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On discs contained in filled Julia sets
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Abstract

We present some results concerning closed discs contained in the filled Julia sets associated with poly-
nomials fc : C 3 z 7−→ z2 + c ∈ C mostly for c ∈

�

−2, 1
4

�

but also some other values. We investigate
also a few non-autonomous Julia sets. As an application we prove that the pluricomplex Green function
associated with the non-autonomous Julia set of the sequence ( fcn

)∞n=1 is Hölder continuous, provided
(cn)∞n=1 ⊂ D

�

0, 1
4

�

.
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1 Introduction

Let p be a polynomial. The associated filled Julia set is defined by the formula

K[p] := {z ∈ C : (p◦n(z))∞n=1 is bounded},

where we use the notation p◦n to denote the composition p ◦ . . . ◦ p of n copies of p. The Julia set of p is J [p] = ∂K[p]. If
deg p ≥ 2, then J [p] and K[p] are non-empty, compact, perfect sets. Moreover they are completely invariant under the action of
p, i.e.

p−1(K[p]) = K[p] = p(K[p]), p−1(J [p]) = J [p] = p(J [p]).

For the background we refer the reader e.g. to [7] or [5].

We will use the following equivalent characterisation of a Julia set in terms of the derivative of the associated polynomial.

Theorem 1.1. [7, Theorem 14.10] Let p be a polynomial with deg p ≥ 2. Then

J [p] = {z ∈ C| ∃k ≥ 0 : p◦k(z) = z ∧ |(p◦k)′(z)|> 1}.

Recall another fact.

Theorem 1.2. [5, Theorem III.1.1] Let p be a polynomial with deg p ≥ 2. Then
�

z ∈ C| ∃θ ∈Q : p(z) = z ∧ p′(z) = e2πiθ
	

⊂ J [p].

In what follows D(a, r) := {z ∈ C : |z− a| ≤ r} is the closed disc in the complex plane with center a ∈ C and radius r > 0. We
will consider the family of polynomials fc : C 3 z 7−→ z2 + c ∈ C for c ∈ C. We are primarily interested in the case c ∈

�

−2, 1
4

�

.
Recall that this interval is the intersection of the Mandelbrot set with the real axis. It follows that the sets K[ fc] for such c are
connected. Recall that K[ fc] is also connected for c ∈ D

�

0, 1
4

�

.

The starting points for our investigations were some results from [1] and [6]. The authors of [1] proved that rc := 1
2 +

q

1
4 − c

is the smallest radius of a closed disc containing K[ fc] for every c ∈ (−∞, 0]. We are interested in the largest radii of some discs
contained in the filled Julia set of fc .

As a nice application of some of our results we prove the Hölder continuity of the Green function of some non-autonomous
Julia sets.
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2 Discs and ellipses with center 0

In this section we establish a few results concerning closed discs with center 0 contained in some filled Julia sets. Recall first the
following fact.

Proposition 2.1. [6, Proposition 2.1] D
�

0, 1
2

�

⊂ K[ fc] for every c ∈
�

− 1
4 , 1

4

�

.

Let us look at some illustrations.

Example 2.1. The filled Julia sets associated with fc for some chosen c and the corresponding discs are shown in the images
below.

We would like to find a radius larger than 1
2 . Define ρc := 1

2 +
q

1
4 − c. We see that ρc ∈

�

1
2 , 1

�

if c ∈
�

0, 1
4

�

.

Lemma 2.2.

∀c ∈
�

−∞,
1
4

�

: ρc ∈ J [ fc].

Proof. Note that ρc is a fixed point of fc .
Fix first c ∈

�

−∞, 1
4

�

. We obtain

| f ′c (ρc)|= |2ρc |= 1+ 2

√

√1
4
− c > 1,

since c ∈
�

−∞, 1
4

�

. Therefore Theorem 1.1 yields ρc ∈ J [ fc].
Moreover, if c = 1

4 , then f ′1
4
(ρ 1

4
) = 2ρ 1

4
= 1= e2πi·0, hence ρ 1

4
∈ J [ f 1

4
] by Theorem 1.2.

Let E denote the family of ellipses with semi-axes contained in the axes of the coordinate system in C. For an ellipse E ∈ E let
O(E) denote the bounded connected component of C \ E. We want to recall and use a result given in [1]. Since the authors did
not prove it, we include here a proof for the convenience of the reader.
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Proposition 2.3. [1, Remark 1] For c ∈
�

0, 1
4

�

we have

Ec :=
§

z ∈ C :
(Re(z))2

ρ2
c

+
(Im(z))2

ρc + c
= 1

ª

⊂ K[ fc].

In addition
Ec =

⋃

{E ∈ E : O(E) ⊂ K[ fc]}.

Proof. Fix c ∈
�

0, 1
4

�

. Recall that ρc is a fixed point of fc , thus

ρ2
c + c = ρc , (1)

and therefore
ρc + c = 2ρc −ρ2

c = ρc(2−ρc)> 0.

In particular Ec is indeed an ellipse. We consider its parametrisation

ΓEc
: [0, 2π) 3 t 7−→ (ρc cos t,

p

ρc + c sin t) ∈ R2.

Fix z0 ∈ Ec . We have z0 = ρc cosθ + i
p

ρc + c sinθ for some θ ∈ [0,2π), hence by the definition of fc and (1) we obtain

fc(z0) = ρ
2
c cos2 θ − (ρc + c) sin2 θ + c + iρc

p

ρc + c sin2θ

= ρc cos2θ + iρc

p

ρc + c sin2θ .

Therefore

fc(z0) ∈ E′c :=
§

z ∈ C :
(Re(z))2

ρ2
c

+
(Im(z))2

ρ2
c (ρc + c)

= 1
ª

.

We have proved that fc(Ec) ⊂ E′c . Similarly, we show that E′c ⊂ fc(Ec). Hence fc(Ec) = E′c .

Since fc is holomorphic, it is an open mapping, thus

∂ fc(O(Ec)) ⊂ fc(∂ (O(Ec))) = fc(Ec) = E′c .

In addition, O(E′c) ⊂O(Ec), since ρc ≤ 1. Hence fc(O(Ec)) ⊂O(Ec). Therefore f ◦nc (O(Ec)) ⊂O(Ec) for every integer n, which
means that O(Ec) ⊂ K[ fc].

In view of Lemma 2.2, we know that ρc ∈ J [ fc], hence by the invariance of the Julia set and the definition of fc we obtain

{ρc ,−ρc}= f −1
c (ρc) ⊂ J [ fc],

and also
{i
p

ρc + c,−i
p

ρc + c}= f −1
c (−ρc) ⊂ J [ fc].

Moreover {ρc ,−ρc , i
p

ρc + c,−i
p

ρc + c} ⊂ Ec , so the proof is completed.

Now we are able to prove that the radius in Proposition 2.1 can be enlarged.

Proposition 2.4. Fix c ∈
�

0, 1
4

�

. Then D(0,ρc) ⊂ K[ fc]. Moreover

ρc =max
§

r > 0 : D (0, r) ⊂ K[ fc]
ª

.

Proof. Fix c ∈
�

0, 1
4

�

. In view of Proposition 2.3 it is sufficient to show that D(0,ρc) ⊂O(Ec). By (1) we have ρ2
c = ρc− c ≤ ρc+ c.

Therefore for any z ∈ D(0,ρc)
(Re(z))2

ρ2
c

+
(Im(z))2

ρc + c
≤
(Re(z))2

ρ2
c

+
(Im(z))2

ρ2
c

≤ 1.

The additional assertion follows from Lemma 2.2.

We can generalise the previous result.

Proposition 2.5. D(0,ρ|c|) ⊂ K[ fc] for every c ∈
�

− 1
4 , 1

4

�

.

Proof. Fix c ∈
�

− 1
4 , 1

4

�

and z0 ∈ D(0,ρ|c|). Then z0 = r cos t + ir sin t for some r ∈ [0,ρ|c|] and t ∈ [0,2π). Thus

fc(z0) = r2 cos2 t + 2ir2 sin t cos t − r2 sin2 t + c = r2 cos 2t + c + ir2 sin2t,

so fc(z0) ∈ D(c,ρ2
|c|), since r2 ∈ [0,ρ2

|c|].
Hence fc

�

D(0,ρ|c|)
�

⊂ D(c,ρ2
|c|). Moreover, D(c,ρ2

|c|) ⊂ D(0,ρ|c|), because |c| = ρ|c| − ρ2
|c| by (1). We conclude that

fc

�

D(0,ρ|c|)
�

⊂ D(0,ρ|c|). Consequently f ◦nc

�

D(0,ρ|c|)
�

⊂ D(0,ρ|c|) for all integers n≥ 1, which completes the proof.
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Remark 1. Note that for c ∈
�

0, 1
4

�

we get {ρc ,−ρc} ⊂ D(0,ρc) ∩ J [ fc] by Lemma 2.2, Proposition 2.4 and the symmetry of
J [ fc] with respect to the origin.

Let us look at some illustrations.

Example 2.2. The filled Julia sets K[ fc] for some chosen c and the corresponding discs are shown in the images below.

As a consequence we obtain a generalisation of Proposition 2.3.

Corollary 2.6.

eEc :=
§

z ∈ C :
(Re(z))2

ρ2
|c|

+
(Im(z))2

ρ|c| + c
= 1

ª

⊂ K[ fc]

for c ∈
�

− 1
4 , 1

4

�

.

Proof. In view of Proposition 2.3 it is sufficient to consider c ∈
�

− 1
4 , 0

�

. It follows from (1) that ρ2
|c| = ρ|c| − |c| = ρ|c| + c, so

eEc = ∂ D(0,ρ|c|). Proposition 2.5 yields D(0,ρ|c|) ⊂ K[ fc].

Now we prove the following generalisation of Proposition 2.1.

Proposition 2.7. D
�

0, 1
2

�

⊂ K[ fc] for every c ∈ D
�

0, 1
4

�

.

Proof. (cf. Proof of [6, Proposition 2.1]) Fix z ∈ D
�

0, 1
2

�

. Note that

| fc(z)|= |z2 + c| ≤ |z|2 + |c| ≤
�

1
2

�2

+
1
4
=

1
2

.

Inductively we can prove that | f ◦nc (z)| ≤
1
2 for all integers n≥ 1.

Let us now recall a special example from [6].

Example 2.3. [6, Proposition 2.2]

1. D(0, R1) ⊂ K[ f−1], where R1 ∈
�

0, 1
2

�

is such that R3
1 + 2R1 = 1.

2. D(−1, R2) ⊂ K[ f−1], where R2 ∈
�

0, 1
2

�

is such that R3
2 + 4R2

2 + 4R2 = 1.

The proof of these inclusions is based on the fact that the absolute term of f ◦2−1 equals zero. One can apply a similar method
to some other cases. Consider for instance

f ◦3c (z) = z8 + 4cz6 + (6c2 + 2c)z4 + (4c3 + 4c2)z2 + c4 + 2c3 + c2 + c

for some c ∈ C. Solving the equation c4 + 2c3 + c2 + c = 0 we get polynomials fc for which the absolute term of f ◦3c equals to
zero. As a consequence, repeating similar reasoning as in the proof of [6, Proposition 2.2], we obtain the following result

Example 2.4. 1. D(0, R3) ⊂ K[ fc], where

c =
1
3

�

−2−
�

2

25− 3
p

69

�
1
3

−
�

1
2

�

25− 3
p

69
�

�
1
3
�

≈ −1.75

and R3 ∈
�

0, 1
5

�

is such that R7
3 + 4|c|R5

3 + |6c2 + 2c|R3
3 + |4c3 + 4c2|R3 = 1.

2. D(0, R4) ⊂ K[ fc], where c is one of the solutions of c4 + 2c3 + c2 + c = 0 (we take c ≈ −0.12256 − 0.74486i) and
R4 ∈ (0.3,0.4) is such that R7

4 + 4|c|R5
4 + |6c2 + 2c|R3

4 + |4c3 + 4c2|R4 = 1.
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Proof. 1. It can be shown that
f ◦3c (z) = z8 + 4cz6 + (6c2 + 2c)z4 + (4c3 + 4c2)z2.

We remark, by studying the sign of the polynomial

P(x) = x7 + 4|c|x5 + |6c2 + 2c|x3 + |4c3 + 4c2|x − 1

on the interval
�

0, 1
5

�

, that there exists a unique R3 ∈
�

0, 1
5

�

such that P(R3) = 0. In particular R7
3 + 4|c|R5

3 + |6c2 + 2c|R3
3 + |4c3 +

4c2|R3 = 1.
Let now |z| ≤ R3. Then

| f ◦3c (z)| ≤ |z|(|z|
7 + 4|c||z|5 + |6c2 + 2c||z|3 + |4c3 + 4c2||z|)≤ R3.

Thus inductively | f ◦3k
c (z)| ≤ R3 for every k ≥ 1 and this implies f ◦3k

c (z)9∞. Hence D(0, R3) ⊂ K[ fc].

The proof of 2. is analogous: R3 needs to be replaced by R4 respectively.

Let us look at some illustrations.

Example 2.5. The filled Julia sets K[ fc] for some chosen c and the corresponding discs are shown in the images below.

K[ fc] for c = −0.12− 0.74i (in yellow) and D(0, R4) (in black).

K[ fc] for c ≈ −1.75 (in yellow) and D(0, R3) (in black).
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3 Discs with other centers

Note first that ρc −
p

c > 0 for c ∈
�

0, 1
4

�

. Now we prove the following

Proposition 3.1. Fix c ∈
�

0, 1
4

�

and z0 ∈ {
p
−c,−

p
−c}. Then

ρc −
p

c ≤max
§

r > 0 : D(z0, r) ⊂ K[ fc]
ª

≤
ρcp

c
.

Proof. We prove the first inequality. It is elementary to see that D(z0,ρc −
p

c) ⊂ D(0,ρc). In addition, Proposition 2.5 implies
that D(0,ρc) ⊂ K[ fc]. Therefore we obtain D(z0,ρc −

p
c) ⊂ K[ fc], which yields the claim.

Now we prove the second inequality. In view of Proposition 2.6 we know that 0 ∈ K[ fc], hence by the invariance of the Julia
set and the definition of fc we obtain

{
p
−c,−

p
−c} ⊂ K[ fc].

Hence z0 ∈ K[ fc]. Let r0 =max
§

r > 0 : D(z0, r) ⊂ K[ fc]
ª

.

Next, we prove the inclusion D(0, |z0|r0) ⊂ f
�

D(z0, r0)
�

following some ideas from [17]. Let w ∈ D(0, |z0|r0). Then
�

�z0 +
p

w− c
�

�

�

�z0 −
p

w− c
�

�= | f (z0)−w|= |w| ≤ |z0|r0,

so by the triangle inequality
�

�

�

�

1

z0 +
p

w− c

�

�

�

�

+

�

�

�

�

1

z0 −
p

w− c

�

�

�

�

≥
�

�

�

�

2z0

(z0 +
p

w− c)(z0 −
p

w− c)

�

�

�

�

≥
2
r0

.

Hence
�

�

�

�

1

z0 −
p

w− c

�

�

�

�

≥
1
r0

or

�

�

�

�

1

z0 +
p

w− c

�

�

�

�

≥
1
r0

.

Without loss of generality we assume that the first inequality holds. Then
p

w− c ∈ D(z0, r0), which implies that w = f
�p

w− c
�

∈
f
�

D(z0, r0)
�

and the claim follows.

Moreover, f
�

D(z0, r0)
�

⊂ K[ fc] by the invariance of the Julia set. We conclude that D(0, |z0|r0) ⊂ K[ fc]. Consequently
|z0|r0 ≤ ρc by Proposition 2.4.

We note here that using Koebe’s one-quarter theorem it can be shown that if c ∈
�

0, 1
4

�

and z0 ∈ {−
p
−c,
p
−c}, then

max
§

r ∈ (0,
p

c] : D(z0, r) ⊂ K[ fc]
ª

≤
2ρcp

c
.

However our result is stronger. Let us further remark that for the given parameter range the centers −
p
−c and

p
−c lie on the

imaginary axis.

Note that z(c) := 1−
p

1−4c
2 is a fixed point of fc . Recall now the following result.

Proposition 3.2. [6, Proposition 2.1] D
�

1−
p

1−4c
2 ,

p
1− 4c

�

⊂ K[ fc] for every c ∈
�

0, 1
4

�

.

Let us look at the boundary values of the interval in Proposition 3.2. In this section we expand the definition of the closed
disc to the case of r = 0, putting D(a, 0) := {a}.
Remark 2. Note that for c = 0 we get D(0, 1) = K[ f0] and for c = 1

4 we can write D
�

1
2 , 0

�

= { 1
2 } ⊂ K[ f 1

4
], since 1

2 is a fixed point
of f 1

4
.

Let us look at some illustrations.

Example 3.1. The filled Julia sets K[ fc] for some chosen c and the corresponding discs are shown in the images below.
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The illustrations allow to suspect that the following result is true.

Proposition 3.3. For every c ∈
�

0, 1
4

�

we have

max
§

r > 0 : D

�

1−
p

1− 4c
2

, r

�

⊂ K[ fc]
ª

=
p

1− 4c.

Proof. Fix c ∈
�

0, 1
4

�

. By Lemma 2.2 we have ρc =
1
2 +

q

1
4 − c ∈ J [ fc] = ∂K[ fc]. But ρc ∈ ∂ D

�

1−
p

1−4c
2 ,

p
1− 4c

�

. Proposition
3.2 together with Remark 2 completes the proof.

Recall now another fact from [6].

Proposition 3.4. [6, Proposition 2.1] D
�

1−
p

1−4c
2 , 2−

p
1− 4c

�

⊂ K[ fc] for every c ∈
�

− 3
4 , 0

�

.

Once again let us look at the boundary points of the interval from the Proposition 3.4.

Remark 3. Once again for c = 0 we get D(0, 1) = K[ f0] and for c = − 3
4 we can write D

�

− 1
2 , 0

�

= {− 1
2 } ⊂ K[ f− 3

4
], since − 1

2 is a
fixed point of f− 3

4
.

Let us look at some illustrations.

Example 3.2. The filled Julia sets K[ fc] for some chosen c and the corresponding discs are shown in the images below.
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Lemma 3.5. For every c ∈
�

−2,− 3
4

�

we have 1−
p

1−4c
2 ∈ J [ fc].

Proof. Fix first c ∈
�

−2,− 3
4

�

. Recall that z(c) := 1−
p

1−4c
2 is a fixed point of fc . And since c ∈

�

−2,− 3
4

�

, we obtain

| f ′c (z(c))|= |2z(c)|=
p

1− 4c − 1> 1.

Hence z(c) ∈ J [ fc] by Theorem 1.1.

Moreover f ′
− 3

4

�

z
�

−
3
4

��

= −1= e2πi· 12 and z
�

− 3
4

�

is a fixed point of f− 3
4
, so z

�

− 3
4

�

∈ J [ f− 3
4
] by Theorem 1.2.

Lemma 3.5 shows that Proposition 3.4 can not be generalised for c ∈
�

−2,− 3
4

�

.
Let us finally observe the following corollary.

Corollary 3.6. 1. D
�p

1−4c−1
2 ,

p
1− 4c

�

⊂ K[ fc] for every c ∈
�

0, 1
4

�

.

2. D
�p

1−4c−1
2 , 2−

p
1− 4c

�

⊂ K[ fc] for every c ∈
�

− 3
4 , 0

�

.

Proof. It follows from Propositions 3.2 and 3.4, Remarks 2 and 3 and the symmetry of K[ fc] with respect to the origin.

4 Examples of non-autonomous Julia sets

The notion of the filled Julia set can be generalised. Consider an arbitrary sequence of polynomials (pn)∞n=1 of degree at least two.
The associated non-autonomous filled Julia set of that sequence is defined by

K[(pn)
∞
n=1] := {z ∈ C : ((pn ◦ . . . ◦ p1)(z))

∞
n=1 is bounded}.
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Remark 4. Note that it follows from the previous definition that

K[(pn)
∞
n=1] =

⋃

r∈N

⋂

n≥1

(pn ◦ . . . ◦ p1)
−1
�

D(0, r)
�

.

The non-autonomous Julia set of a sequence (pn)∞n=1 is defined by J [(pn)∞n=1] := ∂K[(pn)∞n=1]. The complement of the
non-autonomous Julia set to the Riemann sphere C∞, denoted by F[(pn)∞n=1], is called the Fatou set, in accordance with the
classical iteration theory. Connected components of the Fatou set are called stable domains. If∞ belongs to the Fatou set, we
denote the corresponding stable domain by A(∞). A domain M ⊂ C∞ is called invariant, if pn(M) ⊂ M for all n ∈ N. For some
further information see e.g. [2], [3] and [9]. The author of [4] has shown that non-autonomous Julia sets can be finite, unlike
the filled Julia set of one polynomial.

Example 4.1. [4] K[(z 7−→ n2n
z2)∞n=1] = {0}.

We will show below that some non-autonomous Julia sets contain some discs, which means that they are infinite.

Proposition 4.1. Fix a sequence (cn)∞n=1 ⊂ D
�

0, 1
4

�

. Then D
�

0, 1
2

�

⊂ K[( fcn
)∞n=1].

Proof. (cf. Proof of Proposition 2.7) Fix z ∈ D
�

0, 1
2

�

. Note that

| fc1
(z)|= |z2 + c1| ≤ |z|2 + |c1| ≤

�

1
2

�2

+
1
4
=

1
2

.

Inductively we can prove that |( fcn
◦ . . . ◦ fc1

)(z)| ≤ 1
2 for all integers n≥ 1.

The following result is known in much more general settings (see [8, Theorem 2.1] or [9, Section 4]). Our case is really
elementary and we include the proof to make the paper more self-contained.

Proposition 4.2. K[( fcn
)∞n=1] is compact for a fixed sequence (cn)∞n=1 ⊂ D

�

0, 1
4

�

.

Proof. Fix (cn)∞n=1 ⊂ (cn)∞n=1 ⊂ D
�

0, 1
4

�

. We prove first that for every integer n≥ 1 we have

|z| ≥ 3 =⇒ | fcn
(z)|> 2|z|.

Fix z ∈ C \ D(0, 3) and n≥ 1. Then

| fcn
(z)|= |z2 + cn| ≥ |z|2 − |cn|= |z|

�

|z| −
|cn|
|z|

�

> 2|z|.

Consequently K[( fcn
)∞n=1] =

∞
⋂

n=1

( fcn
◦ . . . ◦ fc1

)−1
�

D(0,3)
�

in view of Remark 4. It follows that K[( fcn
)∞n=1] is compact.

In what follows let us denote Fn = fcn
◦ fcn−1

◦ . . . fc2
◦ fc1

for a fixed sequence (cn)∞n=1 ⊂ C. Now it will be useful to recall the
following classification.

Definition 4.1. (cf. [3, Definition 1]) We say that a sequence (cn)∞n=1 belongs to

• class PI , if there is an invariant domain M ,∞∈ M , such that Fn
n→∞
−−−→∞ locally uniformly in M ,

• class PI I , if Fn
n→∞
−−−→∞ locally uniformly in some neighbourhood of∞, although there is no invariant domain M such

that∞∈ M ,

• class PI I I , if∞∈ F[( fcn
)∞n=1].

Note that it is possible to classify a sequence (cn)∞n=1 according to its growth.

Theorem 4.3. (cf. [3, Theorem 1]) A sequence (cn)∞n=1 belongs to

• class PI if and only if (cn)∞n=1 is bounded,

• class PI I if and only if (cn)∞n=1 is not bounded, but log+ |cn|= O(2n),

• class PI I I if and only if limsupn→∞
log+ |cn |

2n = +∞.

In the rest of the chapter we will mainly deal with facts about the "size" of certain sets. The useful notion here is the diameter
of a domain, i.e.

diam(A) := sup{|z −w| : z, w ∈ A}.

Let us firstly discribe the maximal range of the diameter of a stable domain.
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Theorem 4.4. (cf. [3, Theorem 5 & 9]) 1. Let (cn)∞n=1 ∈ PI ∪PI I and V 6= A(∞) be a stable domain. Then

diam(V )< 4.

2. For every positive d < 4 there is a sequence (cn)∞n=1 ∈ PI ∪PI I whose Fatou set has a stable domain V 6= A(∞) such that

diam(V )≥ d.

In particular, the above theorem gives an upper bound on the diameter of the filled Julia set if that set is the only stable
domain. This result, together with Proposition 4.1, yields

Remark 5. For every sequence (cn)∞n=1 ⊂ D
�

0, 1
4

�

we have

1
2
≤ diam

�

V(cn)
∞
n=1

�

< 4,

where V(cn)
∞
n=1

is the stable domain containing 0.

Now we find a disc contained in a non-autonomous filled Julia set in a special case, which gives a lower bound on the diameter
of this set. However, we need to make little modifications to Lemma 2.4 from [6] beforehand.

Lemma 4.5. Let n≥ 2. For any a ∈ (0,1] define Pa : [0, 1] −→ R by the formula Pa(x) := x(x + 2a)2n − 1. Then

1. Pa is strictly increasing and thus injective;

2. There exists a unique ra ∈ (0, 1) such that Pa(ra) = 0;

3. Given a1, a2 ∈ (0,1], we have
a1 ≤ a2 =⇒ ra1

≥ ra2
.

Proof. 1. We have (Pa)′(x) = (x + 2a)2n + 2xn(x + 2a)2n−1 > 0 for x ∈ [0, 1]. Therefore Pa is strictly increasing on the interval
[0, 1]. It follows that Pa is injective there.

2. We have Pa(0) = −1< 0 and Pa(1) = (1+ 2a)2n − 1> 0. Hence in view of the intermediate value theorem there exists a
point ra ∈ (0,1) such that Pa(ra) = 0. It is unique, since Pa is injective. In particular ra(ra + 2a)2n = 1.

3. Fix a1, a2 ∈ (0, 1] such that a1 ≤ a2. Then by the definition of Pa we have Pa1(x)≤ Pa2(x) for every x ∈ [0, 1]. Since Pa1

and Pa2 are strictly increasing, (Pa1)−1(y) ≥ (Pa2)−1(y) for every y ∈ [−1, Pa1(1)]. In particular, since Pa1(1) > 0, we obtain
ra1
= (Pa1)−1(0)≥ (Pa2)−1(0) = ra2

.

Recall now another result from [6].

Proposition 4.6. [6, Proposition 2.6] D(−1, rn) ⊂ K[z 7→ z2n − 1] where rn ∈ (0, 1) is such that rn(rn + 2)2n = 1 for every n≥ 2.

Let us define pk(z) := z2n − a(2n)k for a ∈ (0, 1] and integers n≥ 2 and k ≥ 0. We give some generalisation of Proposition 4.6.

Proposition 4.7. Fix a ∈ (0,1] and n≥ 2. Then D(− 2npa, r) ⊂ K[(p◦2k )
∞
k=0], where r ∈ (0, 1) is such that r(r + 2 2npa)2n = 1.

Proof. Fix a ∈ (0,1] and n≥ 2. Recall that p0(z) = z2n − a. Then p◦20 (z) = (z
2n − a)2n − a.

Fix z ∈ D(− 2npa, r 2npa), where r 2npa ∈ (0,1) is such that

r 2npa(r 2npa + 2 2npa)2n = 1

(the existence of r 2npa is assured by Lemma 4.5). Then |z−w| ≤ r 2npa +2 2npa for every w ∈ {w1, . . . , w2n−1} where {w1, . . . , w2n−1}
is the set of the roots of the equation z2n = a different from − 2npa.

Therefore

|p◦20 (z) + a|=
�

�(z2n − a)2n − a+ a
�

�=
�

�(z2n − a)2n
�

�=

=
�

�z + 2npa
�

�

2n ·
2n−1
∏

i=1

|z −wi |2n ≤ r2n
2npa
(r 2npa + 2 2npa)(2n−1)2n =

= r 2npa

�

r 2npa(r 2npa + 2 2npa)2n
�2n−1

= r 2npa.

We have proved that p◦20 (z) ∈ D(−a, r 2npa).

Take ra ∈ (0,1) such that ra(ra + 2a)2n = 1. Then since a ≤ 2npa, by Lemma 4.5 we obtain ra ≥ r 2npa. Hence D(−a, r 2npa) ⊂
D(−a, ra). Therefore we have p◦20 (z) ∈ D(−a, ra).
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Now we consider p1(z) = z2n − a2n. Repeating the same reasoning, we will show that p◦21 (p
◦2
0 (z)) ∈ D(−a2n, ra).

Note that p◦21 (z) = (z
2n − a2n)2n − a2n. Therefore

|p◦21 (p
◦2
0 (z)) + a2n|=

�

�((p◦20 (z))
2n − a2n)2n − a2n + a2n

�

�=
�

�((p◦20 (z))
2n − a2n)2n

�

�=

= |p◦20 (z) + a|2n ·
2n−1
∏

i=1

|p◦20 (z)− ewi |2n ≤ ra,

where {ew1, . . . , ew2n−1} is the set of the roots of the equation ζ2n = a2n different from −a.

Inductively we can prove that

∀k ≥ 0 ∃ra(2n)k−1 ∈ (0,1) : (p◦2k ◦ p◦2k−1 ◦ . . . ◦ p◦20 )(z) ∈ D(−a(2n)k , ra(2n)k−1 ).

But since a ∈ (0,1], we have D(−a(2n)k , ra(2n)k−1 ) ⊂ D(0,3) for every integer k ≥ 1.

We already know that K[(p◦2k )
∞
k=0] is infinite. However, we can say more about it.

Proposition 4.8. K[(p◦2k )
∞
k=0] is compact.

Proof. Fix a ∈ (0,1] and integer n≥ 2. Firstly we prove that for every integer k ≥ 0 the following implication holds

|z| ≥ 2 =⇒ |pk(z)|> 7|z|.

Fix z ∈ C \ D(0, 2) and k ≥ 0. Then

|pk(z)|=
�

�

�z2n − a(2n)k
�

�

�≥ |z|2n − a(2n)k = |z|
�

|z|2n−1 −
a(2n)k

|z|

�

> 7|z|.

Consequently |p◦2k (z)|> 7|pk(z)|> 49|z|. In view of Remark 4

K[(p◦2k )
∞
k=0] =

∞
⋂

k=0

�

p◦2k ◦ . . . ◦ p◦20

�−1
(D(0, 2)).

It follows that K[(p◦2k )
∞
k=0] is compact.

To conclude this subsection let us recall that in [2] non-autonomous Julia sets associated with some special sequences of
polynomials are considered. The authors define namely a class B of sequences ( fn)∞n=1, where fn is a polynomial of degree dn ≥ 2
such that there is some R> 0 with

fn({z ∈ C : |z| ≥ R}) ⊂ {z ∈ C : |z|> R}

for all n≥ 1 and ( fn ◦ . . . ◦ f1)|{z∈C: |z|>R}
n→∞
−−−→∞ locally uniformly.

Example 4.2.
(p◦2k )

∞
k=0 ∈ B.

Proof. It is a direct consequence of the implication

∀k ≥ 0 : |z| ≥ 2 =⇒ |p◦2k (z)|> 49|z|

from the proof of Proposition 4.8.

Example 4.3. Fix a sequence (cn)∞n=1 ⊂ D
�

0, 1
4

�

. Then ( fcn
)∞n=1 ∈ B.

Proof. It is a direct consequence of the implication

∀n≥ 1 : |z| ≥ 3 =⇒ | fcn
(z)|> 2|z|

from the proof of Proposition 4.2.

Therefore, for both of these sequences we can apply a range of results collected in [2].
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5 Hölder Continuity Property of non-autonomous Julia sets

In this section we are interested in potential-theoretic properties of non-autonomous filled Julia sets.

Denote by SH(U) the set of all subharmonic functions in an open subset U ⊂ C. Consider the family

L := {u ∈ SH(C)| ∃β ∈ R : u(z)≤ β + log+ |z| for z ∈ C}.

Recall that for a compact subset E ⊂ C the function

VE(z) := sup{u(z) : u ∈ L and u|E ≤ 0}, z ∈ C,

is called the L-extremal function corresponding to E. A compact set E is said to be regular if VE is continuous. One can prove that
if E ⊂ C is a non-polar compact set, then VE |C\bE coincides with the generalised complex Green function for C \ bE with pole at
infinity (cf. [10, p. 182]).

The set
bE := {z ∈ C| ∀p ∈ P(C) : |p(z)| ≤ ‖p‖E},

where P(C) denotes the space of polynomials, is called the polynomial hull of the set E ⊂ C. A set E is called polynomially convex,
if E = bE.

The following properties follow directly from the definition of the L-extremal function.

Proposition 5.1. [15, 2.4, 2.18, 4.14]

1.
∀A, B ⊂ C : A⊂ B =⇒ VA ≥ VB

2. If E ⊂ C is a compact set, then
VE(z) = 0 ⇐⇒ z ∈ bE.

3. If E ⊂ C is a compact set, then VE ≡ V
bE .

We recall a result proved in [8], which we state in a slightly different form.

Theorem 5.2. (cf. [8, Theorem 2.1], [12, Proposition 3]) Let (cn)∞n=1 ⊂ C be a bounded sequence. Then the function

g(cn)∞n=1
: C \K[( fcn

)∞n=1] 3 z 7−→ lim
n→∞

1
2n

log |Fn(z)| ∈ R

is the complex Green function for C \K[( fcn
)∞n=1] with pole at infinity. Putting g(cn)∞n=1

|K[( fcn )
∞
n=1]
≡ 0, the mapping g(cn)∞n=1

extends
continuously to C.

Let us further note that the following occurs.

Proposition 5.3. [12, Corollary 4] Fix a bounded sequence (cn)∞n=1 ⊂ C. Then

∀z ∈ C : VK[( fcn )
∞
n=2]
( fc1
(z)) = 2VK[( fcn )

∞
n=1]
(z).

Proof. This follows directly from the formula defining the Green function g(cn)∞n=1
.

Recall the following definition.

Definition 5.1. We say that a set E ⊂ C satisfies HCP (Hölder Continuity Property) if

∃M > 0, α > 0 : dist(z, E)≤ 1 =⇒ VE(z)≤ M dist(z, E)α.

Błocki showed that HCP implies the Hölder continuity of the Green function in the whole C (see [16, Proposition 3.5]). Recall
that Sibony proved that K[p] has HCP for any polynomial p of degree at least two (see [5, Theorem VIII.3.2 and the comment
after the proof]).

We will also use

Example 5.1. (cf. [10, Example 5.1.1]) Fix a ∈ C and r > 0. Then

∀z ∈ C : VD(a,r)(z) = log+
|z − a|

r
.

The proof of the following theorem is based on the proof of [11, Theorem 1.2].
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Theorem 5.4. Let (cn)∞n=1 ⊂ D
�

0, 1
4

�

. Then the set K[( fcn
)∞n=1] has HCP.

Proof. In view of Proposition 4.2 the set K[( fcn
)∞n=1] is compact. Thus we can fix an r > 1 such that K[( fcn

)∞n=1] ⊂ D(0, r) :=
{z ∈ C : |z|< r}.

If z ∈ K[( fcn
)∞n=1], we have VK[( fcn )

∞
n=1]
(z) = dist(z,K[( fcn

)∞n=1]) = 0 and the inequality is obvious. Now, let z /∈ K[( fcn
)∞n=1] with

|z|< 2r. Since K[( fcn
)∞n=1] is compact, there exists z0 ∈ K[( fcn

)∞n=1] such that |z − z0|= dist
�

z,K[( fcn
)∞n=1]

�

> 0. Compactness of

D
�

0, 1
4

�

implies the existence of a point z̃0 ∈ D
�

0, 1
4

�

satisfying |z0 − z̃0|= dist
�

z0, D
�

0, 1
4

��

> 0. Next, let us define c := |z0−z̃0 |
|z−z0 |

.

Recall that D
�

0, 1
4

� ( D
�

0, 1
2

�

⊂ K[( fcn
)∞n=1] by Proposition 4.1. By the proof of Proposition 4.1 we have F j(z̃0) ∈ K[( fcn

)∞n=1] for
every j ∈ N?. Now, we consider a sequence of sets defined recursively:

K0 := [z̃0, z], K j := F j(K0) for j ∈ N?.

Since z /∈ K[( fcn
)∞n=1], we have Fm0

(z) /∈ D(0,2r) for some m0 ∈ N?. Let m := min{n ∈ N? : Kn 6⊂ D (0,2r)}. Then there exists
z1 ∈ [z̃0, z] \ {z̃0} such that |Fm(z1)|> 2r.

Let w ∈ K0. By the definition of m we conclude that

|(Fm)
′(w)|= |( f ′cm

◦ fcm−1
◦ . . . ◦ fc1

)(w) · ( f ′cm−1
◦ fcm−2

◦ . . . ◦ fc1
)(w) · . . . · f ′c1

(w)| ≤

≤max{| f ′c j
(z)| : |z| ≤ 2r, j ∈ {1, . . . , m}}m = (4r)m

Hence, in view of the Mean Value Theorem for [z̃0, z1] we get |Fm(z̃0)− Fm(z1)| ≤ (4r)m|z̃0 − z1|. Therefore by the choice of z̃0

and z1 we obtain

2r < |Fm(z1)| ≤ (4r)m|z̃0 − z1|+ |Fm(z̃0)| ≤ (4r)m|z̃0 − z|+ r ≤

≤ (4r)m(|z̃0 − z0|+ |z0 − z|) + r = (4r)m(c + 1)|z0 − z|+ r =

= (4r)m(c + 1)dist(z,K[( fcn
)∞n=1]) + r ≤ (4r)m(c + 1)mdist(z,K[( fcn

)∞n=1]) + r

and consequently (4r)m(c + 1)mdist(z,K[( fcn
)∞n=1])> 1. Let α := log(4r(c+1)) 2. Then

dist(z,K[( fcn
)∞n=1])

α > (((4r(c + 1))m)α)−1 = (2m)−1. (2)

Now, using Proposition 5.3 repeatedly we get

VK[( fcn )
∞
n=1]
(z) =

1
2m

VK[( fcn )
∞
n=m+1]

(Fm(z)). (3)

By the definition of m we have |Fm−1(z)| ≤ 2r. And since D
�

0, 1
2

�

⊂ K[( fcn
)∞n=m+1] by Propostion 4.1, Proposition 5.1 and Example

5.1 yield

VK[( fcn )
∞
n=m+1]

(Fm(z))≤ sup{VK[( fcn )
∞
n=m+1]

�

fcm
(w)

�

: |w| ≤ 2r}=

= sup{VK[( fcn )
∞
n=m+1]

�

w2 + cm

�

: |w| ≤ 2r} ≤

≤ sup
§

VK[( fcn )
∞
n=m+1]

(v) : |v| ≤ 4r2 +
1
4

ª

≤

≤ sup
§

VD(0, 1
2 )(v) : |v| ≤ 4r2 +

1
4

ª

= (4)

= sup
§

log+
|v|

1
2

: |v| ≤ 4r2 +
1
4

ª

=

= log+
�

8r2 +
1
2

�

=: M > 0.

Combining (2), (3) and (4) we obtain
VK[( fcn )

∞
n=1]
(z)≤ Mdist(z,K[( fcn

)∞n=1])
α.

Moreover, if dist(z,K[( fcn
)∞n=1])≤ 1, then

|z| ≤ dist(z,K[( fcn
)∞n=1]) + |z0| ≤ 1+ r < 2r

and this completes the proof of our assertion.

It is well-known that the Hölder Continuity Property (Definition 5.1) is sufficient for a compact set to preserve Markov’s
inequality (cf. [14, Remark after Lemma 1] and [13]). Hence under the assumptions of the previous theorem the set K[( fcn

)∞n=1]
satisfies this inequality.
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