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Shallow water wave equations
on a rotating sphere




Shallow water equations (SWE) on a rotating sphere DA 2013

* Model for the nonlinear dynamics of a shallow, hydrostatic, homogeneous,
and inviscid fluid layer.

e [dealized test-bed for the horizontal dynamics of all 3-D global climate models.

Equations Momentum Transport
Spherical | du, - dh* ,
coordinates| @t | Vatls + kX0 +9Vah =0 o T Vs (hius) =0
Singularity at poles!
Cartesian du, {,u‘“' PVe)ue + f@x X Ue) - 1 T Q{,PE +Ve)h bt L
coordinates | ar T L | (M- PVe)ve+ fx xuc)-j+g(Pj-Ve)h | =0 —=+ (PVe)-(h'u.) =0
) (u. PV )w,.+ f(x xu,)-k+g(Pk-V,)h '
Smooth over entire sphere!




Numerical Example I: Global RBF collocation method brav 2013

Forcing terms added to the shallow water equations to generate a flow that mimics
a short wave trough embedded in a westerly jet.
(Test case 4 of Williamson et. al. 1992)

Initial velocity field Initial geopotential height field




Errors after trough travels once around the sphere DRWA 2013
ecture 5/6

* Results of the RBF Shallow Water Model:
(Flyer & W, 2009)
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Comparison with commonly used methods

DRWA 2013
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Method N Time step Relative (> error
RBF 4 096 8 minutes 25x10°°
5,041 6 minutes 1.0x 108
Sph. Harmonic 8,192 3 minutes 20x10"3
Double Fourier 32,768 90 seconds 40x%x10*
Spect. Element 24,576 45 seconds 40x10°°

Time-step for RBF method: Temporal Errors = Spatial Errors
Time-step for other methods: Limited by numerical stability

« RBF method runtime in MATLAB using 2.66 GHz Xeon Processor

N Runtime per time step Total Runtime
(sec)
4,096 0.41 6 minutes
5,041 0.60 12 minutes

For much higher numerical accuracy, RBFs uses less nodes & larger time steps



Numerical Example 1I: RBF-FD method E—
(Flyer, Lehto, Blaise, Wright, and St-Cyr. 2012)

Flow over a conical mountain (Test case 5 of Williamson et. al. 1992)
Height field at /=0 days Height field at =15 days
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Remarks:
e The mountain is only continuous, not differentiable.

* No analytical solution.

e Comparisons in numerical solutions are done against some reference numerical
solutions at a high resolution.



Convergence comparison: 3 reference solutions DRWA 2013
ecture 5/6

Convergence plot RBF-FD with stencil size of m=31
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Error vs. runtime comparison DRWA 2013
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DG Reference

0 Comparison of error vs. runtime

DG

Runtime in seconds
Machine: MacBook Pro, Intel i7 2.2 GHz, 8 GB Memory

e Further improvements for both methods may be possible using local
mesh /node refinement near the mountain.



Numerical Example I1I: RBF-FD method DRWA 2013
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e Evolution of a highly non-linear wave: (Test case from Galewsky et. al. Tellus, 2004)
Rapid cascade of energy from large to small scales resulting in sharp vorticity gradients

e RBF-FD method with N=163,842 nodes and m=31 point stencil.

Day 3 Day 4

Visualization of the
relative vorticity




Thermal convection in a 3D spherical shell
with applications to the Earth's mantle.




Simulating convection in the Earth's mantle DRWA 2013

Lecture 5/6

(Wright, Flyer, and Yuen. Geochem. Geophys. Geosyst., 2010)

 Model assumptions:

1. Fluid 1s mcompressible
2. Viscosity of the fluid 1s constant

3. Boussinesq approximation

. ki tic viscosit
4. Infinite Prandtl number, Pr = e e ‘v15(:fjs‘1 Y
’ thermal diffusivity

 Non-dimensional Equations:
V-u=0 (continuity),
V2u+RaTt—Vp=0 (momentum).
o1
B +u-VI—=V*T =0 (energy).
e Boundary conditions:

Velocity: mmpermeable and shear-stress free
Temperature (isothermal): 7' =1 at core mantle budry., 7' = 0 at crust mantle bndry.

» Rayleigh, Ra, number governs the dynamics. * Model for Rayleigh-Bénard convection



Global method for discretizing the equations A 2013

e Use a hybrid RBF-Pseudospectral method

e Collocation procedure using a 2-+1 approach with
> N RBF nodes on each spherical surface (angular directions) and
> M Chebyshev nodes in the radial direction.
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3-D node layout showing M

N RBF nodes (ME) on a
Chebyshev nodes in radial direction

spherical surface



Global method for discretizing the equations A 2013

e Rewrite the momentum equation using poloidal potential ®:

a0 [ 4090
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e We have seen how to create a discrete representation for PV using RBFs.
e Need a method to create a discrete representation of Ag:

e A similar procedure can be used to PV, by noting that
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Steps of computational algorithm DRWA 2013

A
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As) + 2 (Tza—ﬂ) = RarT

or or
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Discretize Ags and PV for the unit sphere using N RBFs.

... 0 0 .
Discretize o and 972 using M Chebyshev polynomials.

Use T initial condition to solve for ).
Use (2 solution to solve for &.

Use @ to compute the velocity u

Discretize energy equation in time using an implicit/explicit scheme
(a) Use trapezoidal rule for diffusion operator.
(b) Use 3" order Adams-Bashforth for the advection operator.

Time-step the energy equation to get a new 7', go back to step 3



Ra=7000 benchmark: validation of method 131::&22}2

Perturbation
initial condition:

Steady solution:

0.01 [Yf(e. )+ %Yf(@, )\)]

N = 1600 nodes on each spherical shell
M = 23 shells
Blue=downwelling, Red=core

e Comparisons against main previous results from the literature:

Method No of nodes NUouter NUinnner <Vrws > <T>

Finite volume 663,552 3.5983 3.5984 31.0226 0.21594
Finite elements (CitCom) 393,216 3.6254 3.6016 31.09 0.2176

Finite differences (Japan) 12,582,912 3.6083 31.0741 0.21639
Spherical harmonics -FD 552,960 3.6086 31.0765 0.21582
Spherical harmonics -FD  Extrapolated 3.6096 31.0821 0.21577
RBF-Chebyshev 36,800 3.6096 3.6096 31.0820 0.21578

Nu = ratio of convective to conductive heat transfer across a boundary



Fully convective simulation: Ra=10° DRWA 2013

Lecture 5/6

Model setup:

e Convection dominated flow

e N = 6561 RBF nodes, M = 81 Chebyshev nodes

» Time-step O(107), which is about 34,000 years
 Simulation time to t=0.08 (4.5 times the age of the earth)

Results:

t=8.00e-02

Blue=downwelling,

Red=core

G. B. Wright, N. Flyer, and D. A. Yuen, 2010

Simulation:




Current focus

DRWA 2013
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* Improving computational efficiency using RBF-FD.

e First step is to do RBF-FD on each spherical surface instead of global RBEFs.

e Ultimate goal

RBE-FD Stencil

Flyer, W, & Fornberg (2013)
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is to go to fully 3D RBF-FD formulas (no tensor-product structure):
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