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* Background

* Kernel approximation on surfaces

» Applications to numerically solving PDEs on surfaces



Interpolation with kernels DRWA 2013

Lecture 7

e Let QCRY and X = {xj}j-v:l a set of nodes on ().

e Consider a continuous target function f : {2 — R sampled at X: f| .
X

Examples:

N
Kernel interpolant t | o Inf =S ol x;
e Kernel interpolan ofX xf jz::lcjgb( X;)

where ¢ : 1 x 2 = R and ¢; come from requiring IXf‘ = f|
X X
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Examples:

N
K | int lant t : Ixf = O+, X
e Kernel interpolant to f . xf ;cj<b( , X))

e We call ¢ a positive definite kernel if A = {¢(x;,x;)} is positive
definite for any X = {Xj}é-vzl C Q.

e In this case ¢; are uniquely determined.
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 Kernels on the sphere:
o Schoenberg (1942)
o See Lecture 1 slides for more...

« Kernels on specific manifolds (SO(3), motion group,
projective spaces):
o Erb, Filber, Hangelbroek, Schmid, zu Castel,...

* Kernels on arbitrary Riemannian manifolds:
o Narcowich (1995)
o Dyn, Hangelbroek, Levesley, Ragozin, Schaback, Ward,
Wendland.

* In these studies the kernels used are highly dependent on the
manifold.
o Inherent benefits to this.
o However, for arbitrary manifolds it is difficult (or impossible) to
compute these kernel.
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* Types of surfaces: M

Compact, smooth embedded submanifolds of R? without a boundary.

 Examples:

* Applications:
geophysics
atmospheric sciences
biology

chemistry

computer graphics

O O O O O
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e One approach for kernels on general surfaces:
Use a restricted positive definite kernel from R?

e Let ¢ be a positive definite kernel on R%, (-, -) = ¢(-, )

MM

N
Ixf=> cjo(,x;)
j=1

e Such ¢ are easy to come, e.g.

— Let ¢ be a positive definite radial kernel (RBFs):
¢(x,y) = o(lIx = yll2) = o(r)
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One approach for kernels on general surfaces:
Use a restricted positive definite kernel from R?

Let ¢ be a positive definite kernel on R%, 4 (-, -) = ¢(-, )‘

N
Ixf=> cj(-x;)
j=1

Such ¢ are easy to come, e.g.

— Let ¢ be a positive definite radial kernel (RBFs):
¢(x,y) = o(lIx = yll2) = o(r)

For M = S?, this approach has been thoroughly studied.

Surprisingly, for general surfaces, virtually nothing had been done:

— Powell (2001) DAMTP Technical Report.
— Fasshauer (2007), p. 83
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Nodes on surfaces

* Kernel methods do not require a mesh, just a set of nodes.

Some ideas:
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* Prototypical model: 2 interacting species

ou

ot =0ulugtt + fult, u, v) Ay is the Laplace-Beltrami
ov operator for the surface

a :5'UAM'U + f’U (t, Uu, ’U)

* Applications
o Biology: diffusive transport on a membrane, pattern formation on animal
coats, and tumor growth.

o Chemistry: waves in excitable media (cardiac arrhythmia, electrical
signals in the brain).

o Computer graphics: texture mapping and synthesis and image processing.
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e Current numerical method can be split into 2 categories:

1. Surface-based: approximate the PDE on the surface using intrinsic coordinates.

Triangulated Mesh
Dziuk (1988)

Stam (2003)

Xu (2004)

Dziuk & Elliot (2007)

Logically rectangular grid
Calhoun and Helzel (2009)

2. Embedded: approximate the PDE in the embedding space, restrict solution to surface.

Level Set,

Bertalmio et al. (2001)
Schwartz et al. (2005)
Greer (2006)
Sbalzarini et al. (2006)
Dziuk & Elliot (2010)

Closest point:

Ruuth & Merriman (2008)
MacDonald & Ruuth (2008)
MacDonald & Ruuth (2009)

e Similarity to 1: approximate the PDE on the surface.
e Similarity to 2: use extrinsic coordinates.
* Differences: method is mesh-free;
computations done in same dimension as the surface.
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e Let ¢ be a positive definite kernel on RY, ¢ (-,-) = ¢(-, |MM, and
k = dim(M).

N
e Kernel interpolant: Ix f = chw ,X;), where X = {x;}:L, C M
71=1

e Approximation classes can be found from the native space of i: Ny,

( )

O F¢:<f:ZCj¢(°,Xj)’CjER, Xj€M>

\ y
o IfIX, =D cierb(xj,xx), f € Fy
7 k
o Ny =Fy
e What is N7
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e Let ¢ be a positive definite kernel on RY, ¢ (-,-) = ¢(-, |MM, and
k = dim(M).
N
e Kernel interpolant: Ix f = chw ,X;), where X = {x;}7L, C M
71=1

e What is N7

e Suppose the Fourier transform of ¢ on R satisfies ¢(&) ~ (1+]|€]|2)~7
then N¢ = HT(Rd)

e Theorem (Fuselier,W 2012): If ¢ satisfies ¢(€) ~ (1 + [|€]|2)~" with
T > d/2, then Ny, = H™~(4=%)/2(M)) with equivalent norms.

Main idea: Trace theorem and restriction and extension operators on
the native space from Schaback (1999).
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* Specific error estimate results from Fuselier & W (2012).

o More general results are given in the paper.

Notation: R,
o M C R3, dim(M) = 2. o X =[x}, C M fiigeaiin
Y w(’ ) — ¢( " ) ’M M ) h X = mesh_norm ....::.......::.:..:.::‘:..::..._

o H(&)~(1+ €27, 7>3/2 ®Ix = separation radius

e s=7—1/2 e px = hx/qx, mesh ratio

Theorem: target functions in the native space

If f e H°(M) then ||f — Ix f|z,om) = O(hk)
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* Specific error estimate results from Fuselier & W (2012).

o More general results are given in the paper.

Notation: R,
o M C R3, dim(M) = 2. o X =[x}, C M fiigeaiin
Y w(’ ) — ¢( " ) ’M M ) h X = mesh_norm ....::.......::.:..:.::‘:..::..._

o H(&)~(1+ €27, 7>3/2 ®Ix = separation radius

e s=7—1/2 e px = hx/qx, mesh ratio

Corollary: target functions approx. twice as smooth as the native space

If f - HS(M) and T_lf - LQ(M) then ||f — IXfHLQ(M) — O(h%&g)
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* Specific error estimate results from Fuselier & W (2012).

o More general results are given in the paper.

Notation: s
e M C R?, dim(M) = 2. o X = {X]} L, CM :-‘.
o () =)y e hx = mesh-norm

o H(&)~(1+ €27, 7>3/2 ®Ix = separation radius

e s=7—1/2 e px = hx/qx, mesh ratio

Theorem: target functions rougher than the native space

If f € HP(M) with s > 8> 1 then ||f — Ixc fll ) = O 05 ")

Proof required results Narcowich, Ward, & Wendland (2005; 2006) on R4
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* Specific error estimate results from Fuselier & W (2012).

o More general results are given in the paper.

ofF caamane. .

Notation: SO Ty
e M C R?, dim(M) = 2. o X ={x;}); C M S

°
e 7§
tttt
8 0B 0 0 o o

e
........

o () = () o hx = mesh-norm S

o H(&)~(1+ €27, 7>3/2 ®Ix = separation radius

e s=7—1/2 e px = hx/qx, mesh ratio

Main point: can use simple RBF's for interpolation on surfaces:
N

N
Inf =3 cuxx;) =3 eio(llx - x;)
j=1

g=1
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* Prototypical model: 2 interacting species

ou

ot =0ulugtt + fult, u, v) Ay is the Laplace-Beltrami
ov operator for the surface

a :5'UAM'U + f’U (t, Uu, ’U)

* Applications
o Biology: diffusive transport on a membrane, pattern formation on animal
coats, and tumor growth.

o Chemistry: waves in excitable media (cardiac arrhythmia, electrical
signals in the brain).

o Computer graphics: texture mapping and synthesis and image processing.
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e Surface gradient on M in extrinsic (or Cartesian) coordinates:

Vv := PV = (I—n@n)V
e After some manipulations

(e, - P)V (ez —ngzn) -V
Vum:= |(e, - P)V| =]|(e, —nyn) -V | =
(e.-P)V (e, —n.n) -V
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e Surface gradient on M in extrinsic (or Cartesian) coordinates:

VM =PV=I-n®n)V

e After some manipulations

(ex - P)V (ez —ngzm) -V p. V] [G"
VM = (ey . P) VI = (ey — nyn) V| = py V| = gy
(e.-P)V] |(ez—m.n)-V] [p.-V] |[G7]

e Surface divergence of smooth vector field f : R® — R (f = (fy, fy, f2)):

Vu-f:=PV) - £f=6"f,+GYf, +G*f.

e Laplace-Beltrami operator on M in extrinsic coordinates:

Ay 1= (PV)-(PV) = G®G®+GYGY+G*G* = Dyy+Dyy+D-.

Ay is the Laplace-Beltrami operator for the surface.
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Idea from Fuselier & W (2013):

o Let X = {Xj} ' 1 C M and some smooth target f: M — R.

e Interpolate f := f| > using restricted (RBF) kernel interpolant:

Ixf = chw X,X;) =

‘X_XJH

||M2
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Idea from Fuselier & W (2013):

o Let X = {x;};.; C M and some smooth target f: M — R.

e Interpolate f := f| > using restricted (RBF) kernel interpolant:

Ixf = chw X,X;) =

A(llx = ;1)

||M2

e Apply G*, GY, G* to Ix f and evaluate at X:

(G UxfD|x =Gafs (GUxf] =Gyf, (G7lUx[])|y=G:f
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Idea from Fuselier & W (2013):

o Let X = {Xj} ' 1 C M and some smooth target f: M — R.

e Interpolate f := f| > using restricted (RBF) kernel interpolant:

Ixf = chw X,X;) =

A(llx = ;1)

||M2

e Apply G*, GY, G* to Ix f and evaluate at X:

(G UxfD|x =Gafs (GUxf] =Gyf, (G7lUx[])|y=G:f

e Approximate (AMf)’X using G, Gy, G-

Lug

o [nyisan N x N differentiation matrix
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Smooth target f Matérn kernel: ¢ = ¢(r) = (8T)9/2K9/2 (er)
Ny = HU/2(0)

Error: ||(Amf)| — L f| i
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* Error estimates given in Fuselier & W (2013)

* Observed convergence rate is 2 orders higher
than theory predicts.

Mesh-norm: hyx ~ 1/vN
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« Pattern formation via non-linear reaction-diffusion systems; Turing (1952)

Possible mechanism for animal coat formation (and other morphogenesis phenomena)

T B ST P R s
A R -

« Example system: Barrio et al. (1999)

% :5UAM’U, -+ OZU,(]. — 7'1’02) + ’U(]- - TQU’)
% =5, Appv + Bu (1 + %uv) +u(y + 2v)

These types of systems have been studied extensively in planar domains.

Recent studies have focused on the sphere.

Growing interest in studying these on more general surfaces.

Numerical method: collocation and method-of-lines (like method from Tutorials 4-6)
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e Surfaces used in the numerical experiments:

OS5
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tterns

Ing pa

Tur

Application

X used in the numerical experiments:

Node sets
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« Numerical solutions: steady spot patterns (visualization of u component)

28

Initial condition: u and v set to random values between + /- 0.5
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* Numerical solutions: steady stripe patterns (visualization of 4 component)

Initial condition: u and v set to random values between + /- 0.5
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« Example system: Barkley (1991)

ou 1 v+0b u=activator species
— =, A “u (1l — — p

ot M eu( w) (u a ) v=inhibitor species
9,

8_: =0, ApmU + U — v

Simplification of FitzHugh-Nagumo model for a spiking neuron.

* Studied extensively on planar regions and somewhat on the sphere.
* Growing interest more physically relevant domains like surfaces.

e Snapshots from different numerical simulations with our method:

visualization of the u (activator) component



Application: spiral waves in excitable media DRWA 2013

Lecture 7

time=0.000000
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e The discrete approximation to the surface Laplacian can also be used

approximate the surface harmonics.

* (Question: Can one hear the shape of a Bretzel?
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We are presently developing an RBF-FD approach to approximating the
surface Laplacian (Joint work with PhD student Varun Shankar).

This will reduce the computational complexity from O(N?) per-time step

to O(N).

It will also allow us to go use much larger node sets, and handle more
complicated surfaces.

Below is an example of simulations of the Turing model using the RBF-
FD method:
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e Restricted kernels offer a relatively simple method for interpolation on
rather general surfaces.

— Interpolation error estimates are similar to what you expect from R?.

e Method can be used to approximate surface derivatives in a relatively
straightforward manner.

— These approximation can provide high rates of approximation.

— Can be used to also solve PDEs to high accuracy.
e Future: Biological Applications

— PDESs on moving surfaces.

— PDEs that feed back on the shape of the object.
e Future: Improve computational cost

— Radial basis finite difference formulas (RBF-FD)
— Partition of unity methods

— Localized bases
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