (7 - 2.035486797328322 I], [2.602841017834476 - 0.8741573457604577 I. 2.064816858508122 - 1.589980617941464 I. 1.329941999443174 -2.035486797328322 I. 0.5888159453592064 -2.177111443869176 II. [2.064816858508122 - 1.589980617941464 I, 1.329941999443174 - 2.035486797328322 I, 0.5888159453592064 - 2.177111443869176 I. 0.02061376974983473 - 2.067629883507751 I J. - 2.067629883507751 I, -0.2610215691867326 - 1.827541993129119 I]] > H1[4] := HankelMatrix([f[1],f[2],f[3],f[4],f[5],f[6],f[7]],4); $HI_{4} := \lceil [2.602841017834476 - 0.8741573457604577], 2.064816858508122 - 1.589980617941464], 1.329941999443174 \rangle \langle 0.8741573457604577], 2.064816858508122 - 1.589980617941464], 2.064816858508122 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124 - 1.589980617941464], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.064816858508124], 2.06481684], 2.0648164], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.066816], 2.06$ (8 - 2.035486797328322 I. 0.5888159453592064 - 2.177111443869176 I I. $[2.064816858508122 - 1.589980617941464\,I, 1.329941999443174 - 2.035486797328322\,I, 0.5888159453592064]$ - 2.177111443869176 I. 0.02061376974983473 - 2.067629883507751 II. [1.329941999443174 - 2.035486797328322 I, 0.5888159453592064 - 2.177111443869176 I, 0.02061376974983473 - 2.067629883507751 I, -0.2610215691867326 - 1.827541993129119 I], [0.5888159453592064 - 2.177111443869176 I, 0.02061376974983473 - 2.067629883507751 I, -0.2610215691867326 - 1.827541993129119 I. -0.2414681965457515 - 1.605741666597298 I11


```
0.100000000041224 + 1.216000331768808 10^{-11} I
                                    1,00000000007150 \pm 2,565636441003167 10^{-11} L
                              A :=
                                                                                                              (14
                                     2,20000000261579 - 7,965585370092284,10^{-11} I
                                    -0.500000002728518 + 4.183975685423307 10^{-11} I
> var list := [u,v]:
  p := 0:
  for i from 1 to 4 do
      term := A[i,1]:
     for j from 1 to 2 do
    term := term*var_list[j]^exp_list[i,j]:
     od:
     p := p + term:
  od:
- p;
(0.100000000041224 + 1.216000331768808 10^{-11} I) u v^{12} + (1.00000000007150 + 2.565636441003167 10^{-11} I) u^5 v
                                                                                                               (15
    > poly uv;
                                       u^{5}v + 2.2 u^{4}v^{4} - 0.5 uv^{11} + 0.1 uv^{12}
                                                                                                               (16
```

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Application

References

Approximation theory

Figure: Henri Padé [1892] and Christian Pommerenke [1973]

Sparse

Interpolation

Approximation theory

Motivation

Sparse

Interpolation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$$f_s = \sum_{i=1}^n \alpha_i \exp(\phi_i x_s), \quad s = 0, 1, \dots, 2n-1$$

$$f(z) = \sum_{j=0}^{\infty} f_j z^j, \quad f_j = 0, \quad j < 0$$
$$p(z) = \sum_{i=0}^{\ell} a_i z^i,$$
$$q(z) = \sum_{i=0}^{m} b_i z^i$$

$$\left(\sum_{j=0}^{\infty} f_j z^j\right) q(z) - p(z) = \sum_{i \ge \ell + m+1} c_i z^i$$

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

$$\begin{cases} f_0 b_0 = a_0 \\ f_1 b_0 + f_0 b_1 = a_1 \\ \vdots \\ f_{\ell} b_0 + \dots + f_{\ell-m} b_m = a_{\ell} \end{cases} \qquad b_0 = 1$$

$$\begin{cases} f_{\ell+1} b_0 + \dots + f_{\ell-m+1} b_m = 0 \\ \vdots \\ f_{\ell+m} b_0 + \dots + f_{\ell} b_m = 0 \end{cases} \qquad H_m^{(\ell+1-m)} \begin{pmatrix} b_m \\ \vdots \\ b_1 \end{pmatrix} = - \begin{pmatrix} f_{\ell+1} \\ \vdots \\ f_{\ell+m} \end{pmatrix}$$

 $[\ell/m](z) \coloneqq p(z)/q(z)$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$$f(z) = \sum_{j=0}^{\infty} f_j z^j$$

= $\sum_{i=1}^{n} \frac{\alpha_i}{1 - z\Omega_i}$
= Laplace transform of $\sum_{i=1}^{n} \alpha_i \exp(\phi_i x)$

Approximation theory

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$$[n-1/n](z) = p(z)/q(z)$$

q(

$$z) = \prod_{i=1}^{n} (1 - z\Omega_i)$$

= $z^n \frac{H_n^{(0)}(1/z)}{|H_n^{(0)}|}$
= $b_0 z^n + b_1 z^{n-1} + \dots + b_{n-1} z + 1$

Approximation theory

Motivation

Basics: exponentia

Basics: polynomial

Approximation theory

Application

References

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Approximation theory

 $f(z) + \varepsilon(z)$ meromorphic with poles in $0 \le |z| < R$ of total multiplicity n [de Montessus de Ballore, 1905]

 $[\nu/n](z) \rightarrow f(z) + \varepsilon(z)$ uniformly on compact sets excluding poles, with poles of $f(z) + \varepsilon(z)$ attracting poles of $[\nu/n](z)$ according to their multiplicity

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$f(z) + \varepsilon(z)$ analytic except for a countable number of poles [Nuttall, 1970] and essential singularities [Pommerenke, 1973] \downarrow

 $[\nu - 1/\nu](z) \rightarrow f(z) + \varepsilon(z)$ in measure on compact sets, i.e.

$$\Lambda_2\left(\left\{z: \left|f(z) + \varepsilon(z) - \left[\nu - 1/\nu\right](z)\right| \ge \tau\right\}\right) \to 0$$

Approximation theory

Motivation

Sparse

Interpolation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

mathematical (noise free):
1. build
$$H_{\nu}^{(0)}$$
, $\nu = 0, 1, 2, ...$
2. $H_{\nu}^{(0)} = U \Sigma V^{T}$ singular value decomposition
3. $\Sigma = \begin{pmatrix} \sigma_{1} & \\ & \ddots \\ & \sigma_{\nu} \end{pmatrix}$, $\sigma_{1} \ge \sigma_{2} \ge \cdots \ge \sigma_{n} > \sigma_{n+1} = \cdots = \sigma_{\nu} = 0$
4. find $\Omega_{i}, \phi_{i}, \alpha_{i}, i = 1, ..., n$

Motivation

Sparse Interpolation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

numerical (with noise):

- 1. take ν large enough so that noise is clearly separated from n2. solve $H_{\nu}^{(1)}v_i = \lambda_i H_{\nu}^{(0)}v_i$, $i = 1, ..., \nu$, $\lambda_i = \Omega_i$, i = 1, ..., n
- **3**. find ϕ_i

4. solve
$$\sum_{i=1}^{n} \alpha_i \exp(\phi_i x_j) = f_j$$
, $0 \le j \le 2\nu - 1$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

$\phi_1=0,$	α_1 = 1,	
$\phi_2 = -0.2 + 39.5$ i,	$\alpha_2 = 2$,	$x_s = s \frac{2\pi}{100},$
$\phi_3 = -0.5 + 40$ i,	$\alpha_3 = 4$,	<i>M</i> = 100
$\phi_4 = -1$,	$\alpha_4 = 8$,	

 $\|\varepsilon(z)\|_{\infty} = 10^{-2}$, uniform random noise

Example: noise

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Singular values $H_{\nu}^{(0)}$ with $n = 4, \nu = 6$

Example: noise

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Singular values $H_{\nu}^{(0)}$ with $n = 4, \nu = 50$

Example: noise

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

ϕ_1 = 1.5i,	$lpha_{1}$ = 10 ⁻³ ,	
$\phi_2 = 12.7$ i,	α ₂ = 2,	$x_s = s \frac{2\pi}{100},$
$\phi_3 = -0.1 + 40$ i,	$\alpha_3 = 4$,	M = 100
$\phi_4 = -0.3 + 25.2i$	$\alpha_4 = 8$,	

 $\|\varepsilon(z)\|_{\infty} = 2 \times 10^{-3}$, uniform random noise

Exercise: approximation

format long;

```
phi = [1.5*1i, 12.7*1i, -0.1+40*1i, -0.3+25.2*1i];
alpha = [10^(-3), 2, 4, 8];
eps = 2*10^(-3);
M = 100;
```

plot_signal

pause

plot fft

pause

```
$ synthesized input data with added noise
N = input('Enter the dimension for SVD: ');
% (10, 6, 3), (100, 100, 4)
```

randn('seed',0);

```
omega = 2*pi/M*(0:2*N-1);
f = syn exp(alpha, phi, omega);
```

```
v = randn(size(f))+randn(size(f))*1i;
vv = v/norm(v,Inf);
f = f + eps*vv;
```

```
% form Hankel matrices H0 and H1 from y sequence
[H0,H1] = mat_ge(f);
```

plot_svd

pause

```
% reconstruct the parameters via generalized eigenvalues
n = input('Size of the model: ');
```

```
$ compute the generalized eigenvalues and form the Vandermonde system
E = eig(H1(1:n,1:n),H0(1:n,1:n));
V = rot90(vander(E));
$ amplitudes
A = V\f(1:n).';
$ frequencies and damping factors
```

```
alpha_rec = A;
phi_rec = log(E) *M/(2*pi);
```

pause

% extract the non-zero terms
extract

% plot computed parameters
plot_recontructed_parameters

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

Applications

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Exponential analysis in physical phenomena:

- power system transient detection
- motor fault diagnosis
- drug clearance / glucose tolerance
- magnetic resonance / infrared spectroscopy
- vibration analysis
- seismic data analysis
- music signal processing
- corrosion rate / crack initiation
- odour recognition with electronic nose
- typed keystroke recognition
- liquid (explosive) identification

▶ ...

Applications

Transients

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Transient detection and characterization

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

short lived high frequency signal:

- speech processing
- turbulent flow
- power lines
- ...

Transients

Interpolation

Sparse

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

• model with
$$\phi_i = 120\pi i$$
,

$$\sum_{i=1}^{n} \alpha_i \cos(120\pi x + \gamma_i) \mathbf{1}_{[A_i, Z_i[}$$

•
$$n = 3, \alpha_i = 1, \gamma_{1,3} = -\pi/2, \gamma_2 = 3\pi/4$$

•
$$[A_1, Z_1] = [0, 0.0308[$$

 $[A_2, Z_2] = [0.0308, 0.0625[$
 $[A_3, Z_3] = [0.0625, 0.1058[$

- ► *M* = 1200
- uniformly distributed noise in [-0.05, 0.05]

Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

Figure: Given transient signal

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

- characteristics of terms change
- inspect rank of

$$H_4^{(1)} = \begin{pmatrix} f_1 & f_2 & f_3 & f_4 \\ f_2 & f_3 & f_4 & f_5 \\ f_3 & f_4 & f_5 & f_6 \\ f_4 & f_5 & f_6 & f_7 \end{pmatrix}$$

$$[A_1, Z_1[= [0/M, 37/M[, [A_2, Z_2[= [37/M, 75/M[, [A_3, Z_3[= [75/M, 127/M[$$

Motivation

Basics: exponential

Basics: polynomia

Approximatior theory

Applications

References

Figure: Numerical rank of $H_4^{(r)}$ evolving over time x

Audio signals

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

Figure: Reconstructing undersampled audio signals

Audio signals

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

song containing 29 notes of 0.25 seconds each:

- ▶ *M* = 44100 (Hz)
- 11025 samples per note, 319725 in total
- $16.35 \le \phi_i \le 4978.03, i = 1, \dots, 100$
- complex exponential model

Audio signals

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Sampled signal produced by 1 note

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Audio signals

compressive sensing (optimisation, probabilistic)

Figure: 4 runs with 1229 samples

Figure: 4 runs with 456 samples
Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Full set of samples per note

Figure: Sparse interpolation with 7 samples per note

Audio signals

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Preventive diagnosis of a broken rotor bar

MCSA

MCSA

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

3-phase induction motors:

- consume 40 50% of all electricity in industrialized countries
- rotor made up metal bars
- stator current signal analysed
- broken bar(s) characterized by sideband frequencies
- difficult to diagnoze under low or no load

Figure: Stator and rotor

Motivation

Basics: exponential

Basics: polynomia

Approximatic theory

Applications

References

Figure: Stator current FFT spectra: healthy and with 1 broken bar

MCSA

MCSA

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: 10% load, 16dB noise, $\nu = 400$

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Sparse EEG approximation

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Bio-electrical signals:

- electrical activity of cells and tissues
- clinical studies of health status
- ▶ ECG, EEG, EMG, EOG, ...
- sparse model (n = 8) is approximate

Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

Figure: Reconstruction of 8 second [1 – 20] Hz bandpass filtered EEG

Bio-electrical

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Applications

References

Figure: Sparse EOG approximation

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Polysomnogram:

- 12 channels
- 22 wire attachments to patient
- heart rate, leg measurement, airflow (chest, abdomen), chin muscle, EEG, EOG, ...

Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

Figure: Reconstruction of 8 second EOG (CC = 99.2%)

Bio-electrical

Motivation

Basics: exponentia

Basics: polynomial

Approximatior theory

Applications

References

Figure: Spectral analysis of FID

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Magnetic resonance spectroscopy:

- physical and chemical properties of molecules
- a.o. concentration of metabolites in the brain
- frequencies clustered \rightarrow high frequence resolution
- free induction decay \rightarrow time constraint
- Fourier methods need additional tools

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomia

Approximation theory

Applications

References

$$\begin{split} \phi(x) &= 5 \times 10^{-2} + 2e^{(-0.97 + i79.94\pi)x} + 4e^{(-1 + i80\pi)x} + 8e^{-1.1x} + \varepsilon(x) \\ \|\varepsilon(x)\|_{\infty} &= 10^{-3}, \qquad \text{circular Gaussian noise} \end{split}$$

Figure: The real (left) and imaginary (right) part of $\phi(x)$

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Figure: Real (black) and imaginary (red) parts of FFT

Spectroscopy

Figure: Amplitudes (top) and damping factors (bottom) of $\phi(x)$

Sparse Interpolation

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

Motivation

Basics: exponential

Basics: polynomial

Approximatior theory

Application

References

References

Motivation

Basics: exponential

Basics: polynomial

Approximation theory

Applications

References

References

- M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In STOC '88: Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 301–309, New York, NY, USA, 1988. ACM. http://dx.doi.org/10.1145/62212.62241.
- M. de Montessus de Ballore. Sur les fractions continues algébriques. *Rend. Circ. Mat. Palermo*, 19:185–257, 1905. http://dx.doi.org/10.1007/BF03014011.
- R. de Prony. Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures. *J. Ec. Poly.*, 1:24–76, 1795.
- M. Giesbrecht, G. Labahn, and W. Lee. Symbolic-numeric sparse interpolation of multivariate polynomials. In *ISSAC'06*, 2006. http://dx.doi.org/10.1145/1145768.1145792. 9-12 July.
- P. Henrici. Applied and computational complex analysis I. John Wiley & Sons, New York, 1974.
- Y. Hua and T. K. Sarkar. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. *IEEE Trans. Acoust. Speech Signal Process.*, 38: 814–824, 1990. http://dx.doi.org/10.1109/29.56027.
- E. Kaltofen and W.-s. Lee. Early termination in sparse interpolation algorithms. J. Symbolic Comput., 36(3-4):365–400, 2003. http://dx.doi.org/10.1016/S0747-7171(03)00088-9. International Symposium on Symbolic and Algebraic Computation (ISSAC'2002) (Lille).
- J. L. Massey. Shift-register synthesis and BCH decoding. *IEEE Trans. Inform. Theory*, 15 (1):122–127, 1969. http://dx.doi.org/10.1109/TIT.1969.1054260.
- J. Nuttall. The convergence of Padé approximants of meromorphic functions. J. Math. Anal. Appl., 31:147–153, 1970. http://dx.doi.org/10.1016/0022-247X(70)90126-5.
- H. Padé. *Sur la représentation approchée d'une fonction par des fractions rationnelles*. PhD thesis, Faculté des sciences de Paris, 1892.
- C. Pommerenke. Padé approximants and convergence in capacity. J. Math. Anal. Appl., 41: 775–780, 1973. http://dx.doi.org/10.1016/0022-247X(73)90248-5.

