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e Applications in spherical geometries
o Scattered data interpolation in R?
e Positive definite radial kernels: radial basis functions (RBF)
e Some theory
e Scattered data interpolation on the sphere S?
e Positive definite (PD) zonal kernels
e Brief review of spherical harmonics
e C(Characterization of PD zonal kernels
e (onditionally positive definite zonal kernels
e Lixamples
® Lrror estimates:
e Reproducing kernel Hilbert spaces
e Sobolev spaces
e Native spaces
e (Geometric properties of node sets

e Optimal nodes on the sphere
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e A visual overview: applications in the geosciences

Shallow water flows: Rayleigh-Bénard Convection:
numerical weather prediction Mantle convection

on the sphere
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e Let QCRY and X = {Xj};-vzl a set of nodes on ().

e Consider a continuous target function f : {2 — R sampled at X: f| .
X

Examples:

Q=[-1,1"

N
Kernel interpolant t | I =S e ®(x,
e Kernel interpolan ofX xf ;cj (-, x;)

where @ : {2 X 2 — R and ¢; come from requiring IXf‘X: f}

X
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Examples:

a ... L . :
0.5 e e
> P T s
‘o . ®s ¢ * .
0 s LD S P :
N [ L2 ARE o Ter ¢ .‘.'
. . e & '
P A DY LI S ety o
X ° pe L} P B
-05 ey Y %e ."_.o '5(-.‘
A S AS T, 4 R AT AN
c‘/q :. e ege }“o
At LR R
".'..“'..'O :-' " Pogact
.. e .
. I X K 7

X Y. _O-SX
Q=[-1,1 o 8F
Kernel interpolant t |: Inf=S c.d( x;
e Kernel interpolan ofX xf ch (-, x;)

e Definition: ® is a positive definite kernel on € if the matrix A = {®(x;,x;)}
is positive definite for any distinct X = {x;}}*; C Q, i.e.
N N
D> bi®(x4,x;5)b; > 0, provided {b;}}Y, # 0.
i=1 j=1
e In this case ¢; are uniquely determined by X and f

X.
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e Kernel interpolant to f Ixf =) ,;¢(,%5)

e Some considerations for choosing the kernel ® : 2 x 2 — R
1. The kernel should be easy to compute.

2. The kernel interpolant should be uniquely determined by X and f ‘ e

3. The kernel interpolant should accurately reconstruct f.
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e Kernel interpolant to f‘ ; Ixf = Zj c;®(-,x;).
X

x The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

X

” The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart
” your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

e Leads to radial basis function (RBF') interpolation.
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Key idea: linear combination of translates f X ={x;})L, CcQ, f’ = {f;}L
and rotations of a single radial kernel: X
A
o
o(r) ‘ J ?
] l® .I
1 ¢ I Y
AR iy 0
T q & K 4
Ml
(A

Basic RBF Interpolant for 2 C R?
N

Ixf(x) = Y ejollx — x)) ’
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?
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Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?
N

Ixf(x) = Y ejollx — x)) ’
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?
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Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?
N
Ixf(x) = ) ¢;o([lx = x5)
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?
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Key idea: linear combination of translates f X ={x;})L, CcQ, f’ ={f;}L,
and rotations of a single radial kernel: X

o(7)

A

T

Basic RBF Interpolant for 2 C R?
N
Ixf(x) = ) ¢;o([lx = x5)
j=1

where ||x — x| = /(. — ;)2 + (y — y;)?




Radial basis function (RBF') interpolation  omwi

Key idea: linear combination of translates
and rotations of a single radial kernel:

o(7)

A

T

Basic RBF Interpolant for Q) C R?

Ix f(x ZCJ (IIx = x;1)

Lecture 1

fooox={h e ] = {6

,w
i) il
: E!f‘.","ll |\vm il

[' |\ Il
-

where HX — x| = (x —25)2 + (y — y;)?



Radial basis function (RBF') interpolation  omwi

Key idea: linear combination of translates f
and rotations of a single radial kernel:

o(7)

A

T

Basic RBF Interpolant for 2 C R?

Ix f(x) = Z cjo(llx = x;]))

Lecture 1

X ={x;}}L, CQ, f’X = {/i}im

Linear system for determining the interpolation coefficients

[ o(lIx1 — x1l]) @(llx1 —x2|) - (llx1 —xn]) ]
o([|x2 —x1]) @(l|x2 — x2l|) - -~ d(llx2 — xn)

C2

B(lxw — xall) Blxw — xel)- bl — xwl)]

CN

Ax

| LON ]
c

h
f2

Iy

N——
S

Ax is guaranteed to be
positive definite if
¢ is positive definite.
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 Some results on positive definite radial kernels.

. If ¢ € C|0,00) with ¢(0) > 0 and ¢(p) < 0 for some p > 0,
then ¢ cannot be positive definite in R? for all d.
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 Some results on positive definite radial kernels.

. If ¢ € C|0,00) with ¢(0) > 0 and ¢(p) < 0 for some p > 0,
then ¢ cannot be positive definite in R? for all d.

Consider X to be the vertices of an m dimensional simplex with spacing
p,ie. X = {X}T:—iil C R™

2D
3-D
1D 2 .
o« | B ; ’
- o Y el
Then
m+1m+1 m+1 m+1 m—+1
DY ellxi—x)=> 00+ > Y )
i=1 j=1 i=1 i=1 j=1,j7

= (m + 1)[¢(0) + mo(p)].

Given ¢(0) > 0, we can find a p for which ¢(p) < 0 and an m to make this
sum zero.
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 Some results on positive definite radial kernels.

Definition. A function @ : [0,00) — R is said to be completely monotone
on [0, c0) if

(1) ® € C[0,00), (2) P e C®(0,00), (3)(=DkdHF(t)>0,t>0, k=0,1,...
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 Some results on positive definite radial kernels.

Definition. A function @ : [0,00) — R is said to be completely monotone
on [0, c0) if

(1) ® € C[0,00), (2) P e C®(0,00), (3)(=DkdHF(t)>0,t>0, k=0,1,...

(Hausdorftf-Bernstien-Widder). A function @ is completely mono-
tone if and only if it can be written in the form

v(t)= [ e ar(o)

where v(s) is bounded, non-decreasing, and not concentrated at zero.
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 Some results on positive definite radial kernels.

Definition. A function @ : [0,00) — R is said to be completely monotone
on [0, c0) if

(1) ® € C[0,00), (2) P e C®(0,00), (3)(=DkdHF(t)>0,t>0, k=0,1,...

(Hausdorftf-Bernstien-Widder). A function @ is completely mono-
tone if and only if it can be written in the form

v(t)= [ e ar(o)

where v(s) is bounded, non-decreasing, and not concentrated at zero.

(Schoenberg 1938). Let ¢ : [0,00) — R be a radial kernel and
®(r) = ¢(\/7). Then ¢ is positive definite on R?, for all d, if and only if ®
is completely monotone on [0, c0) and not constant.

- Use Bernstein-Hausdorff-Widder result and the fact the Gaussian is
positive definite.
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 Some results on positive definite radial kernels.

(Schoenberg 1938). Let ¢ : [0,00) — R be a radial kernel and
®(r) = ¢(1/7). Then ¢ is positive definite on RY, for all d, if and only if ®
is completely monotone on [0, 00) and not constant.

Examples:
(Gaussian Inverse multiquadric Inverse quadratic
1 1 1
05} 0.5} 0.5¢
% 05 1 % 05 1' "0 05 1'
o(r) = exp(—(er)?) o(r) : o(r) = —
r) = exp(—(er r) = r) =
P V1T (er)2 L+ (er)?

Here € is called the shape parameter (more on this later).
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e Results on dimensions specific positive definite radial kernels:

(General kernel). Let ¢ be a continuous kernel in L;(R?). Then
¢ is positive definite if and only if ¢ is bounded and its d-dimensional
Fourier transform ¢(w) is non-negative and not identically equal to zero.

: Related to Bochner’s theorem (1933). Theorem and proof can be
found in Wendland (2005).

e To make the result specific to radial kernels, we apply the d-dimensional
Fourier transform and use radial symmetry to get (Hankel transform):

o(w) = ¢(|w]2)

/ ST (||w|ot)dt

jwlls

where v = d/2 — 1 and J, is the J-Bessel function of order v.

e Note that if ¢ is positive definite on R? then it is positive definite on
RF for any k < d.
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e Examples

Finite-smoothness Infinite-smoothness
Matérn 1 J-Bessel 1
(er)”_d/2KV_d/2(€r) Jaj2—1(er) Ny
05 (Er)d/2
PD for 2v > d :
Ex (d = 3): sin(er)
Ex:e " (r? + 3r + 3) er 0
% 05 1 0 05 1

Truncated powers Platte 1

(1—er)} (0 *@)(r)

0.5 5

PD for £ > |d/2| +1 @ is a C°(R) compactlyo'

supported radial function.

/

0

PD dimension depends °
Wendland (1995) ; on convolution dimension.

(1-— 5r)ipd,k(5r)
Pd.k 1s a polynomial
whose degree depends >
on d and k.

o
o
[
=

0 0.5

-

5

~

Ex: (1 —er)i(der + 1) o

0 0.5

-
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e Discussion thus far does not cover many important radial kernels:

Cubic Thin plate spline Multiquadric
1 1 2
0.5
0.5 15
0
0 : : . . : 1
0 0.5 1 0 0.5 1 15 0 0.5 1
d(r) =17 ¢(r) =r"logr (r) = 1+ (er)?
Cubic spline in 1-D Generalization of energy Popular kernel and first used in
minimizing spline in 2D any RBF application; Hardy 1971

e These can covered under the theory of conditionally positive definite kernels.

e (CPD kernels can be characterized similar to PD kernels but, using
generalized Fourier transforms. We will not take this approach; see Ch. 8

Wendland 2005 for details.

e We will instead use a functions.



Conditionally positive definite kernels pRIA 2013

Lecture 1

Definition. A continuous kernel ¢ : [0,00) — R is said to be conditionally
positive definite of order k on R? if, for any distinct X = {x; }j\[:l C RY,
and all b € RV\{0} satisfying

N
> bip(x;) =0
=1

for all d-variate polynomials of degree < k, the following is satisfied:

N N
NS bigllxi — x;1)b; > .

i=1 j=1
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Definition. A continuous kernel ¢ : [0,00) — R is said to be conditionally
positive definite of order k on R? if, for any distinct X = {x; }j\[:l C RY,
and all b € RV\{0} satisfying

N
> bip(x;) =0
j=1

for all d-variate polynomials of degree < k, the following is satisfied:

N N
NS bigllxi — x;1)b; > .

i=1 j=1

e Alternatively, ¢ is positive definite on the subspace Vj,_; C RY:

N
Vi_i=<beRY ijp(xj) =0 for all p € I,y (R?) 5,

g=1

where II,, (R?) is the space of all d-variate polynomials of degree < m.

e The case k = 0, corresponds to standard positive definite kernels on R?.
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Definition. A continuous kernel @ : [0, 00) — R is said to be completely
monotone of order k on (0,00) if (=1)*®*) is completely monotone on
(0, 00).

Examples:
k=2

Pt)=+vt O(t)=vV1i+t @1t)=t32 &(t)= itlogt
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Definition. A continuous kernel @ : [0, 00) — R is said to be completely
monotone of order k on (0,00) if (—1)*®®) is completely monotone on
(0, 00).

Examples:
k=2

Pt)=+vt O(t)=vV1i+t @1t)=t32 &(t)= itlogt

(Micchelli (1986); Guo, Hu, & Sun (1993)). The radial kernel
¢ : [0,00) is conditionally positive definite on R, for all d, if and only if
® = ¢(y/7) is completely monotone of order k on (0,00) and ®*) is not
constant.

e This is one of the BIG theorems that launched the RBF field.

e It says, for example, that linear, cubic, thin-plate splines, and the
multiquadric are conditionally positive definite on R¢ for any d.

e Next, its consequences on RBF interpolation of scattered data...
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Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes
X ={x;}}L, C R? and some target, f, sampled on X, {f; N s

N n

Ixf(x) = Y cio(lx —xI) + D depe(),

j=1 /=1

N

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,...,n.
j=1

In linear system form, these constraints are

A
oo 5] = 3] where aus = 8(lx: = x50, s = putx
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Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes
X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

N

Ixf(x) =) cio(lx—x[)+ > depe(x),
/=1

j=1

N

where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,...,n.
j=1

In linear system form, these constraints are

[};4T ](;] [cgl] - [%] , where a; j = ¢(|x; — x;|), pi,e = pr(xi)

(Micchelli (1986)). The above linear system is invertible for any
distinct X, provided
o rank(F) = n (i.e. X is unisolvent on IIj_{(R%)),
e & = ¢(/-) is completely monotone of order k on (0, ),
e &) is not constant.
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Definition. Let ¢ : [0,00) — R be continuous and {p;(x)}_; be a basis
for I;_1(R%) (k > 1). The general RBF interpolant for the distinct nodes
X ={x;}}L, C R? and some target, f, sampled on X, {fi}il, is

N

Ixf(x) =) cio(lx—x[)+ > depe(x),
/=1

j=1

N
where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,4=1,...,n.
j=1
In linear system form, these constraints are

P 0| |d] |0

[A P] [Q] - F] , where a; ; = ¢(||xs — %5]), pi,e = pr(xi)

Example (Thin plate spline, R?). Let
o ¢(r) =r?log(r)
e pi(x,y) =1, p2(x,y) = x, and p3(z,y) = .
The system has a unique solution provided the nodes are not collinear.



Conditionally positive definite kernels pRIA 2013

Lecture 1

(Micchelli (1986)). Suppose ® = ¢(+/+) is completely monotone
of order 1 on (0, oo) and @’ is not constant. Then for any distinct set of
nodes X = {xj} Y, € RY and any d, the matrix A with entries a;; =

o(||lxi —x51)), 4,7 =1,. N has N — 1 positive eigenvalues and 1 negative
eigenvalue. Hence it is invertible.

° This theorem means that for kernels like the popular multiquadric
= /1 + (er)? the basic RBF interpolant

Ix f(x

¢(llx = x5]))

||M2

has a unique solution for any distinct set of nodes X = {Xj} ', CRY
and sampled target function f on X.

e Augmenting the RBF interpolant with polynomials is not necessary
to guarantee uniqueness for order 1 CPD kernels.

e This theorem answered a conjecture from Franke (1983) regarding the
multiquadric.



Radial basis function (RBF) interpolation o

Lecture 1

e Many good books to consult further on RBF theory and applications:

1999

A COURSE IN
APPROXIMATION
THEORY

WARD CHENEY
WILL LIGHT

Scattered Data
Approximation

Holger Wendland

2003

Radial Basis
Functions

Martin 0. Subhmann

2007

Interdisciplinary Mathematical Sciences - Vol. 6

\ e

‘?‘_" \/
B
W

-

Meshfree Approximation
Methods with MatLAB

Gregory E. Fasshauer

2004

Armin Iske

Multiresolution
Methods

in Scattered
Data Modelling

2014: SIAM

the Geosciences

Bengt Fornberg

Natasha Flyer




Interpolation with kernels (revisited) pRIA 2013

Lecture 1

e Kernel interpolant to f‘ : Ixf =) ;¢P(,%5)
X

e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and f ! e

3. The kernel interpolant should accurately reconstruct f.

e For problems like

Obvious choice: ¢ is a (conditionally) positive definite radial kernel

O(x,%;) = o(|x = x5]2) = ¢(7)

e Leads to radial basis function (RBF) interpolation.



Interpolation with kernels on the sphere DRIVA 2013

Lecture 1
e Kernel interpolant to f‘ : Ixf =) ;¢P(,%5)
X

e Some considerations for choosing the kernel ® : 2 x 2 — R

1. The kernel should be easy to compute.
2. The kernel interpolant should be uniquely determined by X and f ! e

3. The kernel interpolant should accurately reconstruct f.

e For problems like

Obvious(?) choice: @ is a (conditionally) positive definite zonal kernel:

O(x,x;) = P(x"x;) = Y(t), t € [-1,1]
e Analog of RBF interpolation for the sphere: SBF interpolation.



SBEF' interpolation

DRWA 2013
Lecture 1

Key idea: linear combination of translates
and rotations of a single zonal kernel on §?

h(t)

1

05}

ot . )
1 0.5 0

Basic SBF Interpolant for S?
N

Ixf(x) = Z cjw(xij)

j=1

X={x P g =1

\\W//
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SBEF interpolation DRIA 2015

Lecture 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {fi}X
and rotations of a single zonal kernel on §?

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S2

Ixf(x chwx X, )
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Lecture 1

Key idea: linear combination of translates
and rotations of a single zonal kernel on §?

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) =) _ejv(x"x;)
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Lecture 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)
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Lecture 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)

1

05}

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)
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Lecture 1

Key idea: linear combination of translates X ={x;}}L, cQ, f‘ = {f;}L,
and rotations of a single zonal kernel on §? *

h(t)
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Basic SBF Interpolant for S?

Ixf(x) = Z cjzp(Xij)
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Lecture 1

Key idea: linear combination of translates X ={x;}}L, cQ, f = {f;}L,
and rotations of a single zonal kernel on §?

h(t)

1

0.5¢1

ot . )
1 0.5 0 -0.5 -1 t

Basic SBF Interpolant for S2

Ix f(x chwx X;)

Linear sVstem for determining the interpolation coeflicients

P(x1x1) P(xix2) - P(xixn) ]| [a f1
¢(X§FX1) w(xg)@). : '¢(XF§FXN) Co fo | Ax is guaranteed to be positive
— . definite if 9 is a positive definite
: : zonal kernel
(xyx1) (xyXa) - v(xyxn)| len] v

N ~~ N~ =
Ax c i



Positive definite zonal kernels DRWA 2013

Lecture 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.



Positive definite zonal kernels DRWA 2013

Lecture 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.

Definition. A zonal kernel ¥ : [—1,1] — R is said to be a positive definite
zonal kernel on S4~1 if for any distinct set of nodes X = {x; }o, C S9! and

b € RY¥\{0} the matrix A = {+4)(x} x;)} is positive definite, i.e.

N N
D) bi(x] x;)b; > 0.

i=1 j=1

: PD zonal kernels are sometimes called



Positive definite zonal kernels DRWA 2013

Lecture 1

Definition. A kernel ¥ : S1 x §9=1 — R is called radial or zonal on
S if U(x,y) = ¢¥(xy), where ¢ : [-1,1] — R. In this case, 9 is simply
referred to as the zonal kernel and no reference is made to W.

Definition. A zonal kernel ¥ : [—1,1] — R is said to be a positive definite
zonal kernel on S4~1 if for any distinct set of nodes X = {x; }o, C S9! and

b € RY¥\{0} the matrix A = {+4)(x} x;)} is positive definite, i.e.

N N
D) bi(x] x;)b; > 0.

i=1 j=1
- PD zonal kernels are sometimes called

e The study of positive definite kernels on S?~! started with Schoenberg
(1940).

e Extension of this work, including to conditionally positive definite ker-
nels, began in the 1990s (Cheney and Xu (1992)), and continues today.

e Our interest is strictly in S? and we will only present results for this case.



Positive definite zonal kernels DRWA 2013

Lecture 1

Any positive definite radial kernel ¢ on R? is also positive definite on S?.

In fact, they are positive definite zonal kernels, since for x,y € S?

o(lx-yl) =6 (V2= 2xTy) = v(x"y)

So, standard RBF methods can be used for problems on the sphere S2.

Cheney (1995) appears to have been the first to mathematically study
the specialization of RBF's to the sphere.

Many others have followed suit, e.g.

Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich,
Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)



Positive definite zonal kernels DRWA 2013

Lecture 1

Any positive definite radial kernel ¢ on R? is also positive definite on S?.

In fact, they are positive definite zonal kernels, since for x,y € S?

o(lx-yl) =6 (V2= 2xTy) = v(x"y)

So, standard RBF methods can be used for problems on the sphere S2.

Cheney (1995) appears to have been the first to mathematically study
the specialization of RBF's to the sphere.

Many others have followed suit, e.g.

Fasshauer & Schumaker (1998); Baxter & Hubbert (2001); Levesley & Hubbert (2001);
Hubbert & Morton (2004); zu Castel & Filbir (2005); Narcowich, Sun, & Ward (2007);
Narcowich, Sun, Ward, & Wendland (2007); Fornberg & Piret (2007); Narcowich,
Ward, & W (2007); Fuselier, Narcowich, Ward, & W (2009); Fuselier & W (2009)

Is there any advantage to using a purely PD zonal kernel to a restricted
PD radial kernel? (Baxter & Hubbert (2001))

Personally, I have always used restricted radial kernels.
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Lecture 1

e Some references for the material to come:

A COURSE IN ‘ Constructive
APPROXIMATION ¥ \pproximation
] RADIAL BASIS FUNCTION
THEORY on the Sphere INTERPOLATION ON THE SPHERE

|
L T

» 1on 1 ADVANCES IN GEOPHYSICAL AND ENVIRONMENTAL MECHANICS AND MATHEMATICS
WARD CHENEY ‘ ] { ’ )
WILL LIGHT -~ )
& ) VEANS — J
= M. S TR

W. Freeden - M. Schreiner
Spherical Functions
of Mathematical
Geosciences

A Scalar, Vectorial, and Tensorial Setup

P i d . @ Springer
OXFORD SCIEXCE PUBLICATIONS




Spherical harmonics DRWA 2013

Lecture 1

e A good understanding of functions on the sphere requires one to be well-
versed in spherical harmonics.

® Spherical harmonics are the analog of 1-D Fourier series for approximation
on spheres of dimension 2 and higher.

e Several ways to introduce spherical harmonics (Freeden & Schreiner 2008)

o We will use the eigenfunction approach and restrict our attention to the 2-
sphere.

e Following this we review some important results about spherical harmonics.



Overview of spherical harmonics DRWA 2013

Lecture 1

e Laplacian in spherical coordinates (x = r cosf cosy, y = rcosfsin p, z = rsinf)

A—ig TQQ + ! i —tan@ng Lo
B r2 | 007 00  cos? 0 0p?

\ - 4

A, = Laplace-Beltrami operator



Overview of spherical harmonics DRWA 2013

Lecture 1
e Laplacian in spherical coordinates (x = r cosf cosy, y = rcosfsin p, z = rsinf)

A—ig TZQ + ! i —tan@g—i— Lo
B r2 | 007 00  cos? 0 0p?

\ - 4

A, = Laplace-Beltrami operator

e Spherical harmonics: Set of all functions bounded at 6 = £7 or z = +1
such that A Y = \Y.

e Solve using separation of variables to arrive at:

Y, (0, p) = a|£m|P£|m|(cosé’)eim‘P, (=0,1,..., m=—4,—0+1,....0—10/.

e Here ng, for k=0,1,..., ¢ =k,k+1,..., are the Associated Legendre
functions, given by Rodrigues’ formula

PE() = (1 - 22 (Pu(2))

where Py is the standard Legendre polynomial of degree /.

e The a} are normalization factors (e.g. a¥ = \/((20+ 1)(¢ — k)!)/(47(£ + m)!)



Overview of spherical harmonics DRWA 2013

Lecture 1

e Each spherical harmonic satisfies A, Y,” = —¢(£ + 1)Y,".

e Foreach ¢ =0,1,..., there are 2/+1 harmonics with eigenvalue —¢(¢+1).



Overview of spherical harmonics DRWA 2013

Lecture 1

e Fach spherical harmonic satisfies A Y," = —¢(¢ +1)Y,".

e Foreach ¢ =0,1,..., there are 2/+1 harmonics with eigenvalue —¢(¢+1).

e Real-form of spherical harmonics:

Y0, 0) =Y (2,0) = <

(V2a7* P/ (2) cos(mg) — m >0,
ay Py(2) m = 0,

\\@aLszJml(z) sin(my) m < 0.
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Lecture 1
e Fach spherical harmonic satisfies A Y," = —((/ + 1)Y,
e Foreach /¢ =0,1,..., there are 2¢+1 harmonics with eigenvalue —¢(¢+1).

e Real-form of spherical harmonics:

(V2a7* P/ (2) cos(mg) — m >0,
Y™ (0, 0) = Y™ (2,0) = § agPu(2) m = 0,
\ ﬁa'eszJml (z)sin(my) m <O.

e Can also be expressed purely in Cartesian coordinates (x = (z,y, 2) € S?):

(V247 Q7 (2) 5 ((x + iy)™ + (x — iy)™) m > 0,
Y/ (x) =Y, "(2,y,2) =  ayPu(2) m = 0,

V201 Q)M (2) L (x4 iy) ™™ — (x —iy)™™) m < 0.
where Q7' (z) = (—1)™ i—ﬂ;Pg( ).

e We will sometimes switch notation from Y,;" (6, ¢) to Y,"(x).
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e Spherical harmonics Y,"(x) in Cartesian form, for £ = 0,1, 2, 3.
m=-3 m=-2 m—-1 m=0 m=1 m=2 m=3

3 3
2 2= ° 2 2=
JEw e [reany e [ e
2 2x 2 2x -~ = 2 2= -~ 2=

- .2 7 -3 > 7 22 ) 2
L3 (32,3 L fos 0o 1 2 _y{l-‘-_«_-z] ! ﬁ[L_-‘;) R x(lf_~_§) LIS 2y
8\:: 2\2:: “.\3:: 2 2 2\:: 2 2 -‘.\3:: 2 2 ~‘.\2.f:
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Overview of spherical harmonics DRWA 2013

Lecture 1

e Spherical harmonics satisfy the L-(S%) orthogonality condition:
5 s
[ vy eant = [ [ V0,050, ) cosbdgdt = Guabn
S -z J-r

e They form a complete orthonormal basis for Lo (S?).
o If f € Ly(S?) then

o

J4
F) =Y. > fi"Y" (%), where fi" = | TEY () du().

=0 m=—4¢

e There is no counter part to the fast Fourier transform (FFT) for com-
puting the spherical harmonic coefficients f;".

— Fast methods of similar complexity (O(N log N)) have been developed,
but have very large constants associated with them. So an actual com-
putational advantage does not occur until NV is extremely large.
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e T'wo useful results on spherical harmonics we will use:

e Addition theorem: Let x,y € S?, then for ¢ =0,1,...

12
Am m m T
i1 2 YY) = PTY)

where Py is the standard Legendre polynomial of degree /.

e Funk-Hecke formula: Let f € L1(—1, 1) and have the Legendre expansion

o0 1
() =3 axPy(t), where az = 2’“; ! / (OP

k=0

Then for any spherical harmonic Y,” the following holds:

FOe Y)Y di(x) = o).

SZ



Theorems for positive definite zonal kernels om0

ecture 1

Definition. A zonal kernel ¢ : [—1,1] — R is said to be a positive definite
zonal kernel on S? if for any distinct set of nodes X = {Xj}j-vzl C S? and

b € R¥\{0} the matrix A = {¢(x}x;)} is positive definite, i.e.

N N
DO bip(x]x;)b; > 0.

i=1 j=1

(Schoenberg (1942)). If a zonal kernel ¢ : [—1,1] — R is expressible
in a Legendre series as

W(t) = arPu(t)
¢=0

where apy > 0 for £ > 0 and Zfe)io ay < oo then 1 is a positive definite zonal
kernel on SZ?.



Theorems for positive definite zonal kernels prwa

Lecture 1

(Schoenberg (1942)). If a zonal kernel ¢ : [—1,1] — R is expressible
in a Legendre series as

O

O(t) =) acku(t)

£=0

where ay > 0 for £ > 0 and Zz.io ay < oo then v is a positive definite zonal
kernel on SZ.

1. The condition _,-,ar < oo guarantees that ¢ € C(S?).
2. Use the addition theorem: Let X = {x;}?_; € S* and b € RV\{0} then

Zszw X; X;)b

=1 5=1

[®.@)

2:: Z ae Py XTXJ)

=0

I
9 1

¥4 N

N
47TCL£ m m
2+ 1 M Y Cbib Y (%)Y (x5)

m=—~F£1=1 j=1

N

2

2

47Tag
20+ 1

]~

> b Y (xy)

j=1

>0

T
@]

—L

m

3. Show that the quadratic form must be strictly positive.
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(Schoenberg (1942)). If a zonal kernel ¢ : [—1,1] — R is expressible
in a Legendre series as

O

O(t) =) acku(t)

£=0

where ay > 0 for £ > 0 and Zz.io ay < oo then v is a positive definite zonal
kernel on S?.

e Necessary and sufficient conditions on the Legendre coeflicients a, were
only given in 2003 by Chen, Menegatto, & Sun.

— Their result says the set {E € Ny

ap > O} must contain infinitely

many odd and infinitely many even integers.
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Lecture 1

Similar to R¢, we can define conditionally positive definite zonal kernels.

Definition. A continuous zonal kernel ¢ : [-1,1] — R is said to be
conditionally positive definite of order k on S? if, for any distinct X =

{Xj}é.v:l C S?, and all b € RV\{0} satisfying

N
Z bjp(Xj) =0
J=1

for all spherical harmonics of degree < k, the following is satisfied:
N N
> 2> bio(lxi = x;])b; >0
i=1 j=1

. If the Legendre expansion coefficients of ¢ : [—1,1] — R satisfy
ag > 0for £ > Fkand > 2 ar < .

: Use same ideas as the positive definite case.
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Definition. Let ¢ : [-1,1] — R be a continuous zonal kernel and {pz(x)}i‘il
be a basis for the space of all spherical harmonics of degree kK — 1. The general
SBE' interpolant for the distinct nodes X = {Xj}é-vzl C S? and some target, f,
sampled on X, {f; ;,V:l is

N k?
Ixf(x) = Z cjw(xTXj) + Z depe(X),
j=1 (=1

N
where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,0=1,..., k%

J=1
In linear system form, these constraints are

[1347” ]g] E] = H , where a; j = 1(x] X;), pie = pe(x;)

. The above linear system is invertible for any distinct X, provided
o rank(P) = k?,

e 1 is conditionally positive definite of of order k.
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Lecture 1

Definition. Let ¢ : [-1,1] — R be a continuous zonal kernel and {pz(x)}i‘il
be a basis for the space of all spherical harmonics of degree kK — 1. The general
SBE' interpolant for the distinct nodes X = {Xj}é-vzl C S? and some target, f,
sampled on X, {f; ;,V:l is

N k?
Ixf(x) = Z cjw(xTXj) + Z depe(X),
j=1 (=1

N
where Ix f(x;) = fi,i=1,...,N and Zijg(Xj) =0,0=1,..., k%

J=1
In linear system form, these constraints are

LfT Jg] [2] - [6] , where a; j = ¥(x) %), pie = pe(x;)

Example (Restricted thin plate spline, or surface spline). Let
o (t) = (1—1)log(2— 2t)
® pl(X) =1, pQ(X) = &, p3(X) =y, and p4(X) = <.

The system has a unique solution provided X are distinct.
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More useful to work with a zonal kernels spherical Fourier coefficients 1@. These
are related to Legendre coefficients through the Funk-Hecke formula:

00 12
o A m m ~ L 47Tag
—;W) m;n (Y (y) = 90 = 5,

Error estimates for SBF interpolants are governed by the asymptotic decay of zﬂg.

Stable algorithms (RBF-QR) also work with )y (more on this later...)

Baxter & Hubbert (2001) computed ), for many standard RBFs restricted to S2.

zu Castell & Filbir (2005) and Narcowich, Sun, & Ward (2007) linked the sphemcal
Fourier coefficients of restricted RBF's to the

Je = /0 w(0) Je1 2 (w)du,

where ¢ is the Hankel transform of the RBF in R3.



Examples of positive definite zonal kernels
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Lecture 1

e Examples of positive definite (PD) and order k£ conditionally positive def-
inite (CPD(k)) zonal kernels with their spherical Fourier coefficients.

| Name | Kernel (r(t) = v/2 — 2t) | Fourier coefficients 1, (0 < h < 1, € > 0) | Type
Legendre Y(t) = (14 h? — 2ht)~1/2 Py = EQ—ITj2 PD
Poisson Y(t) = (1 —h2)(1 + h% — 2ht)~3/2 Yy = 4rh? PD
. L (r@)* |, (@) +2 P 2m
Spherical | ¥(t) =1—r(t) + 5 log ( ) ) Yy = (g/_g (T D 12) PD
Gaussian P(t) = exp(—(er(t))?) g2t j;+1 o—2¢° Ipyq)2 (252)% 1 PD
+
IMQ W(t) = = g2t 4T < 2 ) PD
V1t (er()?) (0+1/2) \1+V4e? +1 s
L - 00 2m(262 + 1+ (£ 4 1/2)V/1 + 4e2) 2
e PO =~y 1+ Er@)) T a1 (rvass) | o
TPS P(t) = (r(t)) log(r(t)) an 2)(@14% DD CPD(2)
. . 3 ™
Cubic v(H) = () 5/ +3/2(+ 172 —1/2)({—3/2) CPD(2)

o First three kernels are specific to S?, while the last 5 are RBF's restricted
to S2.



EITOI' estimates DRWA 2013

Lecture 1

e Goal: Present some known results on error estimates for SBF' interpolants for
target function of various smoothness.

e We will introduce (or review) some background notation and material that is
necessary for the proofs of the estimates, but will not prove them.

— Sobolev spaces on S?;
— Native spaces;
— Geometric properties of node sets X C SZ.

e Brief historical notes regarding SBF error estimates:

— Earliest results appear to be Freeden (1981), but do not depend on 1 or target.
— First Sobolev-type estimates were given in Jetter, Stockler, & Ward (1999).

— Since then many more results have appeared, e.g.
Levesley, Light, Ragozin, & Sun (1999), v. Golitschek & Light (2001), Morton &
Neamtu (2002), Narcowich & Ward (2002), Hubbert & Morton (2004,2004), Levesley
& Sun (2005), Narcowich, Sun, & Ward (2007), Narcowich, Sun, Ward, & Wendland
(2007), Sloan & Sommariva (2008), Sloan & Wendland (2009), Hangelbroek (2011).
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Lecture 1

e Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error
estimates for SBF (and more generally RBF) interpolants.

e They allow one to view the interpolation problem as the solution to a partic-
ular optimization problem.

Definition. Let F(2) be a Hilbert space of functions f :  — R with inner
product (-, -)r. If there exists a kernel ® : 2 x 2 — R such that for all y € Q

fly) = (f;@(,y))F for all f e F,

then F is called a RKHS with reproducing kernel ®.
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Lecture 1

Reproducing kernel Hilbert spaces (RKHS) play a key role deriving error
estimates for SBF (and more generally RBF) interpolants.

They allow one to view the interpolation problem as the solution to a partic-
ular optimization problem.

Definition. Let F(2) be a Hilbert space of functions f :  — R with inner
product (-, -)r. If there exists a kernel ® : 2 x 2 — R such that for all y € Q

fly) = (f;@(,y))F for all f e F,

then F is called a RKHS with reproducing kernel ®.

The reproducing kernel ® of a RKHS is unique.

Existence of @ is equivalent to the point evaluation functional ¢y : F — R
being continuous. (Implied by ).
® also satisfies the following:

(1) ¢(x,y) = ®(y,x) for z,y € 2; (2) @ is positive semi-definite on ().
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Example. The space spanned by all spherical harmonics of degree n with the standard
L5 (S?) inner product (-, ), is a RKHS with reproducing kernel

n

2k +1
b, (x,y) = Z . P (xy).
k=0
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Lecture 1

Example. The space spanned by all spherical harmonics of degree n with the standard
L5 (S?) inner product (-, ), is a RKHS with reproducing kernel

n

2k + 1
(I)n(xa Y) — Z A Pk (XTY)'
k=0

Let x,y € S? and f(x) = Z Z cy'Yy" (x) for some coefficients ¢}*. Then

=0 m=—/¢ k=0
n n 12
2k +1 .
=X T 2 [ R () du(x)
k=0 =0 m=
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e Sobolev spaces on S? can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order T on S? is given by

2
H7(S?) = {feL252 Wl = Z Z 1+ 0(0+1 m| <oo}.
=0 m=—/¢
Here || - ||~ is a norm induced by the inner product

00 14
Yar = > (L+LC+1)f"g]"

=0 m=—/
where f{' = (£.Y")1, = [ FGOY" (x)du(x).
Compare to Sobolev spaces on R?:

HP(R3) = {feL2(R3)

I3 = [ 1+ lwl? | e dx < oo |
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e Sobolev spaces on S? can be defined in terms of spherical Harmonics.

Definition. The Sobolev space of order T on S? is given by

00 14 2
5 =5 3 @+ ae+ vy g <oo}.
=0 m=—/

e Sobolev embedding theorem implies H7(S?) is continuously embedded in
C(S?) for 7 > 1. Thus, H"(S?) is a RKHS.

H™(S?) = {f € Ly(S?)

L2+ 1

e Can show the reproducing kernel is @, (x,y) Z (1+2(£+1)) Pi(x-y).
=0
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e Each positive definite zonal kernel 1) naturally gives rise to a RKHS on S?,
which is called the native space of .

e This is the natural space to understand approximation with shifts of .

Definition. Let 1) be a positive definite zonal kernel with spherical Fourier
coefficients ¢y, £ = 0,1,.... The native space N, of ¥ is given by

Nwz{feLg(SQ)lfll o3y m' }

=0 m=—4¢

with inner product

) zzfegﬁ.

=0 m=—/¢

e A similar definition holds for conditionally positive definite kernels, but the
inner product has to be slightly modified (see Hubbert, 2002).
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e An important “optimality” result stems from N, (S?) being a RKHS.

e Consider the following optimization problem:

Problem. Let X = {x1,...,Xy} be a distinct set of nodes on S? and let
{f1,..., [~} be samples of some target function f on X. Find s € N,(S?)
that satisfies s(x;) = f;, 7 = 1,..., N and has minimal native space norm
Islln,» ie.

s € Ny(S?) with s| :f’X}.

minimize {||s||j\/¢

. s is the unique SBF interpolant to f ‘ + using the kernel .

e SBF interpolants also have nice properties in their respective native spaces:

Lol = Ty x fllxe, + Hp.x flla, = If11x,
2. 1f = Ty x flla, < I fllw,
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e Note similarity between Sobolev space H™(S?) and Ny, (S?):

( o0 14 o
H7(S) =4 1€ L@l =3 3 e+ )7 |7 <oo}

\ =0 m=—/¢

Mo = Fena@|ifln =30 3 | m‘ }

\ =0 m=—/¢

o If 4y ~ (14+£(£+1))"7, then it follows that NV, = H, with equivalent norms.

e This is one reason we care about the asymptotic behavior of &g.

For RBFs restricted to S?, we have the following nice result connecting the
asymptotics of the spherical Fourier coefficients to the Fourier transform
(Levesley & Hubbert (2001), zu Castell & Filbir (2005), Narcowich, Sun, & Ward (2007)):

If ¢ is an SBF obtained by restricting an RBF ¢ to S? and if
G(w) ~ (1 +[|w]3) /2 then g ~ (14 £(L+1))77
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e Examples of radial kernels ¢ and their norm-equivalent native spaces Ny, when
restricted to S?:

Name RBF (use r = /2 — 2t to get SBF ) Ny (S?)
Matern Po(r) = e " HI3(S?)
TPS(1) ¢(r) = r?log(r) H?(S?)

Cubic o(r) = r3 H25(S2?)
TPS(2) ¢(r) = r*log(r) H3(S?)

Wendland | ¢32(r) = (1 —er)3L(3 + 18(er) + 15(er)?) | H35(S?)
Matern | ds(r) = =" (15 + 15(=r) + 6(er)? + (en)) | HS(8%)

e The spherical Fourier coefficients for all these restricted kernels have algebraic
decay rates.

e For kernels with spherical Fourier coefficients with exponential decay rates
(e.g. Gaussian and multiquadric) the Native spaces are no longer equivalent
to Sobolev spaces.

e These natives spaces do satisfy: Ny (S?) € H™(S?) for all 7 > 1.

e Error estimates for interpolants are directly linked to the native space of .
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The following properties for node sets on the sphere appear in the

error estimartes:

Mesh norm

hx = sup distg2(x, X)
x €S2

Separation radius

1
= — mindistg2 (X;, X
dx D st Sz( j)

Mesh ratio

PX — ——
qdx

X = {Xj}j'v:l C §*

(Only part of the sphere is shown)
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e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e 7 is the SBF o X ={x;}L, C§?

o Yy~ (1+LUl+1)T", 7>1 e hx = mesh-norm

) N¢(Sz) = HT(8°) ® ¢x = separation radius
e [x f is SBF interpolant of f‘X e px = hx/qx, mesh ratio

Theorem. Target functions in the native space.

If f € H™(S?) then || — I fll1, 2 = O(hY 2775 for 1 < p < oo,
In particular,

If = IxfllL,s2) = O(hk)
If = Ix fllLys2) = O(h)
If = Ixfllo. @) = O ")
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e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e 7 is the SBF o X ={x;}L, C§?

o Yy~ (1+LUl+1)T", 7>1 e hx = mesh-norm

o Ny(S?) = H"(S?) e ¢x = separation radius o
e [x f is SBF interpolant of f‘X e px = hx/qx, mesh ratio
Theorem. Target functions twice as smooth as the native space.
If f € H?™(S?) then |[f — Ix f|l1, @2 = O(hY) for 1 < p < cc.

Remark. Known as the “doubling trick” from spline theory. (Schaback 1999)
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e We start with known error estimates for kernels of finite smoothness.

Jetter, Stockler, & Ward (1999), Morton & Neamtu (2002), Hubbert & Morton
(2004,2004), Narcowich, Sun, Ward, & Wendland (2007)

Notation:

e 7 is the SBF o X ={x;}L, C§?

o Yy~ (1+LUl+1)T", 7>1 e hx = mesh-norm

o Ny(8%) = H"(S°) e gx = separation radius
e [x f is SBF interpolant of f‘X e px = hx/qx, mesh ratio

Theorem. Target functions rougher than the native space.

If f € HP(S?)forT > 3 > 1then||f — Ix fllL,@s2) = O(pr—BhTX—2(1/2—1/p)+)
for 1 <p < 0.
Remark.

(1) Referred to as “escaping the native space”. (Narcowich, Ward, & Wendland (2005, 2006).

(2) These rates are the best possible.
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e FError estimates for infinitely smooth kernels (e.g. Gaussian, multiquadric).
Jetter, Stockler, & Ward (1999)

Notation:

e ¢ is the SBF e X = {XJ} L, C§?

[ Qﬂe ~ exp(_a(2€ + ]_))7 a >0 ® hX — mesh-norm

11w Z S ‘f‘” p

=0 m=—/4

° N¢(82) == {f < LQ(SQ

Theorem. Target functions in the native space.

If f € Ny(S?) then ||f — Ix [l (2 = O(hy' exp(—a/2h)).
Remarks:
(1) This is called spectral (or exponential) convergence.

(2) Function space may be small, but does include all band-limited functions.
(3) Only known result I am aware of (too bad there are not more).

(4) Numerical results indicate convergence is also fine for less smooth functions.
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e If one has the freedom to choose the nodes, then the error estimates
indicate they should be roughly as evenly spaced as possible.

Examples: Icosahedral Fibonacci Equal area
(&
2
B2
=
=
[,
O
=
)
-
Swinbank & Purser (2006) Saff & Kuijlaars (1997)
Minimum energy s—2 Minimum energy, s=3  Maximal determinant
~
+>
2z
=
=
—~
O
+
(D)
B
-
O
Z.

Hardin & Saff (2004)  Riesz energy: ||x —y||5° Womersley & Sloan (2001)
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e This was general background material for getting started in this area.

e There is still much more to learn and many interesting problems.

® Remainder of the lectures will focus on:

©)

O

O

Approximation (and decomposition) of vector fields.
Better bases for certain kernels (better=more stable).
Fast algorithms for interpolation (with applications to quadrature)
Numerical solution of partial differential equations on spheres.
< Focus: non-linear hyperbolic equations.
< Global and local methods.
Problems in spherical shells.

< Mantle convection (Rayleigh-Bénard convection).

< Generalizations to other manifolds.

¢ If you have any questions or want to chat about research ideas, please

come and talk to me.

Grazie per la vostra attenzione.



