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●  Applications in spherical geometries 
●  Scattered data interpolation in   

●  Positive definite radial kernels: radial basis functions (RBF) 
●  Some theory 

●  Scattered data interpolation on the sphere  
●  Positive definite (PD) zonal kernels 
●  Brief review of spherical harmonics 
●  Characterization of PD zonal kernels 
●  Conditionally positive definite zonal kernels 
●  Examples 

●  Error estimates: 
●  Reproducing kernel Hilbert spaces 
●  Sobolev spaces 
●  Native spaces 
●  Geometric properties of node sets 

●  Optimal nodes on the sphere 

Overview  
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Applications in spherical geometries 
●  A visual overview: applications in the geosciences 

Shallow water flows:  
numerical weather prediction 

Rayleigh-Bénard Convection:  
Mantle convection 

Vector fields on the sphere Numerical integration 



DRWA 2013 
Lecture 1 

Interpolation with kernels 

Examples: 



DRWA 2013 
Lecture 1 

Interpolation with kernels 
Examples: 



DRWA 2013 
Lecture 1 

Interpolation with kernels 



DRWA 2013 
Lecture 1 

Interpolation with kernels 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart 
your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
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and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 



DRWA 2013 
Lecture 1 

Radial basis function (RBF) interpolation 
Key idea: linear combination of translates 
and rotations of a single radial kernel: 

Linear system for determining the interpolation coefficients 
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Positive definite radial kernels 

Examples: 
Gaussian Inverse multiquadric 

�(r) = exp(�("r)2)

Inverse quadratic 

•  Some results on positive definite radial kernels. 
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Positive definite radial kernels 
●  Results on dimensions specific positive definite radial kernels: 
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Positive definite radial kernels 
●  Examples 

Matérn 

Wendland (1995) 

Truncated powers 

J-Bessel 

Finite-smoothness Infinite-smoothness 

Platte 
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Conditionally positive definite kernels 
●  Discussion thus far does not cover many important radial kernels: 

●  These can covered under the theory of conditionally positive definite kernels. 

●  CPD kernels can be characterized similar to PD kernels but, using 
generalized Fourier transforms. We will not take this approach; see Ch. 8 
Wendland 2005 for details.   

●  We will instead use a generalization of completely monotone functions. 

Cubic Thin plate spline Multiquadric 

Cubic spline in 1-D Generalization of energy 
minimizing spline in 2D 

Popular kernel and first used in 
any RBF application; Hardy 1971 
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Radial basis function (RBF) interpolation 

1999	
   2003	
  

2005	
   2007	
  

2004	
  

A Primer on 
Radial Basis 

Functions with 
Applications to 
the Geosciences 

 
Bengt Fornberg 
Natasha Flyer	
  

2014:	
  SIAM	
  

●  Many good books to consult further on RBF theory and applications: 
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Interpolation with kernels on the sphere 
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SBF interpolation 
Key idea: linear combination of translates 
and rotations of a single zonal kernel on  

Linear system for determining the interpolation coefficients 
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Positive definite zonal kernels 

●  Some references for the material to come: 
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Spherical harmonics 
●  A good understanding of functions on the sphere requires one to be well- 

versed in spherical harmonics. 

●  Spherical harmonics are the analog of 1-D Fourier series for approximation 
on spheres of dimension 2 and higher. 

●  Several ways to introduce spherical harmonics (Freeden & Schreiner 2008) 

●  We will use the eigenfunction approach and restrict our attention to the 2-
sphere. 

●  Following this we review some important results about spherical harmonics. 
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 m=-3        m=-2        m=-1         m=0            m=1             m=2               m=3 
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Overview of spherical harmonics 
m=-4    m=-3    m=-2     m=-1     m=0     m=1     m=2     m=3    m=4 
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Spherical Fourier coefficients 
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Examples of positive definite zonal kernels 
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Error estimates 
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Geometric properties of node sets 
●  The following properties for node sets on the sphere appear in the 

error estimates: 

(Only part of the sphere is shown) 
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Interpolation error estimates 

Theorem. Target functions in the native space. 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 
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Interpolation error estimates 

Theorem. Target functions twice as smooth as the native space. 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 

Remark. Known as the “doubling trick” from spline theory.  (Schaback 1999) 
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Interpolation error estimates 

Notation: 

●  We start with known error estimates for kernels of finite smoothness. 

Remark.  
(1)  Referred to as “escaping the native space”. (Narcowich, Ward, & Wendland (2005, 2006). 

(2)  These rates are the best possible. 

Theorem. Target functions rougher than the native space. 
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Interpolation error estimates 
●  Error estimates for infinitely smooth kernels (e.g. Gaussian, multiquadric). 

Remarks: 
(1)  This is called spectral (or exponential) convergence. 
(2)  Function space may be small, but does include all band-limited functions. 
(3)  Only known result I am aware of (too bad there are not more). 
(4)  Numerical results indicate convergence is also fine for less smooth functions. 

Notation: 

Theorem. Target functions in the native space. 
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Optimal nodes 
●  If one has the freedom to choose the nodes, then the error estimates 

indicate they should be roughly as evenly spaced as possible. 
Icosahedral  Fibonacci Equal area 

Minimum energy s=2 Minimum energy, s=3 Maximal determinant 

Swinbank & Purser (2006) Saff & Kuijlaars (1997) 

Hardin & Saff (2004) Womersley & Sloan (2001) 

Examples: 
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Concluding remarks 
●  This was general background material for getting started in this area. 
●  There is still much more to learn and many interesting problems. 
●  Remainder of the lectures will focus on: 

o  Approximation (and decomposition) of vector fields. 
o  Better bases for certain kernels (better=more stable). 
o  Fast algorithms for interpolation (with applications to quadrature) 
o  Numerical solution of partial differential equations on spheres. 

²  Focus: non-linear hyperbolic equations. 
²  Global and local methods. 

o  Problems in spherical shells. 
²  Mantle convection (Rayleigh-Bénard convection). 

²  Generalizations to other manifolds. 
v  If you have any questions or want to chat about research ideas, please 

come and talk to me. 

Grazie per la vostra attenzione. 


