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Preface

Gerlind Plonka-Hoch[]_-]

The Workshop on Kernel Functions and Meshless Methods, Honoring the 65th Birthday of Prof. Robert
Schaback, was held January 14-15, 2011, at the University of Géttingen.

Professor Schaback’s 65th birthday provided an ideal opportunity for hosting a meeting on kernel based
methods in Gottingen. The workshop honored the outstanding achievements of Prof. Robert Schaback
in this field during his long prosperous scientific career as well as his ceaseless committment to the
education of young scientists. There is a long list of Ph.D. students, who successfully worked under
his supervision on different topics in approximation theory, particularly on kernel functions and their
applications, and many of them participated in this workshop.

Nowadays, positive definite functions or kernels have emerged as a useful tool in various applications,
including machine learning, parameter identification, computer-aided design and meshless methods for
solving partial differential equations.

The goal of the organizers was to bring together collaborators, colleagues and students of Prof. Robert
Schaback who took part in the development of kernel-methods in all areas of scientific computing and
numerical analysis. We believe that this goal was achived. The workshop was attended by more than
50 mathematicians who have accompanied Robert Schaback in different periods of his life.

We would like to thank all participants for contributing to the success of this workshop, particularly we
thank the invited speakers,

Klaus Bohmer (University of Marburg),

Martin Buhmann (University of GieB3en),

Stefano De Marchi (University of Padua),

Gregory E. Fasshauer (Illinois Institute of Technology Chicago),

Kai Hormann (University of Lugano),

Armin Iske (University of Hamburg),

Kurt Jetter (University of Hohenheim),

Christian Rieger (University of Bonn),

Michael Scheuerer (University of Heidelberg),

Marko Weinrich (Sycor, Gottingen),

Zong-Min Wu (Fudan University Shanghai),

Ding-Xuan Zhou (City University of Hong Kong),

Barbara Zwicknagl (Carnegie Mellon University of Pittsburgh).

In their talks, the speakers presented very different views on the theory and application of kernel meth-
ods. The laudatio on Robert Schaback’s work and contribution in approximation theory was done by
Martin D. Buhmann, and the celebrating lecture titled “Positive Definite Kernels: Past, Present, Future”
by Gregory E. Fasshauer were presented at the patriarchal assembly hall of the University Gottingen at
the Wilhelmsplatz.

Written presentations of these two talks, as well as some new results on multivariate Newton interpo-
lation at discrete Leja points, resulting from the invited talk by Stefano De Marchi, are summarized in
this journal issue.

November 2011

1. Institute for Numerical and Applied Mathematics, University of Gottingen (Germany), e-mail: plonka@math.uni-
goettingen.de
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Approximation in Gottingen: some remarks on Robert Schaback’s work
on its theory and applications

Martin D. Buhmann

We are celebrating at this meeting Robert Schaback and his pioneering work on approximation theory,
including many of its forms, not only kernel methods, and certainly both theory and applications. I hope
this meeting is considered close enough to his 65th birthday so that we may still take it as a birthday
conference and congratulate him. I am grateful to our colleagues from Gottingen for arranging this
conference. In event, Gerlind asked me to be the laudatory.

It is an honour and a pleasure, and in fact quite easy to speak on our laureate because there are so many
delightful items from his life and work to choose from and report about. Robert, now you will have to
listen to many positive things being said by the laudator. This is the price!

I will begin with an outline about the start of his mathematical career and then go on to speak about his
research and publications. On his career I will be brief as we had details from Mrs Kersten.

Robert Schaback’s career began in the 1960s. He studied mathematics, in fact together with physics
and chemistry during three semesters for diploma not at Gottingen, but at another famous German Uni-
versity, namely Miinster. This is one of the central places in Germany for pure and applied mathematics
(much like the place where we are at the moment), with well-known schools e. g. in complex analysis.
The teacher of Robert was there Helmut Werner.

All diploma, dissertation and habilitation are from Miinster. Robert was an assistant of Helmut Werner’s
and, among many other things, an operator for the new at the time IBM 360/50 about 1966. Perhaps his
interest in computer science comes from that time. I will speak about this later in some more detail.

By the way, nowadays it is important in all aspects of science to be applicable and interdisciplinary. For
some 40 years, Robert has been a shining example for this point of view. So we can see here that this
works very well even without the almost daily reminders of politicians and administrators to us that our
work should be like that. I like to mention this since foresight into the really relevant aspects of research
is typical for Robert.

Indeed, it should be mentioned that interdisciplinary aspects of mathematical work were also dear to
Helmut Werner, and they can be concretely found in many publications of Robert. Robert did, by the
way, his PhD dissertation with Werner in a record one year. The subject was Special rational spline
functions (in 1969). His habilitation was already remarkably fast after that. I still wonder how he man-
aged this unbelievably fast work. His publications are coming out like that even today.

The academic father of Helmut Werner was Erhard Heinz, and this brings Courant, Hilbert, Klein,
Pliicker and Gauss into the family tree, too.

As I said, Robert was again very fast in completing his habilitation (with the subject: Nonlinear Dis-
cretization Theory, in the early seventies). After his studies in Miinster (and before coming to Géttin-
gen) he was appointed an associate professor for thee years at Bonn, then becoming an H 4 (at the time)

2. Mathematisches Institut, University of Giessen (Germany), e-mail: buhmann@uni-giessen.de
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professor in Gottingen, therefore closing the circle from his childhood nearby Géttingen, namely in
Lauenberg. He had once an offer to return to Miinster (30 years ago) as a professor which he declined.
For approximately 35 years he is now here. Let me continue with some summaries of his publication
work.

He is keeping himself busy with work on approximation theory and computer aided geometric design,
known in detail to many people in the audience. It concentrates on approximation theory in its broadest
interpretation and includes splines, rational approximation, CAGD with application, radial basis func-
tions, and of course concerning this meeting, kernel methods. Many mathematicians have learnt from
this work and based their own contributions on his mathematics. It is full of important discoveries and I
will mention in particular two aspects, namely new fundamental concepts which found their ways later
in further research by him but also by other people, and interconnections between different fields which
I found particularly fruitful. Therefore, I will not mention the individual mathematical and analytical
aspects which are of course important, since details are important in mathematics. Maybe I should ask
him what he considers most important, colleagues differ in this respect.

Robert has also many collaborators to this work who enjoy working with him, and most of them are
here, although I will not specifically mention them in most cases.

As early as 1972, there is research by Robert on the connections of approximation and optimisation
and splines [3] (piecewise polynomial splines at the time). We are talking here about linear, non-linear
and rational splines [5], interpolation and M-splines, optimal interpolation and approximation. This
came up about 13 years later again in the context of radial basis functions (being no longer piecewise
polynomial). Many people especially among our French colleagues call them radial splines after all.
Another early example of interconnections between different fields is his work on collocation, that is,
interpolation in multiple dimensions using splines in 1974 [9], an interesting point if we think about his
later research into radial basis function interpolation and approximation spaces, or if we think about his
contributions on collocation for solving partial differential equations.

A little later he contributed to rational approximation [14], only to combine even later with his many
papers on CAGD with applications in the 1980s and early 1990s. Connections to radial basis functions
as multivariate approximations come to mind again, reflected for instance in his 1995 paper [55] on cre-
ating surfaces using radial basis functions from scattered data. The surface generating aspect of radial
basis functions is not always so emphasised elsewhere. Rational approximations were not only linked
to CAGD [42] (rational geometric curves 1991) but also considered in adaptive rational splines (1990)
by Robert [37].

This is interesting also because much later in 2002 adaptive methods [80] became important in radial
basis functions, also for radial basis functions of compact support. For them, adaptivity is of funda-
mental importance. You can see here that as long as 20 years ago, he worked on these adaptive splines.
Soon after this time, the series of many articles on radial basis functions and kernel methods began,
again with many connections to other themes to generate new, and I dare say, brilliant ideas.

A few that should be mentioned of those (only a few, otherwise I would overstay my welcome here) are
papers with various collaborators for instance on approximation orders of radial basis functions (e. g.
the 1993 paper with Wu [47]), shape-preserving properties (as with CAGD earlier, by the way, remem-
ber the surface aspect of radial basis functions [53]), approximation of polynomials, stability estimates,
conditions numbers, quasi-interpolation, multilevel methods, as well as adaptive and so-called greedy
methods [86]. The paper "Local error estimates for radial basis function interpolation on scattered
data” with Zong-Min Wu is the most often cited of his and should perhaps be emphasised due to its
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fundamental character with error estimates for a whole class of radial basis functions including spectral
convergence. Wu’s interest in radial basis functions started, by the way, I think with his dissertation
on Kriging with Robert here in Gottingen in 1986. There are several other articles related to spectral
convergence but his and Wu’s is one of the clearest one I believe.

To be added there are of course the many articles about the native space approach (a term which I knew
first from his papers, by the way and it features in his third most often cited paper) i. e. the Hilbert
space approach and Sobolev spaces for radial basis functions. In this area, it is especially suitable to
speak about some finer points which were introduced by Robert into the radial basis function research
in general, e. g. his uncertainty principle, the mentioned native spaces which few have studied so fun-
damentally as he did, generalisations of compactly supported radial basis functions, proof techniques
when comparing radial basis function approximations in different smoothness spaces, his papers belong
to the best ones on this subject; the famous Nitsche trick to improve the estimates, the study and use
of lower bounds for the purpose of analysing stability of radial basis function interpolants, as well as
using operators on compactly supported radial basis functions. In this way, he has also generalised
Holger’s classes of compactly supported radial basis function in a very interesting article [115] recently
(the missing Wendland functions).

Now perhaps after contributions to limits of radial basis functions, general kernel (note the name of
this meeting) and learning methods, including non-standard kernels are in focus, again closely related
to earlier work on optimal recovery (the associated paper: recovery of functions from weak data using
unsymmetric meshless kernel methods [104]) and native spaces, and, by the way, also to his important
contributions on stability of these approximation methods [54]. He has always taken care of this impor-
tant aspect of numerical analysis, e. g. in his second most often cited paper on norms of interpolation
matrices and in a very recent paper with Stefano De Marchi (Stability of kernel-based interpolation),
[117].

In applications there are many fields to mention; I choose CAGD creation of curves and surfaces [55],
curve interpolation and control-nets, limits of curves with obvious applications, and application of ra-
dial basis function methods and kernel methods to partial differential equation (solvability of partial
differential equations by meshless kernel methods e. g. using multiquadrics and collocation, and there
is also an often cited paper on convergence with Carsten Franke [64], [65]), as well as operator equa-
tions. These applications include as far as he is concerned, both substantial theory as well as practical
algorithms. For the latter, his study of optimal point placement with Stefano De Marchi and Holger
Wendland may also be a good example. For the former, analysis of collocation (a. k. a. interpolation)
or almost interpolation methods began about 10 years ago and continues in approximately 15 papers
later on, e. g. in a 2009 paper on meshless collocation [111] and methods for selection of suitable
subspaces, or a 2008 paper on stable and convergent unsymmetric meshless collocation [107].

The latest information I could get hold of on his research mentions multivariate interpolation again, now
in Newton form (a Newton basis for kernel spaces) and with kernels, scaling methods for radial basis
functions in practice, picked up again after a 2004 paper [89], designing kernels, applying them to the
ubiquitous Navier-Stokes equations (in a way a holy grail of numerical analysis), and further nonlinear
evolution equations.

I was talking earlier about the benefit other people had from Roberts mathematics. Indeed, the work
has also led to about 30 PhD dissertations quite a few I think.

I counted also for more than 100 papers and editorship in four journals. We are very grateful for this im-

mense contribution. This kind of mathematical research, as well as the extremely lucid way he presents
it ’he is one of the most talented expositors I have learned from” has made him a fixed point as invited
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speaker at many important international mathematical meetings several times a year.

Here in Gottingen Robert is (and was always I remember!) a popular teacher and example to the stu-
dents, not only in his mathematics lectures but also on computer science. He also was extremely busy
in 1999 and helpful to the University when building a new Computer Science Course which was as he
told me one of his hardest administrative works ever, especially because of the connections with other
faculties. About twenty-five years ago he was also involved when Computer Science started here as a
minor subject, in 1984. This closes another circle in a way, because when Robert came to Gottingen,
Computer Science was not so popular at all at this university. It was more popular in Frankfurt, for
example, when Bruno Brosowski went, leaving the position in Gottingen.

And not that this University has forgotten to honour him e. g. by a membership of the Gottingen
Academy of Sciences in 2001.

Carl Friedrich von Weizshicker once said (when he became an emeritus professor): ”Now I have re-
tired, that is, I am allowed to work™. I think Robert will agree, although I think he enjoyed teaching
as much as research. Nonetheless, more time for research will clearly lead to many more excellent
contributions in mathematics.

Tonight we shall therefore raise our glasses for the next years to come, many more theorems and papers

and best of luck to him and his family. To his achievements, past, present and in the future. Which may
be a good link to the title of Greg Fasshauer’s talk which comes next.

Publications of Robert Schaback as of May 10, 2011.

[1] R. Schaback and D. Braess. Eine Losungsmethode fi die lineare Tschebyscheff—Approxi-mation
bei nicht erfiillter Haarscher Bedingung. Computing (Arch. Elektron. Rechnen), 6:289-294, 1970.

[2] H. Werner and R. Schaback. Praktische Mathematik I. Hochschultexte. Springer Verlag, 1970.

[3] R. Schaback. Anwendungen der konvexen Optimierung auf Approximationstheorie und Spline-
funktionen. In Methoden und Verfahren der mathematischen Physik, Band 6, pp. 129-151. B. L
Hochschultaschenbiicher, No. 725. Bibliographisches Inst., Mannheim, 1972.

[4] H. Werner and R. Schaback. Praktische Mathematik. II: Methoden der Analysis. Springer-Verlag,
Berlin, 1972. Nach Vorlesungen an der Universitidt Miinster, herausgegeben mit Unterstiitzung von R.
Runge und H. Arndt, Hochschultext.

[STR. Schaback. Spezielle rationale Splinefunktionen. J. Approximation Theory, 7:281-292, 1973.

[6] R. Schaback. Interpolation mit nichtlinearen Klassen von Spline-Funktionen. J. Approximation
Theory, 8:173:188, 1973. Collection of articles dedicated to Isaac Jacob Schoenberg on his 70th birth-
day, II.

[7] R. Schaback. Konstruktion und algebraische Eigenschaften von MSpline-Interpolierenden. Numer.
Math., 21:166:180, 1973/74.
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[8] R. Schaback. Optimale Interpolations- und Approximationssysteme. Math. Z., 130:339— 349, 1973.

[9] R. Schaback. Kollokation mit mehrdimensionalen Spline-Funktionen. In Numerische Behandlung
nichtlinearer Integrodifferential- und Differentialgleichungen (Tagung, Math. Forschungsinst., Ober-
wolfach, 1973), pp. 291-300. Lecture Notes in Math., Vol. 395. Springer, Berlin, 1974.

[10] Dietrich Braess, Jan Brink-Spalink, and R. Schaback. Eine Bibliographie zur nichtlinearen Ap-
proximationstheorie. Sonderforschungsbereiches 72, Universitidt Bonn, Bonn, 1974.

[11] R. Schaback. Konstruktion von Spline-Interpolierenden und Peano-Kernen. In Spline-Funktionen
(Tagung, Math. Forschungsinst., Oberwolfach, 1973), pp. 243-255. Bibliographisches Inst., Mannheim,
1974.

[12] R. Schaback. Ein Optimierungsproblem aus der Kristallographie. In Numerische Methoden bei
Optimierungsaufgaben, Band 2 (Tagung, Math. Forschungsinst., Oberwolfach, 1973), pp. 113-123.
Internat. Schriftenreihe Numer. Math., Band 23. Birkh&user, Basel, 1974.

[13] R. Schaback and K. Scherer. Approximation Theory, volume 556 of Lecture Notes in Mathemat-
ics. Springer, 1976.

[14] R. Schaback. Calculation of best approximations by rational splines. In Approximation Theory II
(Proc. Internat. Sympos., Univ. Texas, Austin, Tex., 1976), pp. 533-539. Academic Press, New York,
1976.

[15] R. Schaback. Globale Konvergenz von Verfahren zur nichtlinearen Approximation. In Approxi-
mation theory (Proc. Internat. Colloqg., Inst. Angew. Math., Univ. Bonn, Bonn, 1976), pp. 352-363.
Springer, Berlin, 1976.

[16] R. Schaback. Estimation problems in crystallography. In C.A. Micchelli and Th. Rivlin, editors,
Optimal Estimation in Approximation Theory, pp. 159-179. Plenum Press, 1977.

[17] H. Robitzsch and R. Schaback. Die numerische Berechnung von Startnherungen bei der Expo-
nentialapproximation. In Numerische Methoden der Approximationstheorie, Band 4 (Meeting, Math.
Forschungsinst., Oberwolfach, 1977), volume 42 of Internat. Schriftenreihe Numer. Math., pp. 260—
280. Birkhiuser, Basel, 1978.

[18] R. Schaback. On alternation numbers in nonlinear Chebyshev approximation. J. Approx. Theory,
23(4):379-391, 1978.

[19] R. Schaback. Eine rundungsgenaue Formel zur maschinellen Berechnung der Prager-Oettli-Schranke.
Computing, 20(2):177-182, 1978.

[20] Helmut Werner and R. Schaback. Praktische Mathematik. II. Springer-Verlag, Berlin, enlarged
edition, 1979. Based on lectures at the Universities of Miinster and Gottingen, Hochschultext, Edited

by J. Ebert.

[21] R. Schaback. Suboptimal exponential approximations. STAM J. Numer. Anal., 16(6): 1007-1018,
1979.
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[22] R. Schaback. Bemerkungen zur Fehlerabschétzung bei linearer Tschebyscheff-Approxi-mation.

In Numerical methods of approximation theory, Vol. 5 (Conf., Math. Res. Inst., Oberwolfach, 1979),
volume 52 of Internat. Ser. Numer. Math., pp. 255-276. Birkh&user, Basel, 1980.

[23] R. Schaback. Numerical error evaluation in linear approximationthe least squares case. In Approx-
imation Theory III (Proc. Conf., Univ. Texas, Austin, Tex., 1980), pp. 791-798. Academic Press, New
York, 1980.

[24] R. Schaback. Optimal nodes for interpolation in Hardy spaces. Math. Z., 179(2):169-178, 1982.

[25] R. Schaback. Fehlerabschitzungen fiir Koeffizienten von Exponentialsummen und Polynomen.
Numer. Math., 39(2):293-307, 1982.

[26] R. Schaback. Ein interaktives System zur Simulation, Parametersch dtzung und graphischen
Auswertung diskreter und kontinuierlicher Modelle. In M. Goller, Editor, Simulationstechnik, vol-
ume 56, pp. 166—172. Springer-Verlag, 1982.

[27]J. Krauth and R. Schaback. An interactive system for simulation and and graphic evaluation of dis-
crete and continous systems. In W. Ameling, editor, First European Simulation Congress 1983, volume
71 of Informatik-Fachberichte, pp. 234-238. Springer Verlag, 1983.

[28] R. Schaback. Convergence analysis of the general Gauss-Newton algorithm. Numer. Math.,
46(2):281-309, 1985.

[29] R. Schaback. Interaktive graphische Simulation kontinuierlicher Systeme: Die Benutzerschnittstelle
des Systems IMP. In D.P.F. Miiller, editor, Simulationstechnik, Vol. 109, pp. 215-219. Springer-Verlag,
1985.

[30] R. Schaback. Numerische Approximation. Jahresber. Deutsch. Math.- Verein., 88(2): 51-81,
1986.

[31] R. Schaback. Convergence theorems for nonlinear approximation algorithms. In Numerical meth-
ods of approximation theory, Vol. 8 (Oberwolfach, 1986), volume 81 of Internat. Schriftenreihe Numer.

Math., pp. 188-200. Birkhéuser, Basel, 1987.

[32] D. Braess and R. Schaback. Helmut Werner. Jahresber. Deutsch. Math.-Verein., 89(4): 179-195,
1987.

[33] R. Schaback. On the expected sublinearity of the Boyer-Moore algorithm. SIAM J. Comput.,
17(4):648-658, 1988.

[34] R. Schaback. On global GC? convexity preserving interpolation of planar curves by piecewise
Bézier polynomials. In Mathematical methods in computer aided geometric design (Oslo, 1988), pp.

539-547. Academic Press, Boston, MA, 1989.

[35] R. Schaback. Convergence of planar curve interpolation schemes. In Approximation theory VI,
Vol. IT (College Station, TX, 1989), pp. 581-584. Academic Press, Boston, MA, 1989.

[36] R. Schaback. Interpolation with piecewise quadratic visually C> Bézier polynomials. Comput.
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Aided Geom. Design, 6(3):219-233, 1989.

[37] R. Schaback. Adaptive rational splines. Constr. Approx., 6(2):167-179, 1990.

[38] R. Schaback. Remarks on high accuracy planar curve interpolation. short preprint, not submitted,
1990.

[39] I. Diener and R. Schaback. An extended continuous Newton method. J. Optim. Theory Appl.,
67(1):57-717, 1990.

[40] R. Schaback. Geometrical differentiation and high-accuracy curve interpolation. In Approxima-
tion theory, spline functions and applications (Maratea, 1991), volume 356 of NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., pp. 445-462. Kluwer Acad. Publ., Dordrecht, 1992.

[41] R. Schaback and H. Werner. Numerische Mathematik. Springer Verlag, 1992, 4th edition, com-
pletely rewritten and in one volume.

[42] R. Schaback. Rational geometric curve interpolation. In Mathematical methods in computer aided
geometric design, II (Biri, 1991), pp. 517-535. Academic Press, Boston, MA, 1992.

[43] R. Schaback. A multi-parameter method for nonlinear least-squares approximation. In Numerical
methods in approximation theory, Vol. 9 (Oberwolfach, 1991), Vol. 105 of Internat. Ser. Numer. Math.,
pp- 269-283. Birkhauser, Basel, 1992.

[44] H. Biirger and R. Schaback. A parallel multistage method for surface— surface intersection. Com-
put. Aided Geom. Design, 10:277-291, 1993.

[45] R. Schaback. Planar curve interpolation by piecewise conics of arbitrary type. Constructive Ap-
proximation, 9:373-389, 1993.

[46] R. Schaback. Error estimates for approximations from control nets. Comput. Aided Geom. De-
sign, 10:57-66, 1993.

[47] Zong Min Wu and R. Schaback. Local error estimates for radial basis function interpolation of
scattered data. IMA J. Numer. Anal., 13(1):13-27, 1993.

[48] Dong Xu Qi and R. Schaback. Limit of Bernstein-Bézier curves for periodic control nets. Adv. in
Math. (China), 22(5):454-455, 1993.

[49] R. Schaback, Armin Iske, and Marko Weinrich. Interpolation to finitely many scattered data by
radial basis functions. Internal Manuscript, 1993.

[50] R. Schaback. Lower bounds for norms of inverses of interpolation matrices for radial basis func-
tions. Journal of Approximation Theory, 79(2):287-306, 1994.

[51] R. Schaback. Approximation of polynomials by radial basis functions. In P. J. Laurent, A. Le

Mehaute, and L. L. Schumaker, editors, Wavelets, Images and Surface Fitting, pp. 459-466. A. K.
Peters, Wellesley MA, 1994.
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[52] R. Schaback. Reproduction of polynomials by radial basis functions. In P.-J. Laurent, A. Le
Méhauté, and L.L. Schumaker, editors, Wavelets, Images, and Surface Fitting, pp. 459-466. AKPeters,
Boston, 1994.

[53] Z. M. Wu and R. Schaback. Shape preserving properties and convergence of univariate multi-
quadric quasi-interpolation. Acta Math. Appl. Sinica (English Ser.), 10(4):441-446, 1994.

[54] R. Schaback. Error estimates and condition numbers for radial basis function interpolation. Ad-
vances in Computational Mathematics, 3:251-264, 1995.

[55] R. Schaback. Creating surfaces from scattered data using radial basis functions. In T. Lyche M.
Daehlen and L.L. Schumaker, editors, Mathematical Methods for Curves and Surfaces, pp. 477-496.
Vanderbilt University Press, Nashville, TN, 1995.

[56] R. Schaback. Multivariate interpolation and approximation by translates of a basis function. In
Approximation theory VIII, Vol. 1 (College Station, TX, 1995), volume 6 of Ser. Approx. Decompos.,
pp. 491- 514. World Sci. Publ., River Edge, NJ, 1995.

[57] R. Schaback. Approximation by radial basis functions with finitely many centers. Constructive
Approximation, 12:331-340, 1996.

[58] R. Schaback and Z. Wu. Operators on radial basis functions. J. Comp. Appl. Math., 73:257-270,
1996.

[59] R. Schaback. On the efficiency of interpolation by radial basis functions. In A. Le Méhauté, C.
Rabut, and L.L. Schumaker, editors, Surface Fitting and Multiresolution Methods, pp. 309-318. Van-
derbilt University Press, Nashville, TN, 1997.

[60] R. Schaback. Radial basis functions viewed from cubic splines. In G. Niirnberger, J.W. Schmidt,
and G. Walz, editors, Multivariate Approximation and Splines, pp. 245-258. Birkhiuser, 1997.

[61] R. Schaback and Z. Wu. Construction techniques for highly accurate quasi—interpolation opera-
tors. Journal of Approximation Theory, 91:320-331, 1997.

[62] R. Schaback. Reconstruction of multivariate functions from scattered data. Manuscript, available
via http://www.num.math.uni-goettingen.de/schaback/research/group.html, 1997.

[63] R. Schaback. Optimal recovery in translation-invariant spaces of functions. Ann. Numer. Math.,
4(1-4):547-555, 1997. The heritage of P. L. Chebyshev: a Festschrift in honor of the 70th birthday of
T. J. Rivlin.

[64] C. Franke and R. Schaback. Solving partial differential equations by collocation using radial basis
functions. Appl. Math. Comp., 93:73-82, 1998.

[65] C. Franke and R. Schaback. Convergence order estimates of meshless collocation methods using
radial basis functions. Advances in Computational Mathematics, 8:381-399, 1998.

[66] R. Schaback. Optimal geometric Hermite interpolation of curves. In Mathematical methods for
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On Multivariate Newton Interpolation at Discrete Leja Points

Len Bos Stefano De Marchi*, Alvise Sommariva® and Marco Vianello

Abstract

The basic LU factorization with row pivoting, applied to a rectangular Vandermonde-like matrix
of an admissible mesh on a multidimensional compact set, extracts from the mesh the so-called
Discrete Leja Points, and provides at the same time a Newton-like interpolation formula. Working
on the mesh, we obtain also a good approximate estimate of the interpolation error.

1 Introduction.

In the last two years, starting from the seminal paper of Calvi and Levenberg [8], it has been recognized
that the so-called “admissible meshes” play a central role in the construction of multivariate polynomial
approximation processes on compact sets. This concept is essentially a matter of polynomial inequali-
ties.

Indeed, we recall that an admissible mesh is a sequence of finite discrete subsets .27, of a compact set
K C R? (or K C C4), such that the polynomial inequality

Ipllx <Cllpllay, , Vp € PL(K) (1.1)

holds for some constant C > 0, with card(.,) that grows at most polynomially in n. Here and below,
| f|lx = sup,ex | f(x)| for f bounded on X, and P¢(K) denotes the space of d-variate polynomials of
total degree at most n, restricted to K. Among their properties, it is worth recalling that admissible
meshes are preserved by affine mapping, and can be extended by finite union and product.
These sets and inequalities are known also under different names in various contexts: (L™) discrete
norming sets, Marcinkiewicz-Zygmund inequalities (especially for the sphere), and recently “stability
inequalities” in more general functional settings [14]].
In [8, Thm.1] it was shown that the uniform error of the n-degree discrete least squares polynomial
approximation to a given continuous function at an admissible mesh is essentially within a factor
C./card(<,) from the best polynomial approximation. On the other hand, Fekete Points (points that
maximize the absolute value of the Vandermonde determinant) extracted from an admissible mesh have
a Lebesgue constant

A, <CN, N :=dim(P9) (1.2)

that is within a factor C from the theoretical bound for the continuous Fekete Points. Moreover, they
distribute asymptotically as the continuous Fekete Points, namely the corresponding discrete measure
converges weak-x* to the pluripotential theoretic equilibrium measure of the compact set (cf. [4]).

In principle, following 8, Thm.5], it is always possible to construct an admissible mesh on a Markov
compact, i.e., a compact set which satisfies a Markov polynomial inequality, ||Vpl||x < Mn"||p||x for
every p € P4(K), where ||Vp|x = max,cx |[Vp(x)||2. This can be done essentially by a uniform dis-
cretization of the compact set (or even only of its boundary in the complex case) with &'(n~") spacing,
but the resulting mesh has then & (n™®) cardinality for real compacts and, in general, &' (n*"®) for com-
plex compacts. Since r = 2 for many compacts, for example real convex compacts, the computational
use of such admissible meshes becomes difficult or even impossible for d = 2,3 already at moderate
degrees.
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On the other hand, it has been recently shown that optimal admissible meshes, i.e., admissible meshes
with &'(n?) cardinality, can be constructed for important classes of compact sets, such as convex poly-
topes and star-like domains with smooth boundary (cf. [7, [10]). Moreover, admissible meshes whose
cardinality is within a logarithmic factor from the optimal one, termed near optimal admissible meshes,
exist on compact sets that are obtained from the above classes by analytic transformations (cf. [[10} [12]]).
An alternative way of producing good low cardinality meshes for polynomial approximation, is to look
for the so-called weakly admissible meshes, which satisfy with a non constant C = C,, which
increases however at most polynomially in n, cf. [8]. For example, weakly admissible meshes with
C,=0 (log2 n) have been constructed on several standard 2-dimensional compact sets, such as triangles,
quadrangles and disks (cf. [6] and references therein).

Even when low cardinality admissible meshes are at hand, extracting good interpolation points from
them is a large-scale computational problem.

Indeed, consider the so-called Fekete points. These are defined as follows. Suppose that z = (z;)1<i<n
is an array of points restricted to lie in a compact subset K C K and that p = (pj)i<i<n is an array of
basis polynomials for P4 (both ordered in some manner). We may form the Vandermonde matrix

V(zp) =V(z1,-.s2vipis-- - pN) = [p(zi)] € CVN.

The Fekete points of K of degree n, associated to K, are those which maximize det(V (z; p)) over z € KV.
For K = K these continuous Fekete points are well-known to be good interpolation points for any
compact K. However, computing them is a difficult optimization problem.

Closely related to the Fekete points are the so-called Leja points; the main difference being that the
Leja points are a sequence while the Fekete points in general are completely different for each order.
Specifically, the Leja points associated to K are defined as follows. The first point &; is defined as

€1 = argmax |p (x)].
xek
Then, supposing that &;,&,,- -+, &1 have already been defined, the next point is defined to be

& = argmaxdet|V(&y,.... 61, % p1,...,pr)l-
xek

In case of non-uniqueness it can be chosen arbitrarily among the various max points.

A less computationally expensive way of obtaining good points is to use K = 47, an admissible mesh,
with n sufficiently large to serve as a reasonable discrete model of K resulting in discrete Fekete or Leja
points. Specifically, we form the rectangular Vandermonde-like matrix associated to .27,

V(a;p) =V(ai,...,am:p1,...,pn) = [pj(a;)] € CV (1.3)

where a = (a;) is the array of the points of .<7,, and p = (p;) is again the array of basis polynomials
for P¢ (both ordered in some manner). For convenience, we shall consider p as a column vector p =
(p1,...,pn)". Since the rows of the rectangular Vandermonde matrix V (a; p) correspond to the mesh
points and the columns to the basis elements, computing the Fekete Points of an admissible mesh
amounts to selecting N rows of V(a; p) such that the volume generated by these rows, i.e., the absolute
value of the determinant of the resulting N X N submatrix, is maximum.

This problem is known to be NP-hard, so heuristic or stochastic algorithms are mandatory; cf. [9] for
the notion of volume generated by a set of vectors (which generalizes the geometric concept related to
parallelograms and parallelepipeds), and an analysis of the problem from a computational complexity
point of view.

Almost surprisingly, good approximate solutions, called Discrete Extremal Sets, can be given by basic
procedures of numerical linear algebra. The first, which gives the Approximate Fekete Points, corre-
sponds to a greedy maximization of submatrix volumes, and can be implemented by the QR factor-
ization with column pivoting (Businger and Golub 1965) of the transposed Vandermonde matrix. This
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factorization is what is used by Matlab for the solution of underdetermined systems by the “backslash”
operator.

The second, which gives the Discrete Leja Points, corresponds to a greedy maximization of nested
square submatrix determinants, can be implemented by the standard LU factorization with row pivoting.
See [4} 15, [17] and the references therein for a complete discussion of these two approaches.

In this paper we show that the computational process that produces the Discrete Leja Points also nat-
urally provides a multivariate version of Newton interpolation, and a good numerical estimate of the
interpolation error.

2 Multivariate Newton-like Interpolation.

The computation of Discrete Leja Points is based on the following algorithm, that performs a greedy
maximization of subdeterminants of the Vandermonde matrix at an admissible mesh. We use the nota-
tion Vo([i1,...,ix],[J1,---,Jjx]) to indicate the square submatrix of Vj corresponding to the row indices
i1,...,i; and the column indices ji, ..., ji.

greedy algorithm (Discrete Leja Points):
eVo=V(a;p)i=1];
efork=1:N
“select iy to maximize |detVy([i,ix],[1,...,k])|”; i = [i,ix];
end
[ J (S :a(il,...,iN)

Observe that the selected points depend not only on the basis (as is also the case with the Approximate
Fekete Points), but also on its ordering. This does not happen with the continuous Fekete Points, which
are independent of the polynomial basis. In the univariate case with the standard monomial basis,
it is not difficult to see that the selected points are indeed the Leja points extracted from the mesh,
i.e., given & € &, the point z = & € 7, is chosen in such a way that Hlj‘-;% |z—&;| is a maximum,
k=2,3,...,N=n+1 (cf. [1,[15] and references therein).

The greedy algorithm above can be immediately implemented by the LU factorization with standard
row pivoting, as is sketched in the following Matlab-like script:

algorithm DLP (Discrete Leja Points):
eVo=V(a;p);i=(1,...,M)";

° [P(),Lo,U()] = LU(V()); i=Pyi;

[ é :a(il,...,iN)

This works since the effect of Gaussian elimination with row pivoting is exactly that of iteratively
seeking the maximum, keeping invariant the absolute value of the relevant subdeterminants (see [JS]
for a full discussion of the computational process). Observe that PyVy = LoUy, where Py is an M x M
permutation matrix, Ly is M X N lower “triangular” with ones on the diagonal, and Uy is N X N upper
triangular.
An important feature is that Discrete Leja Points form a sequence, i.e., the first m; = dim(g,;) computed
for an ordered basis {q,,q¢,} are exactly the Discrete Leja Points for g;. Hence, if the basis p is such
that

span(py,...,pn,) =P4 ) Ny :=dim(P%), 0<v<n 2.1

then the first N, Discrete Leja Points are a unisolvent set for interpolation in P4 for 0 < v < n. More-
over, it has been proved in [S) Thm.6.2] that, under assumption @ Discrete Leja Points have the same
asymptotic behavior of continuous Fekete Points (and of Approximate Fekete Points, cf. [4]), namely
the corresponding discrete measures converge weak-x to the pluripotential theoretic equilibrium mea-
sure of the compact set.
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We show now that the same computational process that gives the Discrete Leja Points also naturally
provides a Newton-like interpolation formula. The connection between the LU factorization of Van-
dermonde matrices and Newton-like interpolation was originally recognized by de Boor (see pages
865-866 of [3]] and also page 888 of [2] for the univariate case), and recently reconsidered in a more
general functional framework by Schaback et al. [11}16].

Consider the square Vandermonde matrix in the basis p at the Discrete Leja Points &, where we assume

(2.1). We have

V=V(&:p)=(PoVo)i<ij<n =LU (2.2)

where L = (Ly)i<; j<y and U = Up. The polynomial interpolating a function f at &, with the notation
f=f(&) €CN, can be written as

Zuf(x)='plx) = (V7 f) plx) = (UL f) p(x) = d'§(x) (2.3)

where
d'=(L7'f), ¢(x)=U"p(x). 2.4)
Since U~ is lower triangular, by (2.1)) the basis ¢ is such that span(¢y, ..., dy,) =P%, 0 < v < n, which

shows that (2.3) is a type of Newton interpolation formula. Moreover, if we consider the Vandermonde
matrix at the Discrete Leja Points in this basis, we get

V(E;9)=V(EpU ' =LUU ' =L,

a lower triangular matrix. Hence ¢;(&;) = 1 and ¢; vanishes at all the interpolation points from the first
to the (j — 1)-th for j > 1. In the univariate case, since ¢; € P}fl by and , this means that
g =1,0;x)=aj(x—x1)...(x—xj_1) for2< j<N=n+1with @; = ((x; —x1)...(xj —xj_1)) L.
This is the classical Newton basis up to multiplicative constants, and thus the {d;} are the classical
univariate divided differences up to the multiplicative constants {1/c;}.

It is therefore reasonable, following de Boor, to say in general that (2.3) is a multivariate Newton-
like interpolation formula, that ¢ is a multivariate “Newton basis”, and that d is a kind of multivariate
“divided difference”. Note that this would work even if we started from any unisolvent interpolation
array 71, computing directly the LU factorization PV = LU. In this case & = Pn would be a Leja
reordering of the interpolation points, that in the univariate case is known to stabilize the Newton
interpolation formula, cf. [[13]].

2.1 Error estimate and numerical results.

Let us write the multivariate Newton interpolation formula (2.3)) as
Znf () = d'¢(x) = So(x) + -+ & () 2.5)

where the polynomials o, € ]P’”V’, 0 < v <n, are defined as

8y = (d)ica, (9)jea, » Av={Ny_1+1,...,Ny} . (2.6)

This is clearly a multivariate version of the incremental form of the Newton interpolation formula,
where each new degree comes into play as a block of summands. In the case of the continuum Leja
Points, if f is sufficiently regular to ensure uniform convergence of the interpolating polynomials, i.e.,

£ =Y &)
k=0
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then

F) = Lor flx) = kz 5 ()

and we may obtain an estimate, or at least an indication, of the error from the norm of the first neglected

term in the series, i.e.,
||$v71f_f||K ~ HSV”K < C||6VH<% y V <n. (2'7)

By analogy, we may apply (10) also in the case of the Discrete Leja Points. We caution the reader how-
ever that although, for simplicity’s sake we have written O, this quantity is related to points extracted
from .7, and hence also depends on n. The idea is to choose a fixed n sufficiently large so that 7, is a
sufficiently good model (for all practical purposes) of the underlying compact set K.

While the first approximation in (2.7)) is quite heuristic, its bound is rigorous, being based on the fact
that the error indicator &y is a polynomial, and that we have at hand the admissible mesh from which
we extract the Discrete Leja Points (observe that if o7, is an admissible mesh for degree n on K then
property (I.I) holds for any degree v < n). To our knowledge, this is the first time that admissible
meshes are used to numerically estimate polynomial approximation errors.

In Figures below, we show some numerical results concerning the square K = [—1,1]?. At each
degree, the points are extracted from a (2n+ 1) x (2n+ 1) Chebyshev-Lobatto grid, which is an ad-
missible mesh with C = 2 as proved in [7]], applying algorithm DLP to the corresponding rectangular
Vandermonde matrix in the Chebyshev product basis. The interpolation errors (for two functions of
different regularity) have been computed on a 100 x 100 uniform control grid. Though the (numerically
estimated) Lebesgue constant exhibits an irregular behavior, as it is usual with Leja-like points, it is
below the theoretical overestimate (I.2). For both test functions, (2.7) turns out to be a good estimate
of the interpolation error, especially for higher degrees.
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Figure 1: Left: N = 861 Discrete Leja Points for degree n = 40 on the square, extracted from an
81 x 81 Chebyshev-Lobatto grid; Right: Lebesgue constants of Discrete Leja Points on the square for
n=1,...,40.
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Positive Definite Kernels: Past, Present and Futureﬂ

Gregory E. Fasshauerlﬂ
Happy 65" Birthday, Robert!

Abstract

Positive definite kernels play an increasingly prominent role in many applications such as scat-
tered data fitting, numerical solution of PDEs, computer experiments, machine learning, rapid pro-
totyping and computer graphics. We discuss some of the historical and current developments of the
theory and applications of positive definite kernels — always with an eye toward the mathematics of
Gottingen in general and Robert Schaback in particular. A few comments concerning the future of
the field are also provided.

1 Introduction

This article represents an expanded version of a colloquium presentation made during the Workshop on
Kernel Functions and Meshless Methods honoring the 65" birthday of Robert Schaback in Gottingen
on January 14, 2011. As such, the following discussion of the current state-of-the-art of approximation
methods based on the use of positive definite kernels is intentionally biased toward favoring the work
of Robert Schaback, his many students and collaborators, and the University of Gottingen, in general.

1.1 Working with Positive Definite Kernels

Let us begin by roughly outlining three general areas of study that involve positive definite kernels.

Theory: The foundation for this work lies mostly in functional, numerical and stochastic analysis and
deals with concepts such as reproducing kernel Hilbert spaces, positive definite and completely
monotone functions, convergence analysis, alternate basis representations, and (Gaussian) ran-
dom fields.

Computation: This work reaches into numerical linear algebra, computational statistics and com-
puter science and is concerned with issues such as parameter selection, stable, fast and efficient
algorithms, regularization techniques, appropriate data structures, and the implementation in a
high-performance computing environment.

Applications: This area is arguably the largest of these three and covers problems such as basic data
fitting (in both the deterministic and stochastic settings), the numerical solution of PDEs (both
deterministic and stochastic), statistical or machine learning and classification, multivariate inte-
gration, multivariate optimization, engineering design (both in the sense of geometric design as
well as in the sense of design of experiments), computer graphics, and many more.

Even though I have decided to describe the field of positive definite kernels using these three categories,
the boundaries separating the areas are rather soft. In order for someone to make significant progress
on any of the topics listed above, that person will almost certainly require at least some expertise in all
three categories. As will become apparent from the discussion that follows, the contributions of Robert
Schaback have been numerous and significant in all three of these general areas.

An indication of the important role positive definite kernels play in many different fields is provided by
the following rapidly growing, and probably incomplete, list of monographs. All of these books contain
at least a significant portion that is concerned with positive definite kernels.

5. Part of the work reported here was supported by the National Science Foundation under Grant No. DMS-0713848.
6. Department of Applied Mathematics, Illinois Institute of Technology, Chigago (USA),email: fasshauer @iit.edu
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Analysis: Berg, Christensen and Ressel [8], Bergman [9], Bochner [[L1], Meschkowski [[103]], Saitoh
[123 [124], Wells and Williams [[152]

Approximation Theory: Buhmann [21], Cheney and Light [24]], Fasshauer [38]], Freeden, Gervens
and Schreiner [55]], Iske [[74], Wendland [[155]

Engineering Applications: Atluri [3], Atluri and Shen [4]], Belytschko and Chen [7]], Forrester, Sobester
and Keane [52]], Li and Liu [88]], Liu [90], Liu and Liu [91]]

Geostatistics: Cressie [28], Kitanidis [80], Matérn [95]], Matheron [97]], Stein [146]

Probability Theory and Statistics: Berlinet and Thomas-Agnan [10], Wahba [[151]]

Statistical/Machine Learning: Catoni [23]], Cristianini and Shawe-Taylor [29], Cucker and Zhou [30],
Hastie, Tibshirani and Friedman [65]], Joachims [76], Rasmussen and Williams [[117]], Scholkopf
and Smola [141], Shawe-Taylor and Cristianini [144]], Steinwart and Christmann [147]], Vapnik
[150]

In addition to these monographs, the historical papers by Aronszajn [2l], Mercer [101] and Schmidt

[140] as well as a few more recent survey articles such as those by Stewart [[148]], Martin Buhmann [20]

and by Robert Schaback with Holger Wendland [135]] and with Michael Scheuerer and Martin Schlather
[139]] should not be forgotten.

1.2 History

While the serious mathematical development of positive definite functions
and reproducing kernel Hilbert spaces did not begin until well into the 20"
century (see Section [2.2), one of the best known positive definite kernels,
the Gaussian kernel or normal distribution function (see Example [2.4)
K(xy)=e PP xyeRe>o0, (1.1)
is closely associated with Carl Friedrich Gau3, who was director of the
observatory in Gottingen from 1807 until his death in 1855.
The first occurrence of the Gaussian kernel in the writings of GauB is shown
in Figure @] Gaull mentioned the function that now so often carries his
name in 1809 in his second book Theoria motus corporum coelestium in
sectionibus conicis solem ambientium (Theory of the motion of the heavenly bodies moving about the
sun in conic sections) [57]] in the context of least squares calculations of the maximum likelihood (two
other concepts introduced by Gauf} in this book) of his astronomical measurements. As one can see,
GauB gives credit to Laplace for having first computed the relevant integral (in 1783). Figure [5| shows
the corresponding excerpt from Pierre-Simon de Laplace’s work [81} Sect. XXXVII].
In order to provide a smooth and direct connection from ——
Carl Friedrich GauB to Robert Schaback we display a math- MMJ

Figure 3: Carl Friedrich
Gauf in 1840.

. . Christian Friedrich Christoph
ematical ancestry tree of Robert Schaback compiled based ey | s | [ S
on data available at [96] in Figure[6] A few things about this )
ancestry chart are worth noting. Felix Klein

I(;arl Louis {Ernst Kummer] [ Wei'::;ltrals J

1. Each of the mathematicians listed in an orange-
yellowish box had his primary appointment in Gottin- | David Hilbert o Georg Lazarus

al
ucl

gen. e B |
Edmund
2. Many of the names listed have made significant con- %‘J;’::',‘,‘;’,‘ rraglg

tributions to the foundations of the present-day field — [Samueikanin|  [emarareine | | cansiegel |
of positive definite kernels (certainly Gaul3, Bessel, Hemut
Hilbert, Schmidt, Bochner, Karlin and Schaback). g —

Figure 6: Robert Schaback’s matR4a 72
cal ancestry traced back to Gaul.
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Porro facile perspicitur, E i gatis esse debere, quo J2 reuera fieri
possit maximum, quamobrem statuemus 4 £=-—A%; ct quum per thcorema ele-
gans primo ab ill. Laplace inuentum, integrale fe="**dA, a A = — o0 wsque
ad A=+oc,ﬁn!=lﬁ)5—-, ( ‘l]mr:r ici fe iam circuli cuius
radius 1), fanctio nostra fiet
B —nnea
A= Ve ¢

Moreover, it is readily perceived that # must be negative, in order that £2 may
really become a maximum, for which reason we shall put

$h=—hhk;
and since, by the elegant theorem first discovered by Laprack, the integral
‘/’e—hhAA dd
fromd=—w tod=+4 is %‘f, (denoting by = the semicircumference of

the circle the radius of which is unity), our function becomes

¢4 =%e'““.

(a) Original source in Latin.

(b) English translation.

Figure 4: Excerpt from [S7 Sect.177] showing the first occurrence of the Gaussian kernel in the work

of Gaul3.

Pour avoir Ia probabilité que la valeur de @ est comprise dans ers

limites, il faut déterminer Iintégrale ['dee depuis t=— - jusqu'a

1 5 P . s
! = = Celle inlégrale est évidemment

P

al

ledouble de Pintégrale [die-",

prise depuis ¢ = o jusqui ¢ = =, moins le double de cette méme in-

. . . | " d
lt';:l‘.il!‘ prise tll!llllls = =5 Jusqua == 0rona, par le n® IV,

ot

.f.n’lu'"‘_ll-\(.'i.

I'intégrale ¢lant prise depuis 1 = o jusqu'ii ¢ = =;

Figure 5: Laplace’s earlier [81, Sect. XXXVII] discussion of the normal distribution.

3. The lower-left branch was added because it features

the names of Schmidt, Bochner and Karlin.

4. The top portion of the tree is so significant that is was chosen as the image on the main page of

[96]].

The mathematical heritage of Gauf}, Hilbert and Schaback is continued by Robert Schaback’s many
Ph.D. students listed in Table[I] Robert mentored the first four students on the list during his time in
Bonn from 1973-1976. The names of those students whose thesis was related to positive definite kernels

was italicized. This provides further evidence for the
in the field of positive definite kernels.

important role the University of Gottingen plays

Ludwig Cromme (1975) Hartmut Forster (1977) Werner Ehm (1977)

Sabine Kamprowski (1978) Immo Diener (1983) Walter Briibach (1984)
Elizabeth Gillet (1985) Klaus Nottbohm (1986) Zongmin Wu (1986)

Heiko Biirger (1992) Armin Iske (1994) Marko Weinrich (1994)
Thomas Friih (1995) Holger Wendland (1996) Martina Domeyer (1997)
Carsten Franke (1998) Lin-Tian Luh (1998) Sandro Hartmann (1998)

Jens Trapp (1998) Uwe Heinz Biinting (1999) Robert Zores (1999)

Anja Schreiber (2000) Roland Opfer (2004) Mohammed Mouattamid (2005)
Karsten Scheibe (2006) Tobias Block (2008) Christian Rieger (2008)

Stefan Miiller (2009)

Table 1: Robert Schaback’s Ph.D. students at the Universities of Bonn (1975-1978) and Goéttingen.
Italicized names indicate a thesis topic related to positive definite kernels.
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2 Positive Definite Kernels and Reproducing Kernel Hilbert Spaces

2.1 Positive Definite Kernels

The study of positive definite functions, or — slightly more generally — positive definite kernels, in the
field of analysis began either with the work of Maximilian Mathias [98]], a student of Erhard Schmidt’s
or with that of James Mercer . As pointed out in Stewart’s survey from 1976 ,

Mathias and the other early workers with p.d. functions of a real variable were chiefly
concerned with Fourier transforms and apparently did not realize that more than a decade
previously Mercer and others had considered the more general concept of positive definite
kernels K(x,y) [...] in research on integral equations. I have likewise found that present-
day mathematicians working with some of the manifestations of p.d. functions are unaware
of other closely related ideas. Thus one of the purposes of this survey is to correlate some
of the more important generalizations of p.d. functions with the hope of making them better
known.

Perhaps the most fundamental contributions, namely characterizations of positive definite functions in
terms of Fourier transforms, were made a few years later by Salomon Bochner [11]] and Iso Schoenberg
[142]. These contributions were used by Micchelli as the starting point of his proofs of the
non-singularity of the system matrices associated with radial basis function interpolation (more on
interpolation later). Also in the 1930s, Aleksandr Khinchin used Bochner’s theorem to establish
the foundation for the study of stationary stochastic processes in probability theory.

Figure 7: Left to right: Erhard Schmidt, James Mercer, Salomon Bochner, Iso Schoenberg and Alek-
sandr Khinchin.

We now present the well-known definition of a positive definite matrix K as it can be found in just about
any book on linear algebra (see, e.g., [72]) and relate the concept of positive definite functions/kernels
to this idea.

Definition 2.1. A real symmetric N X N matrix K is called positive definite if its associated quadratic
form is positive for any nonzero coefficient vector ¢ = [cy,...,cn]” € RV, ie.,

=

1

N
Z C,‘CjK,'j > 0.
1j=1

For the purposes of this paper a kernel K is nothing but a real-valued function of two variables, i.e.,
K:QxQ—R, K:(x,z) = K(x,z).

Here Q is usually a subset of R?, but it may also be a rather general set as happens frequently in statis-
tical learning applications. Other possible domains Q include spheres or other Riemannian manifolds
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(see, e.g., Example [2.6] or [56]), or even locally compact groups [62]. More examples of such general
settings are reported in [148]].

A positive definite kernel K can be viewed as an infinite-dimensional positive definite matrix K. In fact,
this can be done in two different ways. First, in the sense of Mathias, where we assume that the matrix
K is generated by the kernel K in the following sense.

Definition 2.2. A symmetric kernel K is called positive definite on Q if its associated kernel matrix
K= (K(xi,x j))?_]j: | is positive definite for any N € N and for any set of distinct points {xy,...,xy} C Q.

Many generalizations of this basic definition exist. For example, the coefficient vectors ¢ = [cy, ..., cn]T
as well as the kernel K may be allowed to be complex (as already assumed in Bochner’s work), or the
kernel may be matrix-valued as is desired for recent applications in fluid dynamics, where one may want
to ensure that the kernel is divergence-free by construction (see, e.g., [143] and the earlier fundamental
work by Narcowich and Ward [[109] as well as [92]).

Alternatively, coming more from the work of Mercer, who was concerned with integral operators, we
can replace the finite-dimensional discrete quadratic form by an infinite-dimensional one and arrive at
a definition such as

Definition 2.3. A symmetric kernel K is called integrally positive definite on Q if

/ / K(x,z)u(x)u(z)dxdz > 0
eJa
forall u € L;(Q).

Bochner showed that the notions of positive definiteness as stated in Definitions[2.2] and [2.3] are equiv-
alent for continuous kernels. We will return to the work of Mercer and Schmidt and its connection to
integral operators in Section[6| when we discuss eigenfunction expansions of positive definite kernels.

2.2 Reproducing Kernel Hilbert Spaces

The concept of a reproducing kernel Hilbert space was introduced in 1950 independently by Nachman
Aronszajn [2]] and Stefan Bergman [9], and even earlier by E. H. Moore [106] who referred to repro-
ducing kernels as positive Hermitian matrices, and to whom, along with Mercer, Aronszajn gives much
credit in [2]].

The reproducing property satisfied by a symmetric reproducing kernel X is as follows

(K(x,-), f) k.0 = f(x),

i.e., the reproducing kernel acts as a point evaluation functional for all functions f € 7 (K,Q). Here
€ (K,Q) is a Hilbert space of functions on Q (the reproducing kernel Hilbert space of K) and (-,-)
denotes the associated inner product. The term native space of K was introduced by Robert Schaback
[130,[131] in the context of radial basis functions.

Many more details on positive definite functions, positive definite kernels and reproducing kernel
Hilbert spaces can be found in most of the books listed in Section I}

2.3 Examples of Positive Definite Kernels

We now briefly present a kind of dictionary of different types of positive definite kernels. The aim is
by no means to be exhaustive, but to provide a general impression of the various types of kernels one
might consider for different applications. Again, most of the books listed in Section [l| can serve as a
source for many alternate examples (often specialized for certain kinds of applications, such as radial
basis functions, covariance kernels for kriging methods, etc.).

Most of the examples we have chosen to present are closely related to the well-known Gaussian kernel
already mentioned in (1.1).
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Figure 8: Left to right: David Hilbert, Nachman Aronszajn, Stefan Bergman and E. H. Moore.

Example 2.4 (Radial kernels). Much of the work on positive definite kernels in approximation theory
(and also much of the work of Robert Schaback) has focused on so-called radial basis functions. In
other fields such as probability theory and statistics such kernels are usually referred to as isotropic.
These kernels are rotationally (and also translationally) invariant, i.e., their level curves (or more gener-
ally level hyper-surfaces) are circles (hyper-spheres) and they can be expressed in terms of a univariate
function x : Rar — R of a non-negative scalar variable, i.e.,

K(X,Z):K'(HX—ZH), xszRd7

where || - || is some norm on R? — usually the Euclidean norm. A typical example of a radial (or isotropic)
kernel is the multivariate Gaussian

K(x2) = k(|x—z])) =e &Wd" k() =e 7, @.1)

whose graph is shown in Figure 0a] for the case d = 2 with center z placed at the origin. The parameter
€ appearing in the definition of the kernel goes by many different names. We will refer to it as the shape
parameter as is customary in the radial basis function literature, but other terms such as scale param-
eter, width, or (reciprocal of the) standard deviation (such that é = 02, the variance) are frequently
encountered in the literature.

19 X,

(a) Isotropic Gaussian kernel with shape parameter (b) Anisotropic Gaussian with shape parameters £ =
e=3. 3,6 =0.

Figure 9: Two-dimensional, x = (x1,x), Gaussian kernel centered at the origin z = (0,0).
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Example 2.5 (Translation invariant kernels). It is quite common to relax the symmetry requirements on
the kernel somewhat and demand that it still provides translational (but no longer rotational) invariance.
Such kernels are frequently called stationary kernels, especially in the statistics literature. This nomen-
clature is a little unfortunate (or the definition of stationarity chosen by approximation theorists is) since
the word stationary has its own specific meaning in the study of convergence rates of approximation
schemes using scaled approximation spaces (see, e.g., the discussion in [38]). A translation invari-
ant kernel can be expressed in terms of a multivariate function K:R! 5 Rofa single d-dimensional
variable, i.e.,

K(x,2) =K(x—2z), x,z€R’

A standard example of a multivariate anisotropic translation invariant kernel is provided by the tensor
product of univariate translation invariant kernels:

d
K(x,z) =[[Ke(xe—ye), xe,ye €R,
=1
where the one-dimensional kernels K; : R = R, ¢ = 1,...,d, could all have different shape parameters.

A typical example is given by the anisotropic Gaussian kernel

The plot for a two-dimensional anisotropic Gaussian with shape parameter £, = 3 in the x;-direction
and & =9 in the x;-direction is shown in Figure

Note that one could also interpret the anisotropic Gaussian as a radial kernel provided the norm || - || is
not the basic Euclidean norm, but instead a weighted 2-norm of the form ||z||g = v/zT Ez with diagonal
matrix E = diag(ey, ..., &;). In fact, any symmetric positive definite matrix E could be used to define an
admissible inner product/norm. Clearly, the anisotropic Gaussian becomes isotropic (2-norm radial) if
g=c¢cforalld=1,...,d.

Example 2.6 (Zonal kernels). As mentioned in Section the domain Q need not be a Euclidean
space R?. The unit sphere $S% in R3 is a domain that is important for many geophysical applications.
In this case, the analog of a radial kernel is given by a so-called zonal kernel which can be described in
terms of a scalar univariate function X : [—1,1] — R of the dot product of two points on the surface of
the sphere, i.e.,

K(x,z) = k(x-2), x,7€SS%

The analogy to the radial formulation is provided by the fact that the geodesic distance &, i.e., the
shortest distance measured along a great circle arc, between two points x,z € SS? is given by §(x,z) =
arccosx - z.

If we express the Gaussian kernel in terms of the geodesic distance, we obtain a spherical Gaussian

K(x,z) _ 6725(17}91)7

ie., k(1) = e 26(-1) The graph of such a spherical Gaussian kernel with shape parameter € =9
centered at the point z = %ﬁ( 1,1,1) € S§? is shown in Figure E

We also remark that the Euclidean distance (which cuts straight through the sphere) and the geodesic
distance 6 (which measures distance along the surface of the sphere) are linked by ||x—z|| =2 —2x-z=
2sin 5()2“) . This relation can be used to define restricted Euclidean kernels that were referred to as “poor
man’s” spherical kernels in [38]]. This setting has recently been carefully studied in [S6] and applied
to various two-dimensional manifolds embedded in R3. It should be noted that this kind of restricted

kernel will in general no longer be zonal in terms of the underlying Riemannian metric of the manifold.
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(a) Spherical Gaussian with shape parameter € =9  (b) Piecewise linear multiscale kernel centered at z =

andz:\%(l,l,l). (0,0).

Figure 10: Spherical Gaussian and piecewise linear multiscale kernel.

Example 2.7 (Multiscale kernels). Roland Opfer developed the idea of so-called multiscale kernels in
his Ph.D. thesis [112] under the direction of Robert Schaback (see also [[113]). Such kernels are given
by linear combinations of shifts and scales of a single compactly supported kernel ¢, i.e.,

K(x2)=Y 4K;(x2) =Y 4; ¥ o(2x—k)e(2/z—k).

Jj=0 jz0  kezd

As a consequence, these kernels have wavelet-like properties and are well-suited for applications such
as image compression with the advantage that these new multiscale kernels need not be placed at points
x,z of aregular grid.

A typical multiscale kernel can be formed by starting, e.g., with the piecewise linear kernel

d

P(x) = H(l —X0)+,

(=1

where
x, ifx>0,

(x)4 = max(x,0) = {

0, otherwise
is the cut-off function. Using four levels (j = 0, 1,2,3) and dyadic weights A; = 272 we get
3 . . .
K(x,2)=) 277 ) o(2x—k)p(2/z—k)
Jj=0 kez?
whose graph is displayed in Figure [10b] for z = (0,0).

Example 2.8 (Power series kernels). Barbara Zwicknagl’s Diplom thesis [159] under the guidance of
Robert Schaback led to the development of so-called power series kernels on Q = (—1,1)? (see also
her presentation [[160] at the Goéttingen workshop). They are of the form

xa Z(x
“alal’

K(x,z) = Z w

d
oeNG

where the coefficients wy need to satisfy the summability condition ZaeNg % < oo,
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A simple example is provided by the exponential kernel

=1 1 (|«
_aXZ JURY/ a_a
K(x,z)=e _nzzo”!(x 2)'=) ]a!!(a)x z

ocZd

of which two instances are plotted in Figure In Figure K is centered at the point z = (%, %),
while in Figure the center is given by (3,%). Note that this kernel is not translation invariant.
Similar (finite) polynomial or infinite power series kernels of the dot product type frequently arise in
the machine learning literature.
In [159] the power series kernel

2\ |
K(x,z)=Y, 2¢°) x%z® (2.2)

o!
aeNg

was used to derive an alternative proof of the spectral convergence order of the Gaussian kernel (see
Section [5.1)) by using a decomposition of the Gaussian of the form

222 L2012 2200012
e €l — o=l g (7)o €I,

where K is the special kernel of (2.2).

K(x, (%, 4))

(a) Kernel centered at z = (%, %) (b) Kernel centered at z = (%, %)

Figure 11: Exponential power series kernels.

We will return to series expansions of positive definite kernels in Section [6] when we expand a kernel in
terms of its orthogonal eigenfunctions.

Example 2.9 (Other general kernels). Kernels K : R? x R — R of the most general type, i.e.,
K(x,z), x,z€R?,

are also common in the literature. One of the best-known examples may be the Brownian bridge product

kernel
d

= [ I (min{xz, v/} —xeye).
=1
Two instances of this kernel are plotted in Flgure.; K is centered at (2, 2) in Flgure- and at ( 4, 4)
in Figure[12b] Clearly, this kernel is nor translation invariant. In contrast to the other examples listed
above, the Brownian bridge kernel satisfies zero boundary conditions on the boundary of the unit cube.
This kernel is sometimes used to simulate stochastic processes driven by Brownian motion with zero
boundary conditions arising in finance applications (see, e.g., ).
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(a) Kernel centered at z = (%, %) (b) Kernel centered at z = (%, %)

Figure 12: Brownian bridge tensor product kernels.

2.4 Misconception I

The fundamental work of Bochner [11]], and subsequently Schoenberg , on the characterization
of positive definite radial functions in terms of completely monotone functions, i.e., functions whose
derivatives satisfy the alternating sign property

(-1 Or) >0, r>0, £=0,1,2,...,

has played an important role in the development of both the theory and application of radial basis func-
tions. However, as sometimes happens in mathematics — especially when one does not pay careful
attention to the hypotheses of a theory, and remembers facts only as sound bites — unfortunate miscon-
ceptions may arise. In the case of positive definite radial functions many people may have associated
the Bochner/Schoenberg characterization with something like

Sound bite 1. “Positive definite radial functions are equivalent to completely monotone functions.”

This is very unfortunate since it probably prevented researchers for quite some time from thinking about
oscillatory radial basis functions or even compactly supported radial functions since both phenomena
are ruled out by the alternating sign property associated with complete monotonicity.

So when compactly supported radial basis functions were introduced by Robert Schaback [126] this
created quite a stir, and a more careful reading of Schoenberg’s work shows that the above misconcep-
tion should be corrected to something more like

Sound bite 2 (Improvement of Sound bite [1)). “Functions that are positive definite radial on RY for ail
d are equivalent to completely monotone functions.”

This latter statement is in fact still not completely precise since one also needs to account for a variable
transformation r — 2 (for complete details see or [133])).

Once this important detail was noticed, a number of constructions for compactly supported radial ker-
nels were suggested (see, e.g., and also the presentation of Armin Iske at the Gottingen
workshop [75]). One typical compactly supported radial kernel, a so-called Wendland function, is dis-
played in Figure We would also like to point out that the d-fold tensor product Brownian bridge
kernel of Example [2.9|is compactly supported and positive definite in R?, but not radial.

Subsequently, oscillatory radial basis functions were also suggested by various people (see, e.g., [45]
48]]), and Figure [13b] shows a Laguerre-Gaussian function from [43].
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(a) C* Wendland function k(r) = (1—r)4(4r+1) (b) k(r) = (1 — 2% + #)6_82’2, a Laguerre-

centered at the origin in R?. Gaussian kernel with € = 3 centered at the origin in
R2.

Figure 13: Compactly supported and oscillatory radial kernels.

We end this section with a quote from the recent survey by Stefano DeMarchi and Robert Schaback
which appeared in this journal:

“new nonstandard kernels [...] should get more attention.”

We could not agree more.

3 Kernel Interpolation

3.1 Scattered Data Fitting

In order to get into the more practical aspects of working with positive definite kernels we present

Fundamental Application (The Scattered Data Fitting Problem). Given data (x;,y;), j =1,...,N,
with x; € R?, y; € R, find a (continuous) function s¢ such that s¢(x;) =y;, j=1,...,N.

Traditionally, this kind of problem arises in geophysical applications such as the terrain model illustrated
in Figure [T4] The data for this example can be found as the volcano data set in the statistical software
package R and represents real measurements of 5307 elevation measurements obtained from
Maunga Whau (Mt. Eden) in Auckland, NZ, obtained on a 10m x 10m grid. In order to be able to
distinguish individual measurements in the plots displayed in Figure[T4]we selected a random (scattered)
subset of 10% of the original data points.

The fitting surface is obtained using a linear combination of Gaussian kernels of the form

N
sp(x) =Y cje il 3.1)
j=1

where the x; correspond to the N = 530 scattered blue points shown in Figure @ (normalized to the
unit square), and the unknown coefficients c; are obtained by solving the interpolation equations

se(xi)=yi, i=1,...,N,

where the y; correspond to the red elevation measurements shown in Figure [T4b] together with their
associated data sites x;. A value of € = 15.605278 was used for this example and was obtained by
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(a) Scattered measurement locations for volcano data  (b) Elevation measurements associated with the loca-
(normalized to the unit square). tions shown in (a).

&
R %zo'
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(c) Volcano data fitted by a Gaussian kernel inter- (d) Surface of (c) rendered with more realistic colors.
polant.

Figure 14: Illustration of the scattered data fitting problem.

leave-one-out cross-validation (LOOCYV). A more detailed discussion of algorithms for the selection of
the shape parameter appears below in Section[5.2]

It is probably worth noting that geostatisticians most certainly will prefer to fit this kind of data using
a kriging method based on a kernel which is not nearly as smooth as the Gaussian. Moreover, such a
model will also be designed to account for possible measurement errors. However, this is not the focus
of the current article, so in keeping with our focus on the Gaussian kernel and in the interest of simplicity
we have interpolated the given data using infinitely smooth Gaussians. The rather large shape parameter
obtained for this example by LOOCYV indicates that the basis functions used in (3.I)) are very localized
and thus the choice of the Gaussian as kernel for this application is most likely not an appropriate one.
In the recent paper Michael Scheuerer, Robert Schaback and Martin Schlather investigated this
issue and asked the question “Interpolation of spatial data — a stochastic or a deterministic problem?”. In
particular, they made some progress on the issue of how to decide whether a specific kernel is “correctly
chosen” for a given application.

The curious reader may want to compare our interpolated surface to a photograph of Mt. Eden such as
the one that can be found athttp://www.teara.govt.nz/en/volcanoes/3/5/2 as well as to some
of the surfaces presented in [139]. The latter comparison is not really a fair one since we used 10% of
the data, while [139] used only N = 300 points for the interpolation and reserved the remainder of the
data to compute the root mean square error of the interpolant. It may be surprising that even with the
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full data set a Gaussian kernel fit (using even narrower basis functions with an LOOCV-optimal shape
parameter of € = 64.360659) does not match the photograph as well as the fit obtained in [[139] with a
more flexible (and less smooth) Matérn kernel whose variance, smoothness and shape parameters were
chosen using either maximum likelihood or LOOCYV estimation.

Problems in geophysical or spatial statistics are only one type of situations to which the scattered data
fitting formulation applies. Another important application arises in the design and analysis of computer
experiments. The book [52] is a good introduction to this topic since its authors emphasize the use of
positive definite kernels in the context of kriging and support vector machine algorithms. As we will see
in Section [8.1] the scattered data fitting method can also be nicely generalized to the numerical solution
of partial differential equations via collocation. Perhaps the most significant point of the computer
experiment and PDE collocation applications for numerical analysts is the fact that in these cases the
data can generally be assumed to be free of measurement noise, so the above formulation does indeed
directly apply.

3.2 The Mairhuber-Curtis Theorem

In [[129]] Robert Schaback provided the book [16] by Dietrich Braess as a reference for the so-called
Mairhuber-Curtis theorem. Such a theorem, based on the work [94,31]] of John Mairhuber (a student of
Iso Schoenberg’s) and Philip Curtis — both shown in Figure [I5]— has been precisely formulated for the
purposes of multivariate scattered data interpolation and proved in, e.g., the book by Holger Wendland
[155]]. The implications of the Mairhuber-Curtis theorem can be succinctly summarized in

Sound bite 3. “The linear function space used for multivariate interpolation should be data-dependent.”

.

Figure 15: John Mairhuber (left) and Philip Curtis (right).

We provide an illustration of the proof and implications of this theorem in the movies
[tis1.avil and [MairhuberCurtis2.avi| that are included with this paper. These movies are screen captures
of some explorations performed with a Mathematica notebook that will has been posted online [40]. A
screen shot of the Mathematica module is shown in Figure [T6]

In MairhuberCurtis1.avi, the left part of the screen shows nine data sites, x;, i = 1,...,9, located in
the unit square and the right part of the screen shows nine corresponding, but fixed, basis functions B},
j=1,...,9, that happen to be Gaussian kernels. One then sees the mouse pick up and interchange the
positions of two of the data sites (while the basis functions, which are not connected with the data sites,
remain at their fixed positions). As a consequence, the determinant of the interpolation matrix with
entries B;(x;) changes sign since we have interchanged two of its rows. By continuity arguments we
can therefore conclude that a configuration of data sites x; exists for which — for the given and fixed
basis — the interpolation matrix is singular, and therefore the multivariate scattered data problem is not
well-posed. This is in contrast to the well-known univariate situation, where one can always fix a basis
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Figure 16: Screen shot of the Mathematica module used to illustrate the proof and implications of the
Mairhuber-Curtis theorem.

(such as polynomials of degree N) to uniquely interpolate any data specified at a set of N + 1 distinct
points on the real line.

The message for multivariate interpolation is therefore the one given by Sound bite[3] and the fact that
a data-dependent basis does indeed “work™ is illustrated in [MairhuberCurtis2.avii One can see that
the mode of operation is switched to using a data-dependent basis, and that the basis functions are no
longer fixed since they are directly tied to the data sites via B; = K(-,x;) with a Gaussian kernel K. This
means that as soon as the mouse moves one of the data sites, the basis function that is now centered at
this point follows along. Furthermore, we can observe that the determinant of the interpolation remains
positive throughout the entire switching of positions, thus it seems plausible that the matrix K is always
non-singular (a fact guaranteed by Definition [2.2]as long as K is a positive definite kernel).

Therefore, we will always approach the multivariate kernel-based scattered data interpolation problem
with a data-dependent linear function space that provides an interpolant of the form

N
sp(x) =Y ¢;K(x,x;), x€EQCRY, (3.2)
j=1
where K : Q x Q — R is a positive definite reproducing kernel. As already explained above, we find the
coefficients c; by solving the interpolation equations
sp(xi)=yi, i=1,...,N.

This leads to a linear system K¢ = y with symmetric positive definite kernel matrix (or interpolation
matrix) K whose entries are determined by the kernel K, i.e.,

Kij=K(xi,x;), i,j=1,...,N.

In addition to the well-posedness of positive definite kernel-based multivariate scattered data interpola-
tion just discussed, the theory of reproducing kernels, or more generally that of optimal approximation
or optimal recovery (see, e.g., [59,129]), provides a number of optimality properties of the kernel-based
interpolant. For example, it has minimum norm in the native Hilbert space .7#(K,€) among all inter-
polants from .7’ (K, Q). Moreover, assuming that the data y; are sampled from a function f € .77 (K,Q),
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i.e., yi = f(x;), the kernel-based interpolant is the best approximation of f from (K, Q) measured
in the corresponding Hilbert space norm. We will not discuss these properties any further, but instead
refer the reader to the original literature or the books [38} [155]]. The recent paper [139] of Scheuerer,
Schaback and Schlather places these optimality properties side-by-side with a list of corresponding
properties obtained when one views the scattered data fitting problem from a stochastic Gaussian pro-
cess point of view, i.e., when one applies kriging methods.

4 Data-dependent Basis Functions

Up until now we have mostly focused on the positive definite kernel K and the generally infinite-
dimensional Hilbert space /¢ (K, Q) associated with it. However, once we focus on a specific scattered
data fitting problem, i.e., once we fix a finite set (of data sites) 2" = {xi,...,xn} C R4 and an asso-
ciated data-dependent linear function space H(K, 2") = span{K(-,x1),...,K(-,xy)} as outlined in the
previous section, then it also makes sense to consider different bases for the finite-dimensional kernel
space H(K, Z").

Remark 4.1. Throughout this paper we always assume that the data sites have been chosen for us. This
assumption is by no means a natural one since in applications such as the design of experiments an
important part of the problem usually lies in determining a “good” design, i.e., a good choice of data
sites. The error bounds for kernel interpolation given later also depend on the specific choice of data
sites, and therefore a choice that might minimize the error bound is certainly desirable. If one, however,
includes the data sites as variables in the data fitting problem, then one ends up with a nonlinear problem
and we want to avoid that discussion here. In fact, to our knowledge, a satisfactory theoretical approach
to this problem does not yet exist. This is in contrast to the multivariate integration problem, where so-
called low discrepancy point sets have been studied for a long time. The paper [35] of Robert Schaback
with Stefano DeMarchi and Holger Wendland has provided some initial progress in this direction for
kernel-based interpolation.

4.1 Standard Basis Functions

The most common approach used for the solution of the scattered data interpolation problem is to
employ the standard basis

(K(ox1),se. Ky xw) ).

In particular, this has led to the widely used radial basis functions of the form K (|| - —x;||). The main
criticism of radial basis functions has been rooted in the facts that (1) the kernel matrices K are often
dense matrices, and (2) these matrices are often ill-conditioned. We do not want to focus on item (1) is
this paper, although this is a very important issue and there exist a number of approaches (most of them
iterative in nature) that address this problem. Instead we want to look at a few options for dealing with
item (2). The recent preprint by Maryam Pazouki and Robert Schaback [[114] is an excellent reference
that provides a very nice discussion of this topic.

Figure shows three standard Gaussian basis functions, all translates of the same basic kernel K (x —
7)=¢e ¢ l=2I” to different centers z chosen to lie at a corner, center and edge midpoint of the unit
square, respectively. A value of € = 3 was used for the plots. The fact that the kernel is cut off at the
edge of the square distorts the fact that all three basis functions are simply translates of the same kernel.
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Gaussian standard basis function centered at (0,0)

Gaussian standard basis function centered at (0.5,0.5) Gaussian standard basis function centered at (0,0.5)

Figure 17: Standard Gaussian basis functions centered at different points in the unit square.

4.2 Cardinal Basis Functions

In many ways, the ideal basis is given by a Lagrange or cardinal basis. Such functions satisfy the
Lagrange property
u;f(x,-):(s,-j, i,jzl,...,N, (41)

so that we can find them (in a pointwise sense) by solving the linear system
Ku™ (x) = k(x), (4.2)

for any given evaluation point x € RY. Here we again use the kernel matrix K with entries K;; = K (x;,x;)
and the right-hand side vector is given by the standard basis functions, i.e., k = [K(-,x1),...,K(-,xy)]".
If available (such as, e.g., in for polyharmonic splines and multiquadrics on infinite regular grids)
cardinal functions trivialize the interpolation problem since the interpolant can then be written in the

form

N
sp(x) = Zyju’;(x), x€QCRY, 4.3)
j=1

i.e., the interpolation matrix for this basis is an identity matrix by virtue of (@.).

Cardinal functions are also very useful for theoretical purposes such as establishing error bounds for
kernel-based scattered data interpolation as was done in the seminal paper by Zongmin Wu and
Robert Schaback. Other work on infinite lattices has been aided by the use of the Poisson summation
formula which enables one to derive explicit representations of cardinal functions. For the Gaussian
kernel this has been done, e.g., in [64], but there is also earlier work in, e.g., [3], and in [14, 99]
one can find so-called approximate cardinal functions for the Gaussian. In [113]] cardinal functions
are provided for the Gaussian kernel at a set of points in a bounded interval, i.e., for d = 1. If one
has an explicit formula for the cardinal functions, then one immediately obtains information about the
Lebesgue constant

N
A = max y
= max 32 o),
which in turn provides information about accuracy and stability of a kernel interpolant via
If =srl < (L+Ag2) Lf =71,
where s* is the L..-best approximation of f from the finite-dimensional space H(K,.2") and

I5fllee < Ak 2 [1¥]]eos

where sy is the kernel interpolant to the data y sampled from f on 2 so that the norm on the left is
continuous and that on the right discrete. Unfortunately, the cardinal functions and associated Lebesgue
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constants are known only for some special cases. Some results on the behavior of the Lebesgue constant

can be found in the paper [34] by Stefano De Marchi and Robert Schaback.

Figure [I8|shows three Gaussian cardinal basis functions again identified with a corner, center and edge

midpoint of the unit square, respectively. It is clear that these basis functions are no longer shifted

copies of one single basic function. In fact, cardinal basis functions are inherently tied to the set 2~ of

data sites and the domain Q. Nevertheless, if many interpolation problems with the same set 2" need

to be solved, then one might consider precomputing the cardinal basis. A value of € = 1 was used for

these plots.

Gaussian cardinal function centered at (0,0) Gaussian cardinal function centered at (0.5,0.5) Gaussian cardinal function centered at (0,0.5)

Figure 18: Gaussian cardinal basis functions centered at different points in the unit square.

4.3 Newton-type Basis Functions

In the setting of polynomial interpolation it is well known that the Newton form of the basis is “in-
between” the Lagrange form and the monomial basis (which corresponds to our standard kernel basis)
in the sense that the interpolation matrix associated with the Newton form is triangular.

In the field of kernel-based interpolation such a basis was missing for a long time, and only recently Ste-
fan Miiller in his Ph.D. thesis [[107]] under the direction of Robert Schaback (see also [[108]]) discovered
such a basis and studied it in detail.

These Newton-type basis functions satisfy a Newton property, i.e.,

V;(X,'):d'j, OSZS]SN

One of the nice insights recently obtained in [107, [108]] (and also [[114] as well as Stefano DeMarchi’s
paper [32] in this issue) is the fact that a Newton-type basis can be computed via a pivoted LU-
decomposition of the kernel matrix K. Moreover, the Newton basis provides an orthogonal basis for
the native Hilbert space 7 (K,Q). This latter fact may lead to many new algorithms for the efficient
and stable computation of kernel-based interpolants, some of which have already been introduced in the
papers just mentioned.

Figure[I9shows three Gaussian Newton-type basis functions once again identified with a corner, center
and edge midpoint of the unit square, respectively. Clearly, these basis functions also cannot be obtained
as shifted copies of a single basic function. A value of € = 3 was used for these plots.

S Accuracy of Kernel Interpolation

5.1 Standard Error Bounds

We now assume that the data y; are sampled from a function f € 7 (K,Q), so that y; = f(x;), i =
I,...,N and discuss the error between the kernel interpolant sy and f measured in two different ways,
a pointwise error, which we will discuss in this section, and a weighted L, error, which we will discuss
in Section[5.4]
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Newton basis function centered at (0,0) for Gaussian Newton basis function centered at (0.5,0.5) for Gaussiar Newton basis function centered at (0,0.5) for Gaussian

11 11

Figure 19: Gaussian Newton-type basis functions centered at different points in the unit square.

The following standard pointwise error bound for reproducing kernel interpolation probably was intro-
duced into the RBF literature by Zongmin Wu and Robert Schaback in [157]. One can easily obtain
it using the representation of the kernel interpolant s¢ in terms of the cardinal basis @.3), the repro-
ducing property of the kernel and the Cauchy-Schwarz inequality. In fact, using the representation
u*(x) = K~'k(x) of the cardinal functions we have that for any x € Q

N

_ |<f,K<-,x>>%<K,g> K e ()

M=

S xj)uj(x)

Jj=

|[f() =sp(x)| = ‘f(X)—

—_

Jj=1

= [(f.K () =K (K k() ko)

M=

K (- x5 (x)) o (k.0

= ‘(f,K(-’X) -

j=1

< lrwa || K(x) =k (K k(x) H,%p(K,g) = | fllrk.0)Pk.2 (x),

with k(-) = [K(+,x1),...,K(-,xy)]", and where the term

P () = K (5,0 = kT (0K k()

was called the power function by Robert Schaback in [125].

Another optimality property of the kernel-based interpolant is given by the fact that it minimizes the
pointwise error just introduced (see, e.g., [155]). In the stochastic literature, i.e., kriging, Gaussian
processes, etc. (see e.g., [52, [146]), the power function appears as the kriging variance and it
turns out that one obtains the best linear predictor of the random field with covariance kernel K by
fitting the samples yy, ..., yy of a sample path f of the random field by the same interpolation procedure
described in the deterministic setting above. This analogy is also discussed in the recent paper by
Michael Scheuerer, Robert Schaback and Martin Schlather [139].

N

Figure 20: Michael Golomb (left) and Hans Weinberger (right).

The above error bound can be improved (as was already suggested in [59] by Michael Golomb and

page 38



Buhmann, De Marchi and Plonka-Hoch DRNA Vol. 4 (2011), 1-}63]
Hans Weinberger, who are shown in Figure [20) to

|f(x) = sr ()| < If = spll e P2 (x) (5.1

since f — s is orthogonal (in the Hilbert space inner product) to both f and s ;. This latter (tighter) error
bound does not seem to play a significant role in the RBF literature.

Since || f]| (k) usually is not computable (remember, we do not even know f, but want to reconstruct
it from the data) the standard error bound is not very useful for practical situations. On the other hand,
if we assume that our approximation sy is not too bad, i.e., || f —s¢|r(x.q) < 6llsfllk ) for some
not too large constant 8, then we obtain a computable error bound

|f(x) =sp(x)| < 8lisyll ek Pr,2 (%) (5.2)

since it is easy to see that [|s¢[| s+ (x o) = /YT K~1y, where y = [y1,... ,yn]T is the vector of data values:

sl ) = 0w () W () ey = OTKTRC), KRG e k.0
=y KT (), k() e, o) K™y = YT KTIKK .

We will come back to the error bound (5.2) in Section[5.2] when we discuss how to choose a good value
for the shape parameter € which appears in the definition of many kernels.

In the RBF literature (for a summary of results see, e.g., [38, [155]) the generic error bound is adapted
to specific kernels K and usually expressed in terms of some fill distance or meshsize h. More recent
techniques (see, e.g., the recent survey by Christian Rieger, Robert Schaback and Barbara Zwicknagl
[L19] or Christian Rieger’s presentation [118]] at the Gottingen workshop) do not work with the power
function, but use so-called sampling inequalities to arrive at similar error bounds.

Example 5.1. For well-distributed (quasi-uniform) data we can replace the fill distance h by N~1/4

without affecting the order of an error bound. Then the error bounds for the Gaussian kernel published
in the literature (such as [93] 120, [154]]) are of the form

1 = sfllee < CaN 2" £1| 3.0

This can be interpreted in the sense that Gaussian kernels provide arbitrarily high approximation order
to infinitely smooth functions f, i.e., with p = c. However, one also sees that the rate of convergence
decreases with increasing dimension, and what is less apparent, the constant C; grows with d. This
means that such bounds are dimension-dependent and are likely to suffer from the curse of dimension-
ality. This may not be of concern for low-dimensional applications such as those that occur in terms
of the three physical dimensions surrounding us. However, if we are dealing with interpolation prob-
lems that arise in a computer experiment, then the number of variables is likely to be much higher, and
dimension-dependence does matter.

5.2 Choosing a Good Shape Parameter

Up until now we have not said much about the shape parameter € that appears in the definition of the
Gaussian kernel (2.1). Other kernels have similar shape parameters, and what we are about to discuss
for the Gaussian applies to those kernels in an analogous way.

We begin with the description of another movie, [[sotropicGaussianInterpolation.avil that shows how
the shape parameter affects the basis functions, the condition number of the kernel matrix K and the
accuracy of the kernel interpolant s ;. This movie is also a screen capture of explorations performed with
a Mathematica notebook that has been posted online [40]. A screen shot of the Mathematica module is
shown in Figure
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Figure 21: Screen shot of the Mathematica module used to illustrate effects of the Gaussian shape
parameter.

The screen shows three plots. The left-most plot displays the data sites and coinciding centers of the
basis functions. Underneath this plot one also can monitor the L, condition number of the interpolation
matrix K. In the middle plot we see the associated Gaussian basis functions. Both of these plots are
analogous to those in the Mairhuber-Curtis movies. The right-most plot shows the interpolant sy (in a
goldish color) as well as the function f (shown in a partially transparent blueish color) that we are trying
to recover from its samples obtained at the data sites shown in the left-most plot. In interactive mode,
the sliders at the top can be used to change the (common) shape parameter € of the basis functions, pick
different test functions (which can be parametrized differently along the x and y-coordinate axes), and
switch the right-most plot from the interpolating surface view to an error view.

The movie begins with the user decreasing the value of the shape parameter. This has several conse-
quences:

— The basis functions become wider, or “flatter”.

— The condition number of the matrix K increases.

— The interpolant s resembles the test function f more accurately.

None of these features were discussed in earlier parts of this paper, but are well-known in the literature.
About half-way through the movie, the right-most plot is switched to a view that displays the interpola-
tion error instead of the actual surfaces. This reveals where the error is largest, and subsequently a few
more points are added in the left-most plot. Again, this has a number of consequences:

— The shape of the basis functions does not change.

— The condition number of the matrix K increases even more.

— The error becomes even smaller.

These latter observations are in line with the error bounds discussed earlier, and the effects on the
condition number are also well known (we will come back to that in Section 7).

Clearly, in addition to sampling the function f at sufficiently many and well-chosen points, an appro-
priate choice of the shape parameter is important, and we will now say a few words about that.

For the longest time, people in the approximation theory and numerical analysis community went
mostly with ad-hoc choices of the shape parameter or ignored its effect by treating it as a constant.
Much more systematic approaches have been suggested in the statistics literature for a long time (see,
e.g., [151] and many other references). In the radial basis community one can find papers such as
[44]167, 1121}, [137] that employ some of the methods we are about to explain. An extended discussion of
a “good” shape parameter choice was also included in [38], but we would now like to add some more

page 40



Buhmann, De Marchi and Plonka-Hoch DRNA Vol. 4 (2011), 1-}63]
recent insights based on [41} 66/ [105]].

5.2.1 Leave-One-Out Cross Validation (LOOCY)

This method was first proposed in the context of ridge regression or smoothing splines by Allen [1]] and
Wahba and collaborators [27,60], respectively, to find the optimal smoothing parameter 1 in the linear
system

(K+ule=y.

This system corresponds to a fundamentally different — but closely related — data fitting problem since
the data for this problem are assumed to be contaminated with noise so that one does not want to
interpolate, but instead seeks a smoothed fit.

Rippa [121] used leave-one out cross validation (LOOCV) to select the shape parameter of a radial
basis interpolation system, but everything he did can be transferred to more general positive defi-
nite kernels. The idea behind LOOCYV is to split the data into two different sets: the training set
{V1y-sY0-1,Ye+1,---, YN }» and the validation set consisting of only the single y, (which was left out
when creating the training set). Now, for a fixed ¢ € {1,...,N} and fixed €, one defines the partial
interpolant

CE-()”S] Ke(x,x;)

™=

e
S
L

sgf’g] (x) =

el

whose coefficients ¢ i

are determined by interpolating the training data, i.e.,

sy =y, =1, 0—1,6+1,...,N.
In order to measure the quality of this attempt one defines

[/8](

eo(€) =ye—s;" (x0),

which denotes the error at the one validation point x; not used to determine the interpolant. The “opti-
mal” value of ¢ is found as

€,pr = argming||e(€)|, e= [el,...,eN]T,

where some norm is used in this minimization problem. Usually the 2-norm is chosen, but Rippa also
discussed (and preferred) the 1-norm.
The important fact recognized by Rippa (and earlier also by Wahba) is that one can compute the error
vector without solving N problems each of size (N — 1) x (N — 1). Instead, everything can be expressed
in terms of the full interpolation matrix Kg, i.e.,

Cy

ef(g) = -1
4

where ¢y is the ¢ coefficient of the full interpolant s rand K&l is the /" diagonal element of the inverse
of corresponding N x N interpolation matrix K.
The generalized cross-validation method of [27]] replaces the LOOCV cost function

LOOCV (&) = [le(e)]» =
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with
2
N c N|c _
GCV(e) = Z<1 fK_1> :tmce”(,ﬂ;):\/yTngythKg)),

(=1 \ N ~j=1"\jj

i.e., the individual diagonal elements of K;! have been replaced by their averages. The notation

(A (Ke)) denotes the harmonic mean of the eigenvalues of K, and the relation ||c|j = v/yTKg2y
follows immediately from the interpolation system Kqc = y.

5.2.2 Maximum Likelihood Estimation

The recent papers [[137, [139] by Michael Scheuerer, Robert Schaback and Martin Schlather provide a
discussion of maximum likelihood estimation (MLE) as it can be applied to kernel-based interpolation
methods. This method rests on a solid statistical foundation.

We assume that our unknown function f is a realization of a random field Z, itself a collection of random
variables, i.e., Z = {Z(x), x € Q C R?}. This implies that the data y; = f(x;) are viewed as realizations
of the random variables Z(x;), i = 1,...,N. Usually we assume that the random field is Gaussian,
i.e., the N-dimensional random vectors Z(x) = [Z(x1),...,Z(xy)]" € RN are normally distributed (or
Gaussian distributed), i.e.,

Z(x) ~ N (1K)

with mean u = [E[Z(x1)],...,E[Z(xy)]]" and covariance matrix
K = (Cov[Z(x), Z(x)])} ) -

In simple kriging we further assume that we are working with a zero-mean Gaussian field, i.e., g = 0.
Then K (x,z) = Cov[Z(x),Z(z)] = E[Z(x)Z(z)], where K is a positive definite covariance kernel.

If the probability density for an event for which we observe the data y, given the parameter &, is written
as p(y|e), then the .Z(€|y) characterizes the likelihood of the parameter € given the data y.

The (Gaussian) joint probability density function of the vector Z(x) of N random observations with

covariance matrix K, can be written as
1 1 Ti-1
Z(x)|e)=p(Z(x1),...,Z(xy)|€) = e 2(ZX)—1) K (Z(x)—p)
p(Z(x)|e) = p(Z(x1) (xn)[€) AT

If we evaluate this density function using the data vector y = [yy,...,yy]? we obtain the log-likelihood
function (now for simplicity again assuming i = 0)

eV Kely
In.Z(ely) =In )

1 1
=—3 In(det(K¢)) — EyT K¢ 'y + constants.

The best shape parameter € will be obtained by maximizing this log-likelihood function, since then
observation of the data y is most likely under the assumed stochastic model defined by the family of
covariance kernels K, parametrized by €. Alternatively, we can minimize (twice) the negative log-
likelihood function. In order to have a criterion invariant under an additional rescaling of the kernel in
terms of a process variance parameter we can derive (see [66]) the maximum likelihood criterion

MLE(¢) (det(Ke)) +In (YK 1y) .

= —1In
N
Alternatively, we could also consider
GMLE(e) = /det(K,) (v Kg'y) = e (A(Ke)) ('K y)

where 1, (A(K¢)) denotes the geometric mean of the eigenvalues of Ke.
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Figure 22: Comparison of different criteria to select an “optimal” shape parameter € in Gaussian kernel
interpolation.

5.2.3 Other Shape Parameter Optimization Criteria

Based on the Golomb-Weinberger refined error estimate (5.2) we can determine a good value of the

shape parameter by minimizing
EB(e) = \/3"Ke 'yl| Py, 2|

where we compute the max-norm of the power function on a discrete evaluation grid with high resolu-
tion.

We can view GCV and GMLE as being at two ends of the spectrum in terms of the eigenvalues of
Ke: GCV is uses their harmonic mean, and GMLE the geometric mean. Using so-called Holder means
of the eigenvalues and p-type norms of the coefficient vector this can be generalized giving rise to a
two-parameter family of shape parameter criteria:

ip (1 X Ve
Crit, 4 (€) = (yT K;Py) ~ ¥ A(Ke)
N (=1

with GCV = Crity 1 and GMLE = Crit; 9. In particular, large eigenvalues are penalized for posi-

tive values of ¢ and small eigenvalues for g < 0. Note also that (% ?’:1 Al (Ks))l/ 7 corresponds to
max (A(Kg)) for ¢ = e and to min (A (K;)) for ¢ = —eo. This family of criteria was introduced in [41]].
Figure 22| shows a comparison of different criteria for Gaussian kernel interpolation of the well-known
Franke test function (see, e.g., [38]).

This figure suggests that — at least for this example — all but the Crit, o criterion perform equally well,
i.e., they all locate the value of € for which the actual error (black curve) is minimized. However,
another important feature of RBF interpolation that we have not yet discussed is revealed by this figure
as well: there really is an optimal value of €. Our earlier observations based on the interpolation movie
seemed to indicate that the error decreases — possibly monotonically — with €. This example (and many
others in the literature), show this is not so. As claimed (and observed) earlier, the conditioning of the
interpolation matrix deteriorates with decreasing €. Therefore, we use a regularization algorithm due
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Figure 23: Screen shot of the Mathematica module used to illustrate anisotropic Gaussian interpolation.

to James Riley [[122] that is discussed in [39] to stabilize the computations for small €. Another, more
effective way of dealing with the ill-conditioning of K, for small values of € — actually circumventing
this issue — will be discussed in Section [7L

Further investigations of shape parameter and kernel selection are reported in [105]].

5.3 Anisotropic Gaussian Interpolation

We have now seen how important it can be to select the single shape parameter of the Gaussian kernel
21) well.

To illustrate how much more flexibility is introduced by using multiple shape parameters, i.e., a dif-
ferent parameter for each coordinate direction, we discuss our last movie, |AnisotropicGaussianInter-|
We emphasize that here we are interested with anisotropic kernels, i.e., different shape
parameters for different coordinate directions. Another possible way of using multiple shape parame-
ters would be to use spatially varying shape parameters. Such a strategy has been investigated by some
researchers as well (see, e.g., [51, [105]]). As for our other movies, this one is also a screen capture of
explorations performed with a Mathematica notebook that has been posted online [40]. A screen shot
of the Mathematica module is shown in Figure 23]

This movie more or less continues where [[sotropicGaussianInterpolation.avi| left off. The controls for
this module are slightly refined as they now allow different shape parameters in the x; and x,-coordinate
directions.

We begin by creating a more anisotropic testfunction, i.e., the frequency of the cosine function is in-
creased along the x;-direction and decreased in x;. This leads to a very poor surface fit using the initial
nine data samples and relatively “flat” isotropic Gaussian kernels. The error plot shows that the error is
largest along entire “tracks” parallel to the x;-axis. We therefore add more points in the middle of the
domain, parallel to the x;-axis in order to increase the sampling in this direction with the goal of better
capturing the higher frequency effects. As before, adding more points increases the condition number
of K, but this time the error is not reduced markedly. We therefore change the shape parameters, cre-
ating anisotropic basis functions that are narrow in the x;-direction (i.e., € is increased), and “flatter”
in the x,-direction (by decreasing the value of &). This greatly improves the error and as a side-effect
also improves the condition number of K. With these new anisotropic basis functions we no longer
need multiple data points along “tracks” in the x;-direction, so we remove some points and improve the
condition number even further without affecting the error much. Finally, the last segment of the movie
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shows how poorly isotropic Gaussians would interpolate the data sampled along the central “track”
selected earlier.

We remark that other point selection procedures might be even more effective for this example. One
might, e.g., use Faure points, a set of well-distributed low discrepancy points frequently used in quasi-
Monte Carlo methods (see, e.g., [[58]). These points project roughly equally well in every coordinate
direction.

5.4 Dimension-Independent Error Bounds

As pointed out in Section [5.1] the standard error bounds for interpolation with (isotropic) Gaussian
kernels indicate a dimension-dependent convergence rate. In the recent paper [42]] we investigated
function approximation in a weighted L, sense using both isotropic and anisotropic Gaussian kernels
in R? and were able to derive dimension-independent error bounds for function approximation using N
function values sampled from f of the form

1f = sfllap <ertsS I f 1wk ey forall f €. 2(K,RY),
where the worst case error decays like

. O(N~1/4+9) for isotropic Gaussians,
CITEV’LP - 7max(ﬁ 1/4)+6 : : : : -
O(N 2B ) for anisotropic Gaussian provided & = (P,
Here § is an arbitrarily small positive constant and 3 a possibly large positive constant indicating
the decay of the shape parameters. This shows that we can have dimension-independent convergence
rates both for isotropic and for anisotropic Gaussian kernels K provided the function f comes from the
reproducing kernel Hilbert space of K. The (sufficient) requirement that the shape parameters decay like
(P translates into the fact that the function f we are trying to recover is essentially low-dimensional,
i.e., the higher dimensions become less and less important (just as in the anisotropic interpolation movie
above, where the contribution of f in the x,-direction was insignificant). If we have sufficiently fast
decay of the shape parameters, then the convergence rate essentially is arbitrarily high. The dimension-
independent convergence rate we can guarantee for isotropic Gaussians, on the other hand, is rather
slow. The fact that we are using finitely many samples, f(x1),..., f(xy), on the infinite domain R¢ is
not problematic since the weight function p localizes the domain (see also Section [6.2)).
The main tool used to prove these dimension-independent convergence rates is an eigenfunction expan-
sion of the Gaussian kernel. That is discussed next.

6 Kernel Eigenfunction Expansions

A little over 100 years ago, infinite series expansions of the kernels of what are now called Hilbert-
Schmidt integral operators were independently studied by Erhard Schmidt and James Mercer (see [140,
101]] and also Figure[7). David Hilbert played a central role in this development since Schmidt was his
Ph.D. student and Mercer states that his results were motivated by Hilbert’s work [68]].

6.1 Mercer’s Theorem

We define the Hilbert-Schmidt integral operator T : Ly(Q,p) — Ly (Q,p) on an open set Q C R with
weight function p (which we will say more about below) by

(T f)(x) = /Q K(x,2)f(2) p(2) dz.
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The operator J is compact if and only if / / K (x,2)|?p (x)p(z)dxdz < oo (see, e.g., [73]).

QxQ
If the kernel K is symmetric, then according to Mercer’s theorem we have a series expansion for the

kernel K of the form

K@@=2M%W%@>

where the A, and @, are the eigenvalues and L,(Q, p )-orthonormal eigenfunctions of Jx, i.e.,

(Tk@n) () = Xnalx) == (K(x,"), Pn)1y(.p) = AnPalx),

where

(OO = [ Oul)Qu)P () = 8

6.2 Eigenfunctions for the Gaussian Kernel

In this paper we have focussed most of our examples on the Gaussian kernel. It is fortunate that in [117,
Chapter 4] one can find an eigenfunction expansion for the Gaussian, i.e., for x,z € R we have

e 0 = Y A, (x)9u(2), 6.1)
n=0
where
a82n
A = o n=012., (6.2)
nta
(‘f <1+ 1+(%j)2>+s2>
1+ (%) 7< 1+(2—8)271)“";"2 2¢ )\’
» =4 * H, ‘1 — . .
©n(x) T e —I—(a>ax (6.3)

The eigenfunctions {¢,}; _, are given in terms of Hermite polynomials H, and are (weighted) L,-
orthonormal, i.e.,

/_ Z ()P (x) \;‘ﬁeazf dy =6,

with weight function p(x) = %e_“z"z. The parameter o that appears in the weight function acts as a

global scale parameter which essentially localizes the infinite domain (—eo,c0) and provides a length
scale that allows us to prove the convergence estimates for function approximation with finitely many
pieces of data on an infinite domain mentioned in Section[5.4]

As mentioned in Example [2.5] the Gaussian kernel is of product form, and so we can apply the expan-
sion also in higher dimension with the multi-dimensional eigenvalues and eigenfunctions being
products of the one-dimensional ones.

Figures [24] and 25| provide plots of the first few eigenfunctions of the Gaussian kernel in the case d = 2.
The two different sets illustrate how a different choice of the length scale parameter « localizes the
functions. All eigenfunctions in Figure [25| (corresponding to & = 6) are much more localized than
those in Figure 24] (o« = 1) even though the Gaussian kernel itself has a shape parameter of € = 3 in
both examples.

In the next section we will discuss how the eigenfunction expansion of the Gaussian kernel can also be
used for practical purposes, namely to perform stable calculations with so-called “flat” Gaussians.
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Figure 25: The first few Gaussian eigenfunctions for € =3 and o = 6.
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7 “Flat” RBFs and Stable Evaluation

7.1 Misconception II

Before we discuss how to compute with “flat” Gaussians, let us first consider why one might want to do
this, and what happens if we do so with the standard approach as outlined in Section [3| In fact, let us
begin with the latter. It has been a long-held belief that

Sound bite 4. “One can’t have high accuracy and stability at the same time.”

This belief is
1. based on the observations made by countless practitioners,

2. assumed to rest on a rigorous mathematical foundation, the so-called uncertainty principle due to
Robert Schaback [127,[128]].

Our experiments reported in Section [5.2] support item (1) since we observed there that as the basis
functions become wider, or “flatter”, the interpolant s ; approximates the test function f more accurately.
However, this happened at the cost of an increase in the condition number of the matrix K. We did not
show what happens as the shape parameter is pushed further toward zero, but the curves marked with
symbols in Figure [26|below illustrate this for several typical interpolation problem.

Item (2), in fact, is a second misconception. One should summarize the uncertainty principle of Robert
Schaback more carefully as something like

Sound bite 5 (Correction of Sound bite @)). “Using the standard basis, one can’t have high accuracy
and stability at the same time.”

Therefore, there still might be grounds for believing to be able to stably perform scattered data fitting
from the spaces associated with “flat” kernels. We will come back to this question below. So why would
anyone want to do this?

7.2 Interpolation with “Flat” Radial Basis Functions

First, we point out that the results mentioned in this section are limited to radial kernels, or radial basis
functions (RBFs). It was first observed by Bengt Fornberg and his co-workers (see, e.g., [36,150, 83, (84])
that, if one manages to compute stably in the “flat” limit, then the RBF interpolant actually coincides
with a corresponding polynomial interpolant. Several people, including Robert Schaback, were involved
in rigorously proving this [[13} 86} [133]]. The previous papers all deal with infinitely smooth radial basis
functions. Recently, the case of RBFs with finite smoothness has also been studied in [[145], and in [[17],
a Diplom thesis under the supervision of Robert Schaback.

One of the most intriguing aspects associated with the polynomial limit of RBF interpolants seems to be
the fact that RBF interpolants are most accurate (for a fixed number N of given samples) for a positive
value of the shape parameter €. Figure 22 shown during our earlier discussion on the optimization of
the kernel’s shape parameter clearly exhibits a minimum in the interpolation error (as well as for all the
error predictors) distinctly away from zero. The reader, however, needs to remember that those plots
were obtained using standard kernel interpolants. The fact that we used a regularization algorithm to
stabilize the interpolation system does not avoid the ill-conditioning associated with the “bad” standard
basis. This regularization merely smoothes matters out a little. The observation that the interpolation
error using infinitely smooth radial kernels — even when computed with a stable basis — is still minimized
for a positive value of the shape parameter would imply that radial basis function interpolants are more
accurate than polynomial interpolants (see, e.g., Figure 26). However, polynomials are the basis of
traditional algorithms (usually referred to a spectral methods) for the numerical solution of equations
whose solution is known to be smooth. We will come back to this point in Section [8.1]in the context of
partial differential equations.
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Figure 26: Illustration of spectral accuracy achievable with the RBF-QR interpolation algorithm on
Chebyshev points.

7.3 Stable Computation with “Flat” Radial Basis Functions

A number of approaches have been suggested for overcoming the limitations of the uncertainty princi-
ple. Clearly, the problem lies in the choice of basis used to represent the finite-dimensional kernel space
H(K,Z ) =span{K(-,x1),...,K(-,xy)} employed in the solution of the scattered data fitting problem.
Since piecewise polynomial splines of degree m correspond to a certain type of (conditionally) positive
definite kernel, we can get some guidance from the spline literature in which it has been known for a
long time that B-splines provide a stable basis for the space spanned by the kernels |- —x;|", where
()4 is the cut-off function as before. Therefore, a better basis for H(K,.Z") needs to be found since the
standard kernel basis is often unstable. Some work in this direction was reported in [6] for polyharmonic
splines, the most direct generalization of piecewise polynomial splines. Other approaches for stable
computation have come from Bengt Fornberg and his co-workers such as the Contour-Padé algorithm
of [50] and the RBF-QR algorithm of [47, |49]. Alternatively, Robert Schaback and co-workers have
recently suggested the use of Newton basis functions whose computation can be coupled with a selection
of “good” interpolation points (see, e.g., [33, 108, [114]]).
The two papers [47, 49] inspired the work in [43], where a truncation of the Gaussian eigenfunction
expansion (6.1)) was used to develop two different algorithms. The first algorithm was inspired by [49]
and truncates the (infinite) eigen-decomposition of the kernel interpolation matrix K in such a way that
this truncation is accurate to within machine precision. Here one ends up using M > N eigenfunctions
to represent the N X N kernel matrix K. The value of M can be estimated based on the exact knowledge
of the eigenvalues of the Gaussian kernel and their fast decay. In Figure [26| the interpolation
errors over a range of shape parameter values for this algorithm (QR, solid lines) are compared to
those of the standard method (Direct, lines with symbols) and corresponding polynomial interpolants
(horizontal lines). The test problems used 10, 20 and 30 samples, respectively, taken at appropriately
scaled Chebyshev points from the 1D test function f(x) = sinh(x)/(1 + cosh(x)).
One can make the following observations:
— The standard (Direct) RBF method suffers from the ill-conditioning associated with sufficiently small
values of the shape parameter € as predicted by the uncertainty principle.
— The RBF interpolant computed stably with the RBF-QR algorithm converges to the polynomial in-
terpolant of degree N — 1 at the same set of N Chebyshev points.
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Figure 27: High-accuracy approximation of a 5D polynomial using the RBF-QRr approximation algo-
rithm on Halton points.

— The “optimal” choice of shape parameter is positive, and leads to an interpolation error that is signif-
icantly smaller than the one for the corresponding limiting polynomial interpolant.
Since the statistical techniques of Section all led to criteria involving the kernel matrix K (or its
discrete eigenvalues) there still remains work to be done in adapting these criteria to the stable evaluation
techniques just mentioned, but it should be possible to couple the two approaches to obtain stable and
highly accurate Gaussian kernel interpolants.
The second algorithm from [43]] uses far fewer eigenfunctions of the Gaussian kernel K than data
values. This argument is again justified by the fast decay of the eigenvalues. The value of M is chosen
depending on the value of € and «, the global scale parameter of the weight function p that shows up in
the formulas for the eigenvalues and eigenfunctions of the Gaussian. This algorithm is similar in spirit
to a truncated SVD and was called RBF-QRr (for regression) in [43]].
In Figure we compare the approximation errors over a range of shape parameter values for the
RBF-QRr algorithm with those of the standard method (Direct, lines with symbols). The test problems
used here were generated by sampling the fifth degree polynomial f(u,v,w,x,y) = 14 (u-+v+w)?(x —
y)?(u+x) in five variables, i.e., d = 5, at various sets of Halton points. The dimension of the space
of degree 5 polynomials in five variables is 252, so it is not surprising that N = 200 points are not
enough to recover the polynomial from its samples. However, using more samples, we can see that the
RBF regression fit is able to recover the polynomial to within machine precision provided the shape
parameter € is sufficiently small.

8 Other Applications

8.1 Numerical Solution of Partial Differential Equations

One of the greatest application area of so-called meshfree methods is to the numerical solution of partial
differential equations (PDEs). A seemingly endless alphabet soup of acronyms for different methods
exists in the literature, such as EFG, hp-clouds, MLPG, MLS, PUFEM, RKPM, SPH, and XFEM (for
more see, e.g., [L02]). Some of these methods are closely related to positive definite kernels (such as
MLPG, RKPM and SPH), others not so much (such as EFG, MLS and XFEM). For a relatively recent
survey of many of these methods see [[110].

page 50



Buhmann, De Marchi and Plonka-Hoch DRNA Vol. 4 (2011), 1
We will briefly discuss some developments in the numerical solution of elliptic PDEs via a collocation
or strong form kernel-based approach. There are essentially two different alternatives proposed in the
literature: (1) non-symmetric collocation, and (2) symmetric collocation. The non-symmetric approach
was first proposed by Ed Kansa [77, (78] and has been extremely popular with many researchers, while
the symmetric approach has been attributed to [37,1156]. Both methods are discussed in detail in, e.g.,
[38]].

Taking a simple Poisson equation

V() = f(),  xeQ,
u(x) = g(x), xon dQ,

the non-symmetric method assumes that the approximate solution is expanded in the form
N
a(x) =Y cjK(x,x;),
j=1

where the x;, j = 1,...,N, are so-called collocation points distributed both in the interior of Q and
along its boundary. For the symmetric method one assumes

Nj N
ﬁ(x) = ZCjVEK(xag)Ls:xJ- + Z CjK(xaxj)a
j=1 J=Ni+1

where N; denotes the number of collocation points in the interior of . As a result, when one forms
a linear system for the determination of the unknown coefficients ¢; by “interpolating the PDE and
its boundary condition” at the collocation points, then in the non-symmetric case one obtains a non-
symmetric system matrix consisting of two blocks of the form

(V2K ()l ) o 0 ]

8.1
(K(xivxj))i‘\gz\\ll,.q.Lj:l

while for the symmetric method one obtains a symmetric matrix consisting of four blocks of the form

NNy

NN
(VEVEK(E)limemr, ), (VER G )
) vy, T N . 8.2)
(V3K Dles) o K@)y

Robert Schaback has been instrumental in providing a theoretical foundation for the well-posedness
and error analysis of both the non-symmetric and symmetric collocation methods. Moreover, he has
proposed several efficient algorithms for the practical implementation of these methods. Together with
Carsten Franke, his Ph.D. student at the time, he established a convergence theory for the symmetric
collocation approach [53,54]. A few years later, together with Benny Hon, he provided a set of carefully
selected and executed numerical examples which demonstrated that — contrary to the case of scattered
data interpolation — there exist sets 2~ of collocation points which lead to a singular collocation matrix
(for the symmetric case Zongmin Wu established nonsingularity of the collocation matrix in
[LL56]).

We have already seen that some positive definite kernels such as the Gaussian provide spectral rates
of approximation. Polynomials also have this property, and this has led to the development of so-
called pseudospectral methods (see, e.g., [46, 149]]) for the numerical solution of PDEs. Since one can
introduce differentiation matrices into the non-symmetric collocation approach in the same way as for
polynomial methods, kernel-based collocation can also be formulated as a pseudospectral collocation
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method (see [38]). This is one of the main reasons why the non-symmetric collocation approach is
very attractive for use in applications. However, the counterexamples of [69] presented somewhat of
a discouragement for people to use this approach. On the other hand, the discussion in Section [/| on
“flat limits” and the insight gained in the corresponding literature [[13 [36} 150, |83, 184 |86, [133]] show
that there is not only a formal connection between RBF collocation and polynomial spectral methods,
but that one should in fact interpret RBF collocation as a generalization of polynomial spectral methods
with more flexibility to deal with problems in complex domains (both with complicated shapes and in
high space dimensions) and with the potential for higher accuracy than their polynomial counterparts.
This great potential for practical applications has spurred a series of papers by Robert Schaback and
co-workers [70, 185} 189} [132] [134] in which the authors have succeeded in providing a firm theoretical
framework for the well-posedness and high accuracy of the non-symmetric collocation approach. As a
by-product, a framework for the solution of more general operator equations — both in strong form as
well as in weak form — have recently emerged [134]. Among other things, this provides a theoretical
foundation for the “meshless local Petrov-Galerkin (MLPG) method for which we listed two books in
the introduction.

So far, the discussion has focussed on elliptic PDEs. Of course, many applications are dynamic in
nature and will therefore either be of the parabolic or hyperbolic type. While the seminal paper by
Kansa 78] already used a kernel-based approach to solve time-dependent PDEs of both types, there are
only very few papers that discuss convergence and stability of the solution of time-dependent PDEs with
a kernel-based approach. One such paper is the recent preprint [[71] by Benny Hon and Robert Schaback
in which they gave the equivalent of a CFL condition [26] (see also Figure [28) for the solution of the
standard heat equation with a method of lines approach that uses positive definite kernels for the spatial
discretization and an Euler method in time. The kernel-based CFL condition mirrors that for standard
finite-difference methods and requires that the time step At satisfies Ar < C(Ax)?, where C is some
positive constant and Ax denotes the spacing of equidistant spatial collocation points.

Figure 28: Left to right: Kurt Friedrichs, Richard Courant and Hans Lewy.

The solution of ill-posed problems by kernel-based methods has received relatively little attention (see,
e.g., [25]). However, in [132]] Robert Schaback provides a theoretical foundation for the numerical
solution of a certain class of such problems. The solution of nonlinear PDEs with kernel-based methods
is discussed in the presentation of Klaus Bohmer at the Goéttingen workshop [12].

8.2 A Very Brief Discussion of Other Applications

As already alluded to in the introduction, positive definite kernels play a role in many other application
areas. The books listed in the introduction provide a much richer source of information on these topics.
We referred to the scattered data fitting problem as the fundamental application. As already mentioned
there, applications arise in many different areas of numerical analysis, statistics and engineering. For
example, Michael Scheuerer’s presentation at the Gottingen workshop [[138]] focusses on the stochastic
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perspective for data fitting. In the literature on computer experiments (see [63] for recent work using
a multilevel kernel-based interpolation algorithm with the compactly supported Wendland functions of
Section [2.4)) and other engineering experiments one increasingly encounters models based on positive
definite kernels, RBFs or kriging. One such topic is response surface modeling (see, e.g., [100]). Other
types of applications that boil down to data fitting are rapid prototyping (see, e.g., [22]) and computer
graphics (see, e.g., [87]). Here one often uses implicit surface models to approximate or interpolate
point cloud data.

Machine learning or statistical learning is another area that very heavily relies on positive definite
kernels. Algorithms such as support vector machines are used in many different applications such as
medical diagnostics and text analysis. The presentation of Ding-Xuan Zhou at the Gottingen workshop
[L58] has its roots in statistical learning applications.

In the previous subsection we briefly talked about PDEs. Much work has been focussed on the use
of positive definite kernels (or conditionally positive definite kernels, such as the multiquadric) for the
numerical solution of PDEs.

Applications of positive definite kernels in various other branches of mathematics are in multivariate
integration, multivariate optimization and in numerical analysis and scientific computing, where one
studies fast, accurate and adaptive algorithms ideally implemented in high-performance computing en-
vironments. Unfortunately, the latter area has up to now received relatively little attention. Among the
few contributions in this direction are [6} 61]].

9 The Future

So where are the developments in this field likely to go in the near future? For one thing, hopefully
there will be more interaction between different fields, such as approximation theory, statistics, learning
theory and engineering. Some conferences in recent years have been organized with this as one of their
goals — and Robert Schaback has been present at most of them.

The recent paper [139] by Michael Scheuerer, Robert Schaback and Martin Schlather provides an excel-
lent overview for someone who wants to see some of the connections between approximation (the RBF
approach) and statistics (the kriging method). Many more such collaborations are needed. For example,
numerical analysts can benefit from the knowledge of statisticians for the estimation of parameters and
calibration of models. The choice of a “correct” kernel and its “correct” scale is still a major unknown in
the numerical analysis world. On the other hand, statisticians may be able to benefit from the numerical
analysis community when it comes to issues such as efficient algorithms and preconditioning.
High-dimensional problems are ubiquitous in statistical learning and in complexity theory, but the nu-
merical analysis community has not focussed on such problems. Most convergence results and also
many algorithms focus on the cases of d = 1,2,3 dimensions. However, as pointed out earlier, there are
many important applications in the fields of computer experiments, response surface modeling and in
finance which naturally “live” in high-dimensional spaces. Working successfully with such applications
will most certainly involve nonstandard kernels such as anisotropic kernels, or kernels on manifolds.
In Section [8.1| we briefly discussed some of the accomplishments toward the numerical solution of
PDEs. However, there remains much more to be done. The solution of time-dependent PDEs with
kernel-based methods is still in its infancy. In particular, the real flexibility of meshfree methods should
come to fruition when they are employed in an adaptive algorithm, where both the location of the
discretization points and the scale of the kernels changes adaptively with time. Moreover, kernels with
spatially varying scales are likely to be needed in the moving point framework. Kernels with spatially
varying scales for static problems have been considered, e.g., by Robert Schaback together with Mira
Bozzini and Licia Lenarduzzi [15] and in [51]. Another area that has to date received almost no attention
is the solution of stochastic PDEs. This area is likely to benefit from interactions between numerical
analysis and statistics.

page 53



Buhmann, De Marchi and Plonka-Hoch DRNA Vol. 4 (2011), 1
Finally, kernel-based approximation methods have not entered the scientific computing field in a deci-
sive manner. There is still much to be accomplished with respect to fast and stable algorithms that can
be efficiently implemented in high-performance computing environments.

10 Robert Schaback

I would like to close this article with a few words about Robert Schaback. As should have become
apparent during the course of this article, Robert Schaback is a researcher who has made many funda-
mental contributions at the interface of approximation theory, numerical analysis and computer science.
Moreover, he has been a bridge-builder to various other disciplines. To emphasize this point, here is an
excerpt from a poem entitled “The Bridge Builder” by Will Allen Dromgoole (1900):

"There followeth after me today,

A youth, whose feet must pass this way.

This chasm, that has been naught to me,

To that fair-haired youth may a pitfall be.

He, too, must cross in the twilight dim;

Good friend, I am building this bridge for him.”

This poem also speaks to the many efforts Robert Schaback has spent as an educator who was active
not only in mathematics, but also in teacher education and in the development of computer science as
an independent discipline at the University of Gottingen. His work with his many PhD students demon-
strates how he has been building bridges enabling “fair-haired youths” to succeed in their future. For
those of us who have not had the privilege of being students of Robert Schaback he has been a mentor
and providing inspiration and motivation in many discussions and communications with encouragement
such as

“Das sollte man mal durchrechnen.”

Finally, Robert Schaback loves the outdoors and is a hiking enthusiast, so that a special issue in this
journal is the fitting place to celebrate his 65" birthday. Happy Birthday, Robert, and many more
healthy, productive and joyful years!
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