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Variation on a Theme of Chebyshev: Sharp Estimates for the
Leading Coefficients of Bounded Polynomials

Heinz - Joachim Rack∗

Abstract

The n-th Chebyshev polynomial of the first kind, Tn, maximizes various functionals on Bn, the
unit ball of real polynomials with respect to the uniform norm on [−1,1], see e.g. [3], [18], [20],
[37], [41]. The earliest example (1854) is Chebyshev’s inequality [6] for the leading coefficient

of Pn ∈ Bn (where Pn(x) =
n
∑

k=0
ak xk and degree ≤ n): (i) |an| ≤ 2n−1. In 1892 V.A. Markov [16]

found analogous sharp estimates for |an−1| and for |an−2|, and Szegö did likewise for |an−1|+ |an|,
as published by Erdös in 1947 [12]. Only recently we have provided in [34] the sharp estimate
for |an−2|+ |an−1| and have announced in [32] the exact upper bound for |an−2 + an−1 + an|. In
Theorem 2.1 we solve the encompassing extremal problem of finding the sharp estimates for all
possible compositions of the first three leading coefficients an, an−1, an−2 of Pn ∈ Bn and even of

Pn ∈ Cn = {Pn : |Pn(cos
(n− i)π

n
)| ≤ 1 for 0 ≤ i ≤ n}, where Cn ⊃ Bn if n ≥ 2. In Theorem 3.1 we

furthermore provide the sharp estimates for selected compositions which additionaly contain the
fourth leading coefficient, an−3. Altogether we so obtain a substantial amplification of (i) comprised
of more than forty known and new estimates for leading coefficients of Pn ∈ Bn or Pn ∈ Cn. It adds
to the classical Approximation Theory and solves special cases of V.A. Markov’s general extremal
coefficient problem of 1892, see e.g. [2], [13], [16]. For all but four of these inequalities an
extremizer within Cn is Tn (from some initial n = n0 on). The four exceptional compositions include
|an−1| and |an−3|, whose extremizer is the implicitly defined Rogosinski polynomial Πn−1 ∈ Cn, see
[42] (1955). We reveal here (presumably for the first time in print) the explicit expressions for the
maximizing two leading coefficients of Πn−1. This complements a result of V.A. Markov [16] who
determined the maximum of |an−1| and |an−3| by means of the two known leading coefficients of
Tn−1, provided Pn is restricted to vary in Bn. Finally, we turn to limitations of the extremizers Tn
and Πn−1: They both fail to maximize the composition |an−3|+ |an−2|+ |an−1|, if Pn varies in Cn
(Theorem 4.1).
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1 Introduction and Historical Remarks
This paper is based on the author’s contributed talk presented at the 3rd Dolomites Workshop on Constructive Approximation
and Applications (Alba di Canazei (Trento), Italy, September 9 - 14, 2012).

Let Φn denote the linear space of real algebraic (univariate) polynomials of degree ≤ n with elements Pn given in power

form by Pn(x) =
n
∑

k=0
ak x k (n ≥ 1, ak ∈ R), and let Bn denote the unit ball in Φn with respect to the uniform norm

||Pn||I,∞ = sup
x∈I
|Pn(x)| on the interval I= [−1,1]:

Bn = {Pn ∈ Φn : ||Pn||I,∞ ≤ 1}. (1)

The n-th Chebyshev polynomial of the first kind with respect to I, Tn with Tn(x) =
n
∑

k=0
tn,k x k, belongs to Bn. It is recursively

defined by
Tn(x) = 2x Tn−1(x)− Tn−2(x), n≥ 2, with T0(x) = 1 and T1(x) = x , (2)
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and is hence an even resp. odd polynomial, depending on the parity of n, so that tn,k = 0, if n− k is odd, whereas, if n− k is
even, its coefficients tn,k are nonzero integers given by

tn,k = tn,n−2q =
(−1)q

n− q
n2n−2q−1

�

n− q

q

�

, 0≤ q ≤ bn/2c. (3)

The extremal points of Tn are the alternation points x∗n,i where Tn(x∗n,i) = (−1)n−i holds, i.e,

x∗n,i = cos((n− i)π/n), 0≤ i ≤ n, with x∗n,i + x∗n,n−i = 0 (4)

(symmetry with respect to zero), and with ordering

−1= x∗n,0 < x∗n,1 < ...< x∗n,n−1 < x∗n,n = 1. (5)

See the dedicated books [18], [24], and [41] for more information on Tn.
The following convex set Cn encompasses Bn for n≥ 2, see [41, p. 139], and hence contains Tn:

Cn = {Pn ∈ Φn : |Pn(x
∗
n,i)| ≤ 1 for 0≤ i ≤ n}, where x∗n,i is defined in (4). (6)

Various extremal problems for polynomials have been solved first within Bn and were later extended to the superset Cn,
with ±Tn as the mutual extremizer, see e.g. the books [37, pp. 672], [41, pp. 107]. A well-known example is V.A. Markov’s
inequality [16, p. 93] for the uniform norm of the k-th derivative of Pn ∈ Bn on I and its refinement to Pn ∈ Cn by R.J.
Duffin and A.C. Schaeffer [10] (1941), see also D.P. Dryanov [7] (2004). On the other hand, there are extremal problems
where this pattern fails: The extremizer within Bn may be different from the extremizer within Cn. We will encounter both
instances below.

Our point of departure is P.L. Chebyshev’s classical inequality for the magnitude of the leading coefficient of Pn ∈ Bn:

Corollary 1.1. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Then,

|an| ≤ |tn,n|= tn,n = 2n−1 (n≥ 1, equality if Pn = ±Tn). (7)

This result follows from Chebyshev’s pioneering approximation theorem of 1854 [6, p. 123] stating that among all
Pn ∈ Φn with an = 1 the polynomial 21−nTn deviates least from zero on I, or equivalently, that the best approximation to
xn from the span of the monomials 1, x , x2, ..., xn−1 is given by xn − 21−nTn(x), see e.g. the books [23, p. 39], [41, p. 98],
and [43, p. 10; pp. 161]. In that paper [6, p. 112] (“Theórie des mécanismes...") Chebyshev refers to the work of the
famous mechanical engineer J. Watt who, in his improvements to the steam engine, studied a mechanical linkage mechanism
which converts rotational motion to approximate rectilinear motion. Chebyshev himself constructed several such linkages as
well as related practical devices, for example, a wheel-chair and a mechanical spline (“adjustable arc curve ruler"), see the
website http://tcheb.ru and the books [5], [21]. It was the famous chemist D.I. Mendeleev who in 1887, in his book on
aqueous solutions [19, p. 289], explicitly asked for the extremal magnitude of all three coefficients of P2 ∈ Φ2, assuming
that P2 is uniformly bounded on a given compact interval, see [30] for details of Mendeleev’s question and of A.A. Markov’s
solution as reported in a largely unknown footnote in Mendeleev’s book [19, pp. 289]. Five years later, A.A.

Markov’s younger half-brother, V.A. Markov, answered Mendeleev’s question for arbitrary n, see e.g. [16, pp. 80], [17, p.
248], [23, p. 56], [43, p. 167]. In particular, he obtained for the second, third, and fourth leading coefficient of Pn the
following sharp estimates (the estimate for the first leading coefficient is already covered by (7)):

Corollary 1.2. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Then,

|an−1| ≤ tn−1,n−1 = 2n−2 (n≥ 2, equality if Pn = ±Tn−1), (8)

|an−2| ≤ |tn,n−2|= n2n−3 (n≥ 2, equality if Pn = ±Tn), (9)

|an−3| ≤ |tn−1,n−3|= (n− 1)2n−4 (n≥ 3, equality if Pn = ±Tn−1). (10)

In that same celebrated paper [16, p. 93] V.A. Markov also published the above mentioned inequality for the uniform
norm of the k-th derivative of Pn ∈ Bn on I. But both his classical results on extremal coefficients and on extremal pointwise
k-th derivatives of Pn ∈ Bn (which imply the uniform norm of P(k)n ) can be viewed as particular solutions to a quite general
extremal problem which V.A. Markov himself had posed in 1892 [16, p. 79], see also [2, p. 4], [13, p. 39], [17, p. 246],
[25, p. 701]:

V.A. Markov’s Extremal Problem (Maximal Coefficient Functional Version).
Find the maximum of the coefficient functional

|a0β0 + a1β1 + a2β2 + ...+ anβn|, (11)

if Pn (with Pn(x) =
n
∑

k=0
ak x k) varies in Bn, where the βk ’s are given real parameters. In fact, the two mentioned theorems of

V.A. Markov yield as the desired maximum
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(i) |tn,k| (if n− k is even) resp. |tn−1,k| (if n− k is odd), if one considers the functional |
n
∑

j=0
a jβ j | = |ak| in (11), with

βk = 1 and β j = 0 if j 6= k. Obviously, (7) is the case k = n, i.e., max |an|= |tn,n|= tn,n.

(ii) |P(k)∗,n (x0)| (P∗,n being a Chebyshev or a Zolotarev polynomial), if one considers the functional |
n
∑

j=0
a jβ j | = |P(k)n (x0)| in

(11), with β j =
x j−k

0 j!

( j − k)!
(1≤ k ≤ j ≤ n) and β j = 0 else, where x0 ∈ I is a given point. V.A. Markov additionally showed

how the local maximal k-th derivative at x0 (among all Pn ∈ Bn) is dominated by the global one: |P(k)∗,n (x0)| ≤ T (k)n (1)
for all x0 ∈ I.

The alternative dual version of V.A. Markov’s extremal problem reads as follows:

V.A. Markov’s Extremal Problem (Least Deviation from Zero Version).

Among all Pn ∈ Φn (with Pn(x) =
n
∑

k=0
ak x k ) whose coefficients satisfy the linear constraint

a0β0 + a1β1 + a2β2 + ...+ anβn = 1, (12)

where the βk ’s are given real parameters, find the one which best approximates the zero function on I.

Chebyshev’s inequality (7) corresponds to the solution 21−nTn, if one sets
n
∑

j=0
a jβ j = an = 1 in (12). V.A. Markov’s extremal

problem can be generalized by assuming Pn ∈ Cn in place of Pn ∈ Bn.
The inequalities compiled in Theorems 2.1 and 3.1 below contribute to the solution of this classical extremal problem

(in its generalized form) for a special choice of parameters: β j ∈ {−1,0, 1}.
One solution, corresponding to βk−1 = 1,βk = ±1 , (where n− k is even) and β j = 0 else, was already provided by

G. Szegö as published in a paper by P. Erdös [12, p. 1176] (1947), see also [30], [31], [37, p. 673; p. 679]. It covers
consecutive pairs of coefficients of Pn ∈ Bn and in particular gives a striking refinement of (7) and (9):

Corollary 1.3. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Then,

|an−1 ± an| ≤ |an−1|+ |an| ≤ tn,n (n≥ 1, equality if Pn = ±Tn), (13)

|an−3 ± an−2| ≤ |an−3|+ |an−2| ≤ |tn,n−2| (n≥ 3, equality if Pn = ±Tn). (14)

Only recently, we have provided in [34] a solution to (11) for similar special cases (βk = 1,βk+1 = ±1 , (where n− k is
even) and β j = 0 else). It covers alternative pairs of consecutive coefficients of Pn ∈ Bn and in particular implies:

Corollary 1.4. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Then,

|an−2 ± an−1| ≤ |an−2|+ |an−1| ≤ |tn,n−2| (n≥ 6, equality if Pn = ±Tn), (15)

|an−4 ± an−3| ≤ |an−4|+ |an−3| ≤ tn,n−4 = n(n− 3)2n−6 (n≥ 13, equality if Pn = ±Tn). (16)

Yet another such particular solution to V.A. Markov’s extremal problem concerning the j-th backward partial sums of

coefficients of Pn ∈ Bn (that is,
n
∑

k= j
ak, corresponding to βk = 1 for j ≤ k and βk = 0 else) we have announced in [32]. If

we confine ourselves to the backward partial sums of the first three ( j = n− 2) and four ( j = n− 3) leading coefficients of
Pn ∈ Bn, then this solution reads as follows:

Corollary 1.5. Let Pn ∈ Bn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Then,

|an−2 + an−1 + an| ≤ |tn,n−2 + tn,n|= (n− 4)2n−3 (n≥ 10, equality if Pn = ±Tn), (17)

|an−3 + an−2 + an−1 + an| ≤ |tn,n−2 + tn,n| (n≥ 6, equality if Pn = ±Tn). (18)

Observe that
|tn,n−2 + tn,n|= (n− 4)2n−3 < |tn,n−2|+ tn,n = (n+ 4)2n−3 (19)

so that the trivial estimate |an−2 + an−1 + an| ≤ |an−2|+ |an−1|+ |an| ≤ |tn,n−2|+ tn,n (according to (7), (15) or (9), (13))
would not be sharp for |an−2 + an−1 + an|. An analogous remark applies to inequality (18).

We point out that related but weaker inequalities than those in Corollary 1.5 are contained in a result given by M. Reimer
[39] (1968), see also [41, p. 112], which was derived under the stronger assumption that Pn ∈ Bn is even or odd (implying
here: an−3 = an−1 = 0), according to the parity of n.
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We now collect known liftings of the preceding coefficient estimates, from Pn ∈ Bn (i.e., |Pn(x)| ≤ 1 for |x | ≤ 1) to
Pn ∈ Cn (i.e., |Pn(x∗n,i)| ≤ 1 for 0 ≤ i ≤ n, so that Pn may attain values > 1 or < −1 between two consecutive alternation
points of Tn):

The generalizations of (7) and (9) to Pn ∈ Cn are contained in a result of J.A. Shohat [44, p. 687] (1929), see also [37,
pp. 672]. The generalizations of (13), (14) to Pn ∈ Cn are contained in a result of O.J. Munch [22, p. 26] (1960) (see
also [30], [37, p. 673]), and have been rediscovered by several authors, e. g. [40]. The versions of (15), (16) for Pn ∈ Cn
are contained in [34]. We will prove the generalization of Corollary 1.5 to Pn ∈ Cn in Theorem 2.1 resp. 3.1 below, but it
is still a special case of a more general result announced in [32], which encompasses Reimer’s [39]. In all these liftings
from Bn to Cn the Chebyshev polynomial Tn ∈ Bn prevails its extremal property within Cn. However, as for (8) and (10),
simple examples will show that Tn−1 is not extremal within Cn for |an−1| or |an−3|. It was W.W. Rogosinski [42, p. 10] who,
in 1955, determined the even respectively odd polynomial (depending on the parity of n− 1) Πn−1 ∈ Cn whose leading
coefficients maximize |an−1| and |an−3|, if Pn varies in Cn. But the given interpolatory definition of Πn−1 does not reveal the
explicit expressions for the maximizing leading coefficients in the power form representation

Πn−1(x) =
n−1
∑

k=0

cn−1,k x k, n≥ 3. (20)

Rogosinski’s interpolatory definition of Πn−1 ∈ Cn reads (where x∗n,i is from (4)):

Πn−1(x
∗
n,i) = (−1)i , if 0≤ i ≤

n− 1

2
, n odd, (21)

= (−1)i+1, if
n+ 1

2
≤ i ≤ n, n odd; (22)

Πn−1(x
∗
n,i) = (−1)i+1, if 0≤ i ≤

n

2
− 1, n even, (23)

= 0, if i =
n

2
, n even, (24)

= (−1)i , if
n

2
+ 1≤ i ≤ n, n even. (25)

The first few Rogosinski polynomials Πn−1 are displayed in power form in Example 3.2 below. We notice that Rogosinski
[42] has actually considered an even more general setting than Pn ∈ Cn.

Against the background of the preceding findings we now pose two encompassing extremal problems. The first one is
to determine the sharp estimates for the magnitude of all compositions that can be generated from the first three leading
coefficients an, an−1, an−2 of a pointwise bounded Pn ∈ Cn. For the sake of completeness we include appropriate compositions
already considered in Corollaries 1.1 - 1.5 (valid for Pn ∈ Bn), and in their liftings to Pn ∈ Cn.

By a composition of leading coefficients, we mean the following coefficient functionals:

(i) the modulus of a single leading coefficient, or

(ii) the modulus of sums or differences of two or more distinct leading coefficients, or

(iii) a sum of compositions generated according to (i) and / or (ii), see Theorems 2.1 - 4.1.

Problem 1.6. Suppose Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k. Find the sharp upper bounds for all compositions of the first three

leading coefficients an, an−1 and an−2.
We will obtain the complete solution to this problem in Theorem 2.1 below as a mixture of twenty known and new

inequalities. It will turn out that, except for |an−1|, all remaining compositions are maximized by the corresponding
compositions of the leading coefficients of ±Tn (from some initial n = n0 on). If this is the case then, since Tn ∈ Bn and
Tn ∈ Cn, the resulting coefficient inequalities in particular hold sharply for all Pn from the subset Bn of Cn. The modulus of
the exceptional coefficient an−1 of Pn ∈ Cn will be maximized by the corresponding leading coefficient cn−1,n−1 of Πn−1 ∈ Cn,
according to [42]. We reveal here, presumably for the first time in print, the explicit expression for cn−1,n−1 (with the aid
of trigonometric functions). This is to be contrasted with V.A. Markov’s result (8) stating that the modulus of an−1 will be
maximized by the (known) leading coefficient tn−1,n−1 of Tn−1 ∈ Bn−1 ⊂ Bn, if Pn varies in the subset Bn of Cn.

The second extremal problem is to determine the sharp estimates for the magnitude of selected compositions of the first
four leading coefficients an, an−1, an−2, an−3 of a pointwise bounded Pn ∈ Cn. By selected, we mean that

(i) the composition includes the fourth leading coefficient an−3;

(ii) the composition does not contain the minus-sign;

(iii) the extremizer of the composition is either ±Tn or ±Πn−1.

For the sake of completeness we include appropriate compositions already considered in Corollaries 1.2-1.5 (valid for
Pn ∈ Bn), and in their liftings to Pn ∈ Cn. This second more complex extremal problem leads to twenty-three coefficient
inequalities.
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Problem 1.7. Suppose Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k. Find the sharp upper bounds for selected compositions of the first four

leading coefficients an, an−1, an−2, an−3.
We will obtain the solution to this problem in Theorem 3.1 below, again as a mixture of known and new inequalities. Except

for |an−3|, |an−3 + an−1|, and |an−3|+ |an−1|, all remaining compositions are maximized by the corresponding compositions of
the leading coefficients of ±Tn (from some initial n= n0 on), so that the resulting coefficient inequalities in particular hold
sharply for all Pn ∈ Bn. The modulus of the exceptional coefficient an−3 of Pn ∈ Cn will be maximized by the modulus of the
corresponding leading coefficient cn−1,n−3 of Πn−1 ∈ Cn, according to [42]. What again is novel here is our explicit expression
for |cn−1,n−3| (with the aid of trigonometric functions), and this is to be contrasted with V.A. Markov’s result (10) stating
that |an−3| will be maximized by the modulus of the (known) second nonzero leading coefficient tn−1,n−3 of Tn−1 ∈ Bn, if Pn
varies in the subset Bn of Cn.

Altogether, the more than forty coefficient inequalities compiled in Theorems 2.1 and 3.1 constitute a substantial
amplification of Chebyhev’s classical inequality (7) and they reveal new extremal properties of the leading coefficients of Tn.

Finally, we turn to limitations of the extremizers ±Tn−1 and ±Πn−1, and prove in Theorem 4.1 that they both fail to
maximize the particular composition |an−3|+ |an−2|+ |an−1|, if Pn varies in Cn.

Suggested additional reading on Chebyshev’s circle of ideas: [1],[3],[14],[15],[20],[38], and [47].

2 Theorem 2.1, Proof, and Example
We now provide the solution to Problem 1.6. It covers all compositions that can be generated from the first three leading
coefficients an, an−1, an−2 of Pn ∈ Cn (expressions |γ| and | − γ| are not considered as different):

Theorem 2.1. (Variation on Chebyshev’s Coefficient Inequality, Part 1) Let Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Let

Tn ∈ Cn with Tn(x) =
n
∑

k=0
tn,k x k denote the Chebyshev polynomial of the first kind, and let Πn−1 ∈ Cn with Πn−1(x) =

n−1
∑

k=0
cn−1,k x k

denote the Rogosinski polynomial. Then the following sharp estimates for compositions generated out of the first three leading
coefficients of Pn hold true:

|an| ≤ tn,n, n≥ 1, (26)

|an−1| ≤ cn−1,n−1 =
2n−1

n tan π

2n

, n≥ 4 even, equality if Pn = ±Πn−1, (27)

|an−1| ≤ cn−1,n−1 =
2n−1

n sin π

2n

, n≥ 3 odd, equality if Pn = ±Πn−1, (28)

|an−2| ≤ |tn,n−2|, n≥ 2, (29)

|an−2 ± an−1| ≤ |tn,n−2|, n≥ 6, (30)

|an−2 + an| ≤ |tn,n−2 + tn,n|, n≥ 6, (31)

|an−2 − an| ≤ |tn,n−2|+ tn,n, n≥ 2, (32)

|an−1 ± an| ≤ tn,n, n≥ 1, (33)

|an−2|+ |an−1| ≤ |tn,n−2|, n≥ 6, (34)

|an−2|+ |an| ≤ |tn,n−2|+ tn,n, n≥ 2, (35)

|an−1|+ |an| ≤ tn,n, n≥ 1, (36)

|an−2 + an−1 + an| ≤ |tn,n−2 + tn,n|, n≥ 10, (37)

|an−2 + an−1 − an| ≤ |tn,n−2|+ tn,n, n≥ 2, (38)

|an−2 − an−1 + an| ≤ |tn,n−2 + tn,n|, n≥ 10, (39)

| − an−2 + an−1 + an| ≤ |tn,n−2|+ tn,n, n≥ 2, (40)

|an−1|+ |an−2 + an| ≤ |tn,n−2 + tn,n|, n≥ 10, (41)

|an−1|+ |an−2 − an| ≤ |tn,n−2|+ tn,n, n≥ 2, (42)

|an−2|+ |an−1 ± an| ≤ |tn,n−2|+ tn,n, n≥ 2, (43)

|an|+ |an−2 ± an−1| ≤ |tn,n−2|+ tn,n, n≥ 2, (44)

|an−2|+ |an−1|+ |an| ≤ |tn,n−2|+ tn,n, n≥ 2. (45)

Except for (27) and (28), equality occurs if Pn = ±Tn. If this is the case, then the corresponding coefficient estimates in particular
hold sharply for Pn ∈ Bn, since Tn ∈ Bn. The upper bounds for |an−1| as given in (27) and (28) can be replaced by the tighter
sharp upper bound given in (8), if Pn ∈ Bn. Sharp upper bounds for marginal low-degree constellations not covered by (30),
(31), (34), (37), (39), (41) are provided in Remark 1 below.

Proof. In the course of the proof of Theorem 2.1 (and of Theorems 3.1 and 4.1) we will make use of the following identities,
see [33]:
Let (Vi,k)0≤i,k≤n denote the inverse of the Vandermonde matrix associated with the extremal points (4) of Tn.
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Lemma 2.2. If n− k is even and 0≤ i ≤ bn/2c, then [33, p. 298]

Vi,k = (−1)kVn−i,k and Vi,k−1 = x∗n,iVi,k.

Lemma 2.3. The elements Vi,k, 0≤ i, k ≤ n, are given as follows [33, p. 302]:
The elements V0,k, if n− k is even, are

V0,n = (−1)nn−12n−2,

V0,n−2q = (−1)nn−12n−2
q
∑

t=0

σn+1,n+1−2(q−t), if 1≤ q ≤ d(n− 2)/2e,

V0,0 = 0, if n is even.

The elements Vi,k with 1≤ i ≤ b(n− 1)/2c, if n− k is even, are

Vi,n = (−1)n−in−12n−1,

Vi,n−2q = (−1)n−in−12n−1
q
∑

t=0

(x∗n,i)
2tσn+1,n+1−2(q−t), if 1≤ q ≤ d(n− 2)/2e,

Vi,0 = 0, if n is even.

The elements Vn/2,k, if n is even and n− k is even, are

Vn/2,n = (−1)n/2n−12n−1,

Vn/2,n−2q = (−1)n/2n−2(n− 2q+ 1)−1(n2 + n− 2q)tn,n−2q, if 2≤ n− 2q ≤ n− 2,

Vn/2,0 = 1.

Those elements Vi,k not covered by the above identities can be recovered from these identities by applying Lemma 2.2.

Lemma 2.4. The numbers σn+1,p, which appear in Lemma 2.3, are given (with the aid of the coefficients of Tn) as follows [33,
p. 301]:

σn+1,n+1 = 1,

σn+1,p = p−1n−121−n(n2 + p− 1)tn,p−1, if n+ 1− p is even and 2≤ p ≤ n− 1,

σn+1,p = 0, if n− p is even and 2≤ p ≤ n,

σn+1,1 = (−1)n/2n21−n, if n is even, resp. σn+1,1 = 0, if n is odd,

σn+1,0 = (−1)(n+1)/221−n, if n is odd, resp. σn+1,0 = 0, if n is even.

Lemma 2.5. The moduli of the coefficients of Tn and Πn−1 can be represented as [33, p. 299],

|tn,k|=
n
∑

i=0

|Vi,k|, if n− k is even and |cn−1,k|=
n
∑

i=0

|Vi,k|, if n− k is odd.

Lemma 2.6. A coefficient ak of Pn ∈ Cn can be represented as [33, p. 296]

ak =
n
∑

i=0

Pn(x
∗
n,i)Vi,k.

Lemma 2.7. For any real numbers α and β there holds the following identity, which goes back to A. Tarski [45]:

||α| − |β ||= |α+ β |+ |α− β | − |α| − |β |.

It immediately implies the identities

|α+ β |+ |α− β |= 2 max{|α|, |β |} and |α|+ |β |=max{|α+ β |, |α− β |}.

Lemma 2.8. The first and second (nonzero) leading coefficient of Πn−1 can be represented as [33, p. 311]

cn−1,n−1 = 2
2n−2

n
+

2n−1

n

n−1
∑

i=1

|x∗n,i |,

|cn−1,n−3| =
2n−1

n

�n

4
−

1

2

�

+
2n

n

b(n−1)/2c
∑

i=1

|x∗n,i |
��n

4
+

1

2

�

− |x∗n,i |
2
�

.
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We now turn to the proof of the inequalities (26) - (45) contained in Theorem 2.1.
(26): This is Chebyshev’s inequality (7), as generalized to Pn ∈ Cn by Shohat [44, p. 687].
(27) and (28): The inequality |an−1| ≤ cn−1,n−1 is due to Rogosinski [42, p. 10]. The explicit two-staged expression for the
upper bound cn−1,n−1 we deduce as follows:
According to the parity of n we obtain from Lemma 2.8, in view of (4),

cn−1,n−1 =
2n−1

n
+

2n−1

n
2

n/2−1
∑

i=1

|x∗n,i | (46)

=
2n−1

n
+

2n

n

n/2−1
∑

k=1

cos
kπ

n
, if n even, (47)

respectively

cn−1,n−1 =
2n−1

n
+

2n−1

n
2
(n−1)/2
∑

i=1

|x∗n,i | (48)

=
2n−1

n
+

2n

n

(n−1)/2
∑

k=1

cos
kπ

n
, if n odd. (49)

We now deploy the known J.L. Lagrange identity (see e.g. [26])

N
∑

k=1

cos(kx) = −
1

2
+

sin((N + 1
2
)x)

2sin( 1
2

x)
(50)

to get with x = π/n and N = n/2− 1, if n is even, respectively N = (n− 1)/2, if n is odd,

cn−1,n−1 =
2n−1

n

�

1+ 2

�

−
1

2
+

sin(π
2
− π

2n
)

2sin( π
2n
)

��

=
2n−1

n

�

1+ 2

�

−
1

2
+

cos( π
2n
)

2 sin( π
2n
)

��

=
2n−1

n
cot
�

π

2n

�

, if n even, (51)

respectively

cn−1,n−1 =
2n−1

n

�

1+ 2

�

−
1

2
+

sin(π
2
)

2sin( π
2n
)

��

=
2n−1

n

�

1+ 2

�

−
1

2
+

1

2sin( π
2n
)

��

=
2n−1

n
csc
�

π

2n

�

, if n odd. (52)

(29): This is V.A. Markov’s inequality (9), as generalized to Pn ∈ Cn by Shohat [44, p. 687].
(30): This follows from (34) by the triangle inequality, compare with (15).
(31): This follows from (41), if n≥ 10. The elementary proof of the marginal cases n ∈ {6,7,8,9} is similar to the proof
given in [33], Section 3.2, for comparable marginal cases. Therefore we only give here the straightforward proof for n= 6
and leave the proof for n ∈ {7,8, 9} to the reader. From Lemmas 2.2 and 2.6 we adopt for the here relevant coefficients of
P6 ∈ C6 the upper bound

|a4 + a6| = |
6
∑

i=0
P6(x∗6,i)(Vi,4 + Vi,6)| ≤

6
∑

i=0
|P6(x∗6,i)||Vi,4 + Vi,6|

≤
6
∑

i=0
|Vi,4 + Vi,6|= 2

2
∑

i=0
|Vi,4 + Vi,6|+ |V3,4 + V3,6|.

From Lemma 2.3 we deduce, with |x∗6,0|
2 = 1, |x∗6,1|

2 = 3
4
, |x∗6,2|

2 = 1
4
, and |x∗6,3|

2 = 0 (see (4)): V0,4 =
8
3
(σ7,5 + 1) =

− 8
3
, V1,4 =

−16
3
(σ7,5 +

3
4
) = 20

3
, V2,4 =

16
3
(σ7,5 +

1
4
) = −28

3
, V3,4 =

−16
3
(σ7,5 + 0) = 32

3
, because σ7,5 = −2 (see Lemma 2.4).

Furthermore we get V0,6 =
8
3
, V1,6 =

−16
3

, V2,6 =
16
3

, V3,6 =
−16

3
. Hence, 2

2
∑

i=0
|Vi,4 + Vi,6|+ |V3,4 + V3,6| = 16 = | − 48+ 32| =

|t6,4 + t6,6|, as claimed.
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(32): This follows by the triangle inequality and from (26) and (29).
(33): This follows by the triangle inequality and from (36), compare with (13).
(34): This is our result from [34], compare with (15).
(35): This follows from (26) and (29).
(36): This is Szegö’s inequality (13), as generalized to Pn ∈ Cn by Munch [22, p. 26].
(37): This follows by the triangle inequality and from (41).
(38): This follows by the triangle inequality and from (29) and (33).
(39): This follows by the triangle inequality and from (41).
(40): This follows by the triangle inequality and from (29) and (33).
(41): It will suffice to consider the case of n≥ 11 odd since the proof is quite similar for n≥ 10 even. From Lemma 2.6 we
adopt for the here relevant coefficients of Pn ∈ Cn the upper bound

|an−2 + an−1 + an| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−2 + Vi,n−1 + Vi,n)| (53)

≤
n
∑

i=0

|Pn(x
∗
n,i)||Vi,n−2 + Vi,n−1 + Vi,n|

≤
n
∑

i=0

|Vi,n−2 + Vi,n−1 + Vi,n|. (54)

We now take advantage of the symmetries in Lemma 2.2 to rewrite this upper bound as

|an−2 + an−1 + an| ≤
(n−1)/2
∑

i=0

|Vi,n−2 + Vi,n−1 + Vi,n|+
(n−1)/2
∑

i=0

| − Vi,n−2 + Vi,n−1 − Vi,n|. (55)

In view of Lemma 2.7 we obtain the modified upper bound

|an−2 + an−1 + an| ≤ 2
(n−1)/2
∑

i=0

max{|Vi,n−1|, |Vi,n−2 + Vi,n|}. (56)

Suppose we had, for n≥ 11 odd, |Vi,n−1| ≤ |Vi,n−2 + Vi,n| for i = 0,1, ..., (n− 1)/2. This would imply

|an−2 + an−1 + an| ≤ 2
(n−1)/2
∑

i=0

|Vi,n−2 + Vi,n|=
n
∑

i=0

|Vi,n−2 + Vi,n|, (57)

where the last identity again follows from Lemma 2.2. For i odd we rewrite |Vi,n−2 + Vi,n|= | − Vi,n−2 + (−Vi,n)| and observe,
based on Lemma 2.3, that Vi,n−2 > 0 if i is even and (−Vi,n−2)> 0 if i is odd, and likewise Vi,n < 0 if i is even and (−Vi,n)< 0
if i is odd. We would obtain

|an−2 + an−1 + an| ≤
∑

i even

|Vi,n−2 + Vi,n|+
∑

i odd

| − Vi,n−2 + (−Vi,n)|=
n
∑

i=0

||Vi,n−2| − |Vi,n||. (58)

Suppose further we had |Vi,n−2| − |Vi,n| ≥ 0 for i = 0,1, ..., n. We could then continue to write

|an−2 + an−1 + an| ≤
n
∑

i=0

(|Vi,n−2| − |Vi,n|) =
n
∑

i=0

|Vi,n−2| −
n
∑

i=0

|Vi,n|= |tn,n−2| − |tn,n|, (59)

where the last identity follows from Lemma 2.5. From (3) we deduce that tn,n−2 < 0 and tn,n > 0, and |tn,n−2| − tn,n > 0 for
n≥ 11, so that we eventually would get

|an−2 + an−1 + an| ≤ |tn,n−2| − |tn,n|= ||tn,n−2| − tn,n|= | − |tn,n−2|+ tn,n|= |tn,n−2 + tn,n|, for n≥ 11. (60)

If this were true for Pn ∈ Cn, then there would also hold

|an−2 − an−1 + an| ≤ |tn,n−2 + tn,n| for Pn ∈ Cn since Qn with Qn(x) = Pn(−x) belongs to Cn. (61)

Hence, in view of Lemma 2.7, |an−1|+ |an−2 + an| ≤ |tn,n−2 + tn,n|, for n≥ 11, as claimed.
We now proceed to verify the two assumptions made above:
(A) To show that |Vi,n−1| ≤ |Vi,n−2 + Vi,n| for i = 0, 1, ..., (n− 1)/2 and n≥ 11 odd, we recall from Lemmas 2.2, 2.3, and 2.4
that

|V0,n−1| = |x∗n,0||V0,n|= |V0,n|= n−12n−2, and (62)

|V0,n−2 + V0,n| = n−12n−2

�

�

�

�

n

4
−

3

2

�

�

�

�

, (63)
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since V0,n−2 = (−1)nn−12n−2(σn+1,n−1 +σn+1,n+1) = −n−12n−2((n− 1)−1n−121−n(n2 + n− 2)tn,n−2 + 1) with tn,n−2 = −n2n−3,

and V0,n = (−1)nn−12n−2. As
�

�

�

n
4
− 3

2

�

�

�> 1 for n≥ 11, we get |V0,n−1|< |V0,n−2 + V0,n|. We furthermore recall from Lemmas 2.2

and 2.3 that

|Vi,n−1| = |x∗n,i ||Vi,n|= |x∗n,i |n
−12n−1 < n−12n−1 for i = 1, 2, ..., (n− 1)/2, (64)

|Vi,n−2 + Vi,n| = n−12n−1

�

�

�

�

n

4
−

1

2
− |x∗n,i |

2

�

�

�

�

. (65)

Since 0< |x∗n,i |< 1, we have
�

�

�

n
4
− 1

2
− |x∗n,i |

2
�

�

�> 1 for n≥ 11 which implies |Vi,n−1|< |Vi,n−2 + Vi,n|.
(B) To show that |Vi,n−2| − |Vi,n| ≥ 0 for 0≤ i ≤ n and n≥ 11 odd, we recall from the lines after (63),

|V0,n|= n−12n−2 and |V0,n−2|= n−12n−2|
n

4
−

1

2
|. (66)

From these identities it is obvious that |V0,n| ≤ |V0,n−2| for n≥ 11 odd. We furthermore recall from Lemmas 2.2 and 2.3 that

|Vi,n| = n−12n−1 and

|Vi,n−2| = n−12n−1

�

�

�

�

n

4
+

1

2
− |x∗n,i |

2

�

�

�

�

, for i = 1,2, ..., (n− 1)/2. (67)

Since 0< |x∗n,i |< 1, we have
�

�

�

n
4
+ 1

2
− |x∗n,i |

2
�

�

�> 1 for n≥ 11 which implies |Vi,n| ≤ |Vi,n−2|. The remaining cases (n− 1)/2<
i ≤ n follow by symmetry in view of Lemma 2.2. This concludes the proof of (41).
(42): This follows by the triangle inequality and from (29) and (36).
(43): This follows from (29) and (33).
(44): This follows by the triangle inequality and from (45).
(45): This follows from (29) and (36).
Except for (27) and (28), the condition for equality is due to the fact that Tn is even or odd, depending on the parity of n,
and that the nonzero coefficients of Tn alternate in sign, see (3). If Pn ∈ Bn, then the sharp upper bound for |an−1| is tn−1,n−1
as follows from (8).

Example 2.1. For the least common initial value n= n0 = 10 in Theorem 2.1 the coefficient inequalities read:

|a10| ≤ t10,10 = 512

|a9| ≤ c9,9 =
51.2

tan π

20

= 323.26407...

|a8| ≤ |t10,8|= 1280

|a8 ± a9| ≤ |t10,8|= 1280

|a8 + a10| ≤ |t10,8 + t10,10|= 768

|a8 − a10| ≤ |t10,8|+ t10,10 = 1792

|a9 ± a10| ≤ t10,10 = 512

|a8|+ |a9| ≤ |t10,8|= 1280

|a8|+ |a10| ≤ |t10,8|+ t10,10 = 1792

|a9|+ |a10| ≤ t10,10 = 512

|a8 + a9 + a10| ≤ |t10,8 + t10,10|= 768

|a8 + a9 − a10| ≤ |t10,8|+ t10,10 = 1792

|a8 − a9 + a10| ≤ |t10,8 + t10,10|= 768

| − a8 + a9 + a10| ≤ |t10,8|+ t10,10 = 1792

|a9|+ |a8 + a10| ≤ |t10,8 + t10,10|= 768

|a9|+ |a8 − a10| ≤ |t10,8|+ t10,10 = 1792

|a8|+ |a9 ± a10| ≤ |t10,8|+ t10,10 = 1792

|a10|+ |a8 ± a9| ≤ |t10,8|+ t10,10 = 1792

|a8|+ |a9|+ |a10| ≤ |t10,8|+ t10,10 = 1792.

3 Theorem 3.1, Proof, and Example
Next we will provide the solution to Problem 1.7. It covers selected compositions generated from the first four leading
coefficients an, an−1, an−2, an−3 of Pn ∈ Cn. As an−3 is contained in each such composition, there will be no intersection with
Theorem 2.1 (again, expressions |γ| and | − γ| are not considered as different):
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Theorem 3.1. (Variation on Chebyshev’s Coefficient Inequality, Part 2) Let Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k be arbitrary. Let

Tn ∈ Cn with Tn(x) =
n
∑

k=0
tn,k x k denote the Chebyshev polynomial of the first kind, and let Πn−1 ∈ Cn with Πn−1(x) =

n−1
∑

k=0
cn−1,k x k

denote the Rogosinski polynomial. Then the following sharp estimates for compositions generated out of the first four leading
coefficients of Pn hold true:

|an−3| ≤ |cn−1,n−3|=
2n−3

n

�

1

tan 3π
2n

+
n− 1

tan π

2n

�

, n≥ 4 even, equality if Pn = ±Πn−1,

(68)

|an−3| ≤ |cn−1,n−3|=
2n−3

n

�

1

sin 3π
2n

+
n− 1

sin π

2n

�

, n≥ 3 odd, equality if Pn = ±Πn−1, (69)

|an−3 + an−2| ≤ |tn,n−2|, n≥ 3, (70)

|an−3 + an−1| ≤ |cn−1,n−3 + cn−1,n−1|, n≥ 6, equality if Pn = ±Πn−1, (71)

|an−3|+ |an−2| ≤ |tn,n−2|, n≥ 3, (72)

|an−3|+ |an−1| ≤ |cn−1,n−3|+ |cn−1,n−1|, n≥ 3, equality if Pn = ±Πn−1, (73)

|an−3 + an−2 + an−1| ≤ |tn,n−2|, n≥ 4, (74)

|an−2|+ |an−3 + an−1| ≤ |tn,n−2|, n≥ 4, (75)

|an−2|+ |an−3 + an| ≤ |tn,n−2|+ tn,n, n≥ 3, (76)

|an|+ |an−3 + an−2| ≤ |tn,n−2|+ tn,n, n≥ 3, (77)

|an−3|+ |an−2|+ |an| ≤ |tn,n−2|+ tn,n, n≥ 3, (78)

|an−3 + an−2 + an−1 + an| ≤ |tn,n−2 + tn,n|, n≥ 6, (79)

|an−2|+ |an−3 + an−1 + an| ≤ |tn,n−2|+ tn,n, n≥ 3, (80)

|an|+ |an−3 + an−2 + an−1| ≤ |tn,n−2|+ tn,n, n≥ 3, (81)

|an−3 + an−2|+ |an−1 + an| ≤ |tn,n−2|+ tn,n, n≥ 3, (82)

|an−3 + an−1|+ |an−2 + an| ≤ |tn,n−2 + tn,n|, n≥ 6, (83)

|an−3 + an|+ |an−2 + an−1| ≤ |tn,n−2|+ tn,n, n≥ 3, (84)

|an−3|+ |an−2|+ |an−1 + an| ≤ |tn,n−2|+ tn,n, n≥ 3, (85)

|an−3|+ |an|+ |an−2 + an−1| ≤ |tn,n−2|+ tn,n, n≥ 3, (86)

|an−2|+ |an−1|+ |an−3 + an| ≤ |tn,n−2|+ tn,n, n≥ 3, (87)

|an−2|+ |an|+ |an−3 + an−1| ≤ |tn,n−2|+ tn,n, n≥ 3, (88)

|an−1|+ |an|+ |an−3 + an−2| ≤ |tn,n−2|+ tn,n, n≥ 3, (89)

|an−3|+ |an−2|+ |an−1|+ |an| ≤ |tn,n−2|+ tn,n, n≥ 3. (90)

Except for (68), (69), (71), and (73), equality occurs if Pn = ±Tn. If this is the case, then the corresponding coefficient
estimates in particular hold sharply for Pn ∈ Bn, since Tn ∈ Bn. The upper bounds for |an−3| as given in (68) and (69)
can be replaced by the tighter sharp upper bound given in (10), if Pn ∈ Bn. The upper bound for |an−3| + |an−1| as
given in (73) can be replaced by the tighter sharp upper bound |tn−1,n−3|+ |tn−1,n−1| = (n+ 3)2n−4 (according to (8) and
(10)), if Pn ∈ Bn. The upper bound for |an−3 + an−1| as given in (71) can be replaced by the tighter sharp upper bound
|tn−1,n−3+ tn−1,n−1| = (n−5)2n−4 (n≥ 7), if Pn ∈ Bn. Sharp upper bounds for marginal low-degree constellations not covered
by (71), (74), (75), (79), (83) are provided in Remark 1 below.

Proof. (68), (69): The inequality |an−3| ≤ |cn−1,n−3| is due to Rogosinski [42, p. 10]. The explicit two-staged expression for
the upper bound |cn−1,n−3| we deduce as follows: From Lemma 2.8 we adopt the representation

|cn−1,n−3|=
2n−1

n

�n

4
−

1

2

�

+
2n

n

b(n−1)/2c
∑

i=1

|x∗n,i |
��n

4
+

1

2

�

− |x∗n,i |
2
�

=
2n−1

n

�n

4
−

1

2

�

+
2n

n

�n

4
+

1

2

� b(n−1)/2c
∑

i=1

|x∗n,i | −
2n

n

b(n−1)/2c
∑

i=1

|x∗n,i |
3. (91)
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According to the parity of n we furthermore get in view of (4):

|cn−1,n−3| =
2n−1

n

�n

4
−

1

2

�

+
2n

n

�n

4
+

1

2

� n/2−1
∑

k=1

cos
kπ

n
−

−
2n

n

n/2−1
∑

k=1

cos3 kπ

n
, n even (92)

|cn−1,n−3| =
2n−1

n

�n

4
−

1

2

�

+
2n

n

�n

4
+

1

2

� (n−1)/2
∑

k=1

cos
kπ

n
−

−
2n

n

(n−1)/2
∑

k=1

cos3 kπ

n
, n odd. (93)

We now deploy the known identities (50) and (see e.g. [26])

N
∑

k=1

cos3(kx) =
3

4
cos
(N + 1)x

2
sin

N x

2
csc

x

2
+

1

4
cos

3(N + 1)x
2

sin
3N x

2
csc

3x

2
(94)

to obtain with x = π

n
and N = n

2
− 1, if n is even, respectively N = (n− 1)/2, if n is odd,

|cn−1,n−3| =
2n−1

n

�n

4
−

1

2

�

+
2n

n

�n

4
+

1

2

�

�

−
1

2
+

1

2 tan π

2n

�

−

−
2n

n

�

3

8 tan π

2n

−
3

8

�

−
2n

n

�

−1

8 tan 3π
2n

−
1

8

�

=
2n−3

n

�

cot
3π

2n
+ (n− 1) cot

π

2n

�

, n even (95)

respectively

|cn−1,n−3| =
2n−1

n

�n

4
−

1

2

�

+
2n

n

�n

4
+

1

2

�

�

−
1

2
+

1

2sin π

2n

�

−

−
2n

n

�

3

4
cos
(n+ 1)π

4n
sin
(n− 1)π

4n
csc

π

2n

�

−

−
2n

n

�

1

4
cos

3(n+ 1)π
4n

sin
3(n− 1)π

4n
csc

3π

2n

�

=
2n−3

n

�

csc
3π

2n
+ (n− 1) csc

π

2n

�

, n odd. (96)

(70): This follows by the triangle inequality and from (72), compare with (14).
(71): It will suffice to consider the case of n≥ 7 odd. From Lemma 2.2 we deduce the upper bound

|an−3 + an−1| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−3 + Vi,n−1)| ≤

n
∑

i=0

|Pn(x
∗
n,i)||Vi,n−3 + Vi,n−1|

≤
n
∑

i=0

|Vi,n−3 + Vi,n−1|. (97)

Lemmas 2.2 and 2.3 imply that the values Vi,n−3 and Vi,n−1 alternate in sign as follows:

si gn Vi,n−3 = (−1)i+1, 0≤ i ≤ (n− 1)/2, and si gn Vi,n−3 = (−1)i , (n+ 1)/2≤ i ≤ n, (98)

so that the consecutive values V(n−1)/2,n−3 and V(n+1)/2,n−3 exhibit the same sign. Similarly,

si gn Vi,n−1 = (−1)i , 0≤ i ≤ (n− 1)/2, and si gn Vi,n−1 = (−1)i+1, (n+ 1)/2≤ i ≤ n, (99)

so that the consecutive values V(n−1)/2,n−1 and V(n+1)/2,n−1 exhibit the same sign. We furthermore know from (64), (66), and
(67) that

for i = 0 : |V0,n−1|= |V0,n|= n−12n−2 ≤ |V0,n−3|= |V0,n−2|= n−12n−2
�

�

�

n
4
− 1

2

�

�

� holds (which is false if n= 5),

for i > 0 : |Vi,n−1|= |x∗n,i ||Vi,n|= |x∗n,i |n
−12n−1 ≤ |Vi,n−3|= |x∗n,i ||Vi,n−2|=

|x∗n,i |n
−12n−1

�

�

�

n
4
+ 1

2
− |x∗n,i |

2
�

�

� holds.

Dolomites Research Notes on Approximation ISSN 2035-6803



Rack 112

With this information at hand, and invoking Lemma 2.5, we can rewrite the bound (97) as

n
∑

i=0

|Vi,n−3 + Vi,n−1|=
n
∑

i=0

(|Vi,n−3| − |Vi,n−1|) =
n
∑

i=0

|Vi,n−3| −
n
∑

i=0

|Vi,n−1|= |cn−1,n−3| − |cn−1,n−1|. (100)

From (28) and (69) there immediately follows that cn−1,n−1 > 0 and |cn−1,n−3|> |cn−1,n−1|. Suppose that we additionally had
cn−1,n−3 < 0. Then we could continue to rewrite the bound (100) as

|cn−1,n−3| − |cn−1,n−1|= −cn−1,n−3 − cn−1,n−1 = −(cn−1,n−3 + cn−1,n−1) = |cn−1,n−3 + cn−1,n−1|, (101)

as claimed. It thus remains to verify the assumption cn−1,n−3 < 0. But this follows easily from Lemma 2.6 and (21), (22),

(98) which imply that in the representation cn−1,n−3 =
n
∑

i=0
Πn−1(x∗n,i)Vi,n−3 each summand is negative, and this concludes the

proof of (71).
(72): This is Szegö’s inequality (14), as generalized to Pn ∈ Cn by Munch [22].
(73): This follows from (27), (28), and (68), (69).
(74): This follows by the triangle inequality and from (75).
(75): It will suffice to consider the case of n≥ 5 odd. From Lemmas 2.2, 2.6, and 2.7 we get

|an−3 + an−2 + an−1| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−3 + Vi,n−2 + Vi,n−1)|

≤
n
∑

i=0

|Pn(x
∗
n,i)||Vi,n−3 + Vi,n−2 + Vi,n−1|

≤
n
∑

i=0

|Vi,n−3 + Vi,n−2 + Vi,n−1|

=
(n−1)/2
∑

i=0

|Vi,n−3 + Vi,n−2 + Vi,n−1|+
(n−1)/2
∑

i=0

|Vi,n−3 − Vi,n−2 + Vi,n−1|

= 2
(n−1)/2
∑

i=0

max{|Vi,n−2|, |Vi,n−3 + Vi,n−1|}. (102)

Suppose we had
|Vi,n−3 + Vi,n−1| ≤ |Vi,n−2| for i = 0, 1, ..., (n− 1)/2. (103)

This would imply, by Lemma 2.5,

|an−3 + an−2 + an−1| ≤ 2
(n−1)/2
∑

i=0

|Vi,n−2|=
n
∑

i=0

|Vi,n−2|= |tn,n−2|. (104)

And this would further imply |an−3 − an−2 + an−1| ≤ |tn,n−2|, since Qn ∈ Cn with Qn(x) = Pn(−x), and hence altogether we
would get, invoking Lemma 2.7, |an−2|+ |an−3 + an−1| ≤ |tn,n−2|, as claimed.
It remains to verify the assumption (103), which, by Lemma 2.2, can be rewritten as |x∗n,i ||Vi,n−2 + Vi,n| ≤ |Vi,n−2|.

If i = 0, then in view of (63) and (66) one has to show that |V0,n−2+V0,n| ≤ |V0,n−2|, that is, n−12n−2
�

�

�

n
4
− 3

2

�

�

�≤ n−12n−2
�

�

�

n
4
− 1

2

�

�

�.

But this inequality is obviously true for all n≥ 5.
If i > 0, then it is sufficient to show that |Vi,n−2 + Vi,n| ≤ |Vi,n−2| since 0 < |x∗n,i | < 1. By (65) and (67) this amounts to

showing that n−12n−1
�

�

�

n
4
− 1

2
− |x∗n,i |

2
�

�

� ≤ n−12n−1
�

�

�

n
4
+ 1

2
− |x∗n,i |

2
�

�

�. But this inequality holds true for all n ≥ 5, as is readily

seen, which completes the proof.

(76), (77): These follow by the triangle inequality and from (78).
(78): This follows from Szegö’s inequality (14), as generalized to Pn ∈ Cn by Munch [22], and from Chebyshev’s inequality
(7), as generalized to Pn ∈ Cn by Shohat [44].
(79): This follows by the triangle inequality and from (83).
(80), (81), (82): These follow by the triangle inequality and from Szegö’s inequality (13), (14), as generalized to Pn ∈ Cn by
Munch [22].
(83): We proceed similarly as in the proof of (41) and confine ourselves to n≥ 7 odd. Consider the sharp coefficient estimate

|an−3 + an−2 + an−1 + an| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−3 + Vi,n−2 + Vi,n−1 + Vi,n)| ≤
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≤
n
∑

i=0

|Vi,n−3 + Vi,n−2 + Vi,n−1 + Vi,n|

=
(n−1)/2
∑

i=0

|Vi,n−3 + Vi,n−2 + Vi,n−1 + Vi,n|+
(n−1)/2
∑

i=0

|Vi,n−3 − Vi,n−2 + Vi,n−1 − Vi,n|

= 2
(n−1)/2
∑

i=0

max{|Vi,n−3 + Vi,n−1|, |Vi,n−2 + Vi,n|}

= 2
(n−1)/2
∑

i=0

|Vi,n−2 + Vi,n|. (105)

where the last identity is due to |Vi,n−3 + Vi,n−1|= |x∗n,i ||Vi,n−2 + Vi,n| ≤ |Vi,n−2 + Vi,n|. We know from (57) and (60) that the
bound in (105) equals |tn,n−2 + tn,n|, if n ≥ 10. Since Pn ∈ Cn is arbitrary, we obtain for Qn ∈ Cn with Qn(x) = Pn(−x) :
| − an−3 + an−2 − an−1 + an| ≤ |tn,n−2 + tn,n|. Lemma 2.7 then eventually gives

|an−3 + an−1|+ |an−2 + an| ≤ |tn,n−2 + tn,n|, n≥ 10. (106)

The marginal cases n ∈ {6,7,8,9} can be verified by straightforward calculation, compare the proof of (31), so that we
leave the proof to the reader.
(84), (85), (86), (87), (88), (89), (90): These follow by the triangle inequality and from Szegö’s inequality (13), (14), as
generalized to Pn ∈ Cn by Munch [22].

Except for (68), (69), (70), and (71), the condition for equality is due to the fact that Tn is even or odd, depending
on the parity of n, and that the nonzero coefficients of Tn alternate in sign, see (3). The inequality |an−3 + an−1| ≤
|tn−1,n−3 + tn−1,n−1|= (n− 5)2n−4 (n≥ 7), if Pn ∈ Bn, follows from the following observation: Since Pn ∈ Bn, the polynomial
P∼n , given by P∼n (x) = (Pn(x) + (−1)n+1Pn(−x))/2 = an−1 xn−1 + an−3 xn−3 + lower-degree terms, belongs to Bn−1 by the
triangle inequality. Hence (31) can be applied with n := n− 1.

It is remarkable that the moduli of the maximizing leading coefficients cn−1,n−1 and cn−1,n−3 of the even resp. odd
Rogosinski polynomial Πn−1 are two-staged, depending on the parity of n− 1. These novel explicit formulae for cn−1,n−1 and
|cn−1,n−3|, as given in Theorems 2.1 and 3.1, can be checked against the first few Rogosinski polynomials which read, in
power form, as follows:

Example 3.1. Power form representation of Πn−1, 3≤ n≤ 8, according to (20) - (25).

n= 3 : Π2(x) =
2
∑

k=0

c2,k x k = −
5

3
+

8

3
x2. (107)

n= 4 : Π3(x) =
3
∑

k=0

c3,k x k = −(1+ 2
p

2)x + (2+ 2
p

2)x3. (108)

n= 5 : Π4(x) =
4
∑

k=0

c4,k x k =
1

5
(1+ 4

p
5)−

1

5
(12+ 20

p
5)x2 +

16

5
(1+

p
5)x4. (109)

n= 6 : Π5(x) =
5
∑

k=0

c5,k x k =
1

3
(15+ 4

p
3)x −

4

3
(11+ 5

p
3)x3 +

16

3
(2+

p
3)x5. (110)
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n= 7 : Π6(x) =
6
∑

k=0

c6,k x k = c6,0 + c6,2 x2 + c6,4 x4 + c6,6 x6 with (111)

c6,0 =
�

−73+ cos
π

7

�

7− 64 csc
π

14

�

+ csc2 π

14
− 4csc

3π

14
+

+28 csc
π

14

�

1+ 2 cos
2π

7

��

/7(1+ cos
π

7
) = −2.202214... , (112)

c6,2 =
�

− csc2 π

14
+ 4

�

20+
�

5+ 4 cos
π

7

�

csc
3π

14

�

+ 4csc
π

14
(1+ 24cos

π

7
−

−14 cos
2π

7
)
�

/7(1+ cos
π

7
) = 27.412029... , (113)

c6,4 = −
16

7

 

1

cos 2π
7

+
6

cos 3π
7

!

= −65.297441... , (114)

c6,6 =
64

7

 

1

cos 3π
7

!

= 41.087627... . (115)

n= 8 : Π7(x) =
7
∑

k=0

c7,k x k = c7,1 x + c7,3 x3 + c7,5 x5 + c7,7 x7 with (116)

c7,1 = −1+ 2
p

2−
2

−1−
p

2+
Æ

2(2+
p

2)
−

2

1−
p

2+
Æ

2(2−
p

2)
= −11.219463... , (117)

c7,3 = 2− 2
p

2+
14

−1−
p

2+
Æ

2(2+
p

2)
+

6

1−
p

2+
Æ

2(2−
p

2)
= 78.533960... , (118)

c7,5 = −
28

−1−
p

2+
Æ

2(2+
p

2)
−

4

1−
p

2+
Æ

2(2−
p

2)
= −146.751928... , (119)

c7,7 =
16

−1−
p

2+
Æ

2(2+
p

2)
= 80.437431... . (120)

4 Theorem 4.1, Proof, and Example
In Theorem 3.1 we have confined ourselves to consider selected compositions of the first four leading coefficients of Pn ∈ Cn
so that the extremizers were the same polynomials as in Theorem 2.1. However, if one considers arbitrary compositions
of the first four leading coefficients, then new extremizers will emerge. Let us first consider, for n = 6, the particular
composition |a3|+ |a4|+ |a5|:
It follows from Theorems 2.1 and 3.1 that |tn,n−2|, the modulus of the second (nonzero) leading coefficient of Tn, is the

sharp majorant for the following compositions of leading coefficients, if Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k where n ≥ 6 :

|an−2|, |an−2|+ |an−1|, |an−2±an−1|, |an−3|+ |an−2|, |an−3+an−2|, |an−2|+ |an−3+an−1|, and |an−3+an−2+an−1|. However, despite
these extremal properties, |tn,n−2| = |tn,n−3|+|tn,n−2|+|tn,n−1| fails to majorize the particular composition |an−3|+|an−2|+|an−1|
(which is not covered by Theorem 3.1) for arbitrary Pn ∈ Cn, if n= 6. And likewise, the sum of the moduli of the first two
(nonzero) leading coefficients of Πn−1, |cn−1,n−3|+ |cn−1,n−1|= |cn−1,n−3|+ |cn−1,n−2|+ |cn−1,n−1|, which is the sharp majorant
for the composition |an−3|+ |an−1|, fails to majorize |an−3|+ |an−2|+ |an−1| for arbitrary Pn ∈ Cn, if n= 6.
To verify this assertion, we will give an example below (Example 4.1).
This example can be expanded to a general theorem having a negative character: For all n≥ 6, neither ±Tn nor ±Πn−1 has
large enough leading coefficients to maximize the composition |an−3|+ |an−2|+ |an−1|, if Pn varies in Cn.

Theorem 4.1. (Limitations of the Extremal Polynomials ±Tn and ±Πn−1)

Let Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k and n≥ 6 be arbitrary. Let Tn ∈ Cn with Tn(x) =

n
∑

k=0
tn,k x k denote the Chebyshev polynomial

of the first kind, and let Πn−1 ∈ Cn with Πn−1(x) =
n−1
∑

k=0
cn−1,k x k denote the Rogosinski polynomial.

Then, neither |tn,n−2| = |tn,n−3|+ |tn,n−2|+ |tn,n−1| nor |cn−1,n−3|+ |cn−1,n−1| = |cn−1,n−3|+ |cn−1,n−2|+ |cn−1,n−1| majorizes the
composition |an−3|+ |an−2|+ |an−1|, if Pn varies in Cn.

Proof. We consider here, for a change, the case of n≥ 6 even since the proof is quite similar for n≥ 7 odd. The composition
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|an−3 + an−2 − an−1| of an arbitrary Pn ∈ Cn with Pn(x) =
n
∑

k=0
ak x k can be estimated from above, according to Lemma 2.6, as

|an−3 + an−2 − an−1| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−3 + Vi,n−2 − Vi,n−1)| (121)

≤
n
∑

i=0

|Pn(x
∗
n,i)||Vi,n−3 + Vi,n−2 − Vi,n−1| ≤

n
∑

i=0

|Vi,n−3 + Vi,n−2 − Vi,n−1|

= |a∗n−3 + a∗n−2 − a∗n−1|. (122)

This extremal upper bound will be attained by some polynomial P∗n ∈ Cn which satisfies |Pn(x∗n,i)|= 1 for i = 0,1, ..., n in
such a way that all (nonvanishing) summands P∗n (x

∗
n,i)(Vi,n−3 + Vi,n−2 − Vi,n−1) have the same sign, so that equality occurs in

the triangle inequality. We now utilize Lemma 2.2 to obtain (note that Vn/2,n−3 = Vn/2,n−1 = 0 since x∗n,n/2 = 0)

|an−3 + an−2 − an−1| ≤
n/2−1
∑

i=0

|Vi,n−3 + Vi,n−2 − Vi,n−1|+

+
n/2−1
∑

i=0

| − Vi,n−3 + Vi,n−2 + Vi,n−1|+ |Vn/2,n−2|

=
n/2−1
∑

i=0

|Vi,n−3 + Vi,n−2 − Vi,n−1|+

+
n/2−1
∑

i=0

|Vi,n−3 − Vi,n−2 − Vi,n−1|+ |Vn/2,n−2| . (123)

In view of Lemma 2.7 we get the modified upper bound

|an−3 + an−2 − an−1| ≤ 2
n/2−1
∑

i=0

max{|Vi,n−3 − Vi,n−1|, |Vi,n−2|}+ |Vn/2,n−2|. (124)

Suppose we had, for n≥ 6 even, |V0,n−2|< |V0,n−3 − V0,n−1|. This would imply

|an−3 + an−2 − an−1| ≤ 2|V0,n−3 − V0,n−1|+ 2
n/2−1
∑

i=1

max{|Vi,n−3 − Vi,n−1|, |Vi,n−2|}+ |Vn/2,n−2|. (125)

It would follow that the attainable upper bound |a∗n−3 + a∗n−2 − a∗n−1| is larger than (see Lemma 2.5)

|tn,n−2|=
n
∑

i=0

|Vi,n−2|= 2|V0,n−2|+ 2
n/2−1
∑

i=1

|Vi,n−2|+ |Vn/2,n−2|.

And this would finally give |tn,n−2|< |a∗n−3 + a∗n−2− a∗n−1| ≤ |a
∗
n−3|+ |a

∗
n−2|+ |a

∗
n−1|, so that |tn,n−2| = |tn,n−3|+ |tn,n−2|+ |tn,n−1|

cannot be extremal for |an−3|+ |an−2|+ |an−1|, if Pn varies in Cn, n≥ 6 even.
It remains to verify the assumption made above: |V0,n−2|< |V0,n−3−V0,n−1|, if n≥ 6 even. As V0,n−3 = −V0,n−2 in view of Lemma
2.2, it suffices to show that V0,n−2 and V0,n−1 have the same (nonzero) sign, since then |V0,n−3 − V0,n−1|= |V0,n−2 + V0,n−1|=
|V0,n−2|+ |V0,n−1| and |V0,n−1|> 0. Now, compare with the lines following (63),
V0,n−2 = n−12n−2((n− 1)−1n−121−n(n2 + n− 2)tn,n−2 + 1)< 0 since tn,n−2 = −n2n−3 < 0, and
V0,n−1 = −V0,n = −n−12n−2 < 0, if n≥ 6 even, so that both V0,n−2 and V0,n−1 are negative.

Next we are going to show that |cn−1,n−3| + |cn−1,n−1| = |cn−1,n−3| + |cn−1,n−2| + |cn−1,n−1| cannot be extremal for |an−3| +
|an−2|+ |an−1|, if Pn varies in Cn, n≥ 6 even. According to Lemma 2.6 we get

|an−3 − an−1| = |
n
∑

i=0

Pn(x
∗
n,i)(Vi,n−3 − Vi,n−1)|

≤
n
∑

i=0

|Pn(x
∗
n,i)||Vi,n−3 − Vi,n−1| ≤

n
∑

i=0

|Vi,n−3 − Vi,n−1|

=
n/2−1
∑

i=0

|Vi,n−3 − Vi,n−1|+
n/2−1
∑

i=0

| − Vi,n−3 − Vi,n−1|

= 2
n/2−1
∑

i=0

|Vi,n−3 − Vi,n−1|, (126)
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noting that |Vn/2,n−3 − Vn/2,n−1|= 0. This upper bound can be enlarged to

|an−3 − an−1| < 2
n/2−1
∑

i=0

|Vi,n−3 − Vi,n−1|+ |Vn/2,n−2|

≤ 2
n/2−1
∑

i=0

max{|Vi,n−3 − Vi,n−1|, |Vi,n−2|}+ |Vn/2,n−2|

= |a∗n−3 + a∗n−2 − a∗n−1|. (127)

Since |an−3 − an−1| was arbitrary, we in particular have, setting Pn = Πn−1 and noting that Πn−1 is an even or odd polynomial
and cn−1,n−3 and cn−1,n−1 have opposite signs (compare the proof of (71)),

|cn−1,n−3 − cn−1,n−1| = |cn−1,n−3|+ |cn−1,n−1|= |cn−1,n−3|+ |cn−1,n−2|+ |cn−1,n−1|
< |a∗n−3 + a∗n−2 − a∗n−1| ≤ |a

∗
n−3|+ |a

∗
n−2|+ |a

∗
n−1|,

as claimed.

Example 4.1. Consider, for n= 6, the extremal polynomial P∗6 ∈ C6 with P∗6 (x) =
∑6

k=0 a∗k x k, already introduced in [33, p.
294]:

P∗6 (x) = −1+
1

3
(3+ 4

p
3)x +

43

3
x2 +

1

3
(−16− 20

p
3)x3 +

−88

3
x4 +

1

3
(16+ 16

p
3)x5 + 16x6. (128)

Obviously, ±T6 6= ±P∗6 6= ±Π5, and the coefficients of P∗6 satisfy the inequalities |a∗3|+ |a
∗
4|+ |a

∗
5| = 40+12

p
3 = 60.78460...>

|t6,3| + |t6,4| + |t6,5| = |t6,4| = 48, and likewise |a∗3| + |a
∗
4| + |a

∗
5| = 60.78460... > |c5,3| + |c5,4| + |c5,5| = |c5,3| + |c5,5| =

1
3
(76+ 36

p
3) = 46.11794... . Actually, we have |a∗3|+ |a

∗
4|+ |a

∗
5| = 40+ 12

p
3 ≥ |a3|+ |a4|+ |a5| for all P6 ∈ C6 where

P6(x) =
∑6

k=0 ak x k, with equality if P6 = ±P∗6 . Observe that P∗6 6∈ B6 since, for example, |P∗6 (−0.6)|> 1.

5 Concluding Remarks
Remark 1. All inequalities in Theorems 2.1 and 3.1 are sharp, and most of them hold from the least meaningful polynomial
degree n on. But some inequalities are valid only from a larger initial value n = n0 ∈ {4,6,10} on. This initial value is
optimal, i.e., least, in the following sense: The corresponding inequality will be false if one takes n = n0 − 1. This we
now substantiate by (counter-) examples. We have determined extremal low-degree polynomials Pn ∈ Cn which attain the
indicated upper bounds in the following inequalities if n= n0 − 1 :
Inequality (30) with n= n0 − 1= 5 : |a3 ± a4| ≤ 20.8> |t5,3|= 20.
Inequality (31) with n= n0 − 1= 5 : |a3 + a5| ≤ 5.6> |t5,3 + t5,5|= 4.
Inequality (34) with n= n0 − 1= 5 : |a3|+ |a4| ≤ 20.8> |t5,3|= 20.
Inequality (37) with n= n0 − 1= 9 : |a7 + a8 + a9| ≤ 331.24...> |t9,7 + t9,9|= 320.
Inequality (39) with n= n0 − 1= 9 : |a7 − a8 + a9| ≤ 331.24...> |t9,7 + t9,9|= 320.
Inequality (41) with n= n0 − 1= 9 : |a8|+ |a7 + a9| ≤ 331.24...> |t9,7 + t9,9|= 320.
Inequality (71) with n= n0 − 1= 5 : |a2 + a4| ≤ 2.58...> |c4,2 + c4,4|=

4
5
(
p

5− 1) = 0.98... .
Inequality (74) with n= n0 − 1= 3 : |a0 + a1 + a2| ≤ 3.66...> |t3,1|= 3.
Inequality (75) with n= n0 − 1= 3 : |a1|+ |a0 + a2| ≤ 3.66...> |t3,1|= 3.
Inequality (79) with n= n0 − 1= 5 : |a2 + a3 + a4 + a5| ≤ 5.6> |t5,3 + t5,5|= 4.
Inequality (83) with n= n0 − 1= 5 : |a2 + a4|+ |a3 + a5| ≤ 5.6> |t5,3 + t5,5|= 4.

To give the full picture, we additionally provide for the compositions in the quoted inequalities the sharp upper bounds if n
belongs to the remaining marginal range [N1, N2], where N1 = least meaningful polynomial degree and N2 ≤ n0 − 2. This
range is empty for inequalities (74), (75). We have again determined extremal low-degree polynomials Pn ∈ Cn which attain
the indicated upper bounds if n ∈ [N1, N2] :

Inequalities (30), (34) with n= n0 − 2= 4 : max{|a2 ± a3|, |a2|+ |a3|} ≤ 9.
Inequalities (30), (34) with n= n0 − 3= 3 : max{|a1 ± a2|, |a1|+ |a2|} ≤ 4.
Inequalities (30), (34) with n= n0 − 4= 2 : max{|a0 ± a1|, |a0|+ |a1|} ≤ 2.
Inequality (31) with n= n0 − 2= 4 : |a2 + a4| ≤ 2.
Inequality (31) with n= n0 − 3= 3 : |a1 + a3| ≤ 1.
Inequality (31) with n= n0 − 4= 2 : |a0 + a2| ≤ 1.
Inequalities (37), (39), (41) with n= n0 − 2= 8 : max{|a6 ± a7 + a8|, |a7|+ |a6 + a8|} ≤ 144.87... .
Inequalities (37), (39), (41) with n= n0 − 3= 7 : max{|a5 ± a6 + a7|, |a6|+ |a5 + a7|} ≤ 63.31... .
Inequalities (37), (39), (41) with n= n0 − 4= 6 : max{|a4 ± a5 + a6|, |a5|+ |a4 + a6|} ≤ 27.90... .
Inequalities (37), (39), (41) with n= n0 − 5= 5 : max{|a3 ± a4 + a5|, |a4|+ |a3 + a5|} ≤ 12.56... .
Inequalities (37), (39), (41) with n= n0 − 6= 4 : max{|a2 ± a3 + a4|, |a3|+ |a2 + a4|} ≤ 5.82... .
Inequalities (37), (39), (41) with n= n0 − 7= 3 : max{|a1 ± a2 + a3|, |a2|+ |a1 + a3|} ≤ 2.66... .
Inequalities (37), (39), (41) with n= n0 − 8= 2 : max{|a0 ± a1 + a2|, |a1|+ |a0 + a2|} ≤ 1.
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Inequality (71) with n= n0 − 2= 4 : |a1 + a3| ≤ 1.
Inequality (71) with n= n0 − 3= 3 : |a0 + a2| ≤ 1.
Inequality (79), (83) with n= n0 − 2= 4 : max{|a1 + a2 + a3 + a4|, |a1 + a3|+ |a2 + a4|} ≤ 2.
Inequality (79), (83) with n= n0 − 3= 3 : max{|a0 + a1 + a2 + a3|, |a0 + a2|+ |a1 + a3|} ≤ 1.
Remark 2. With regard to Theorem 4.1, it can be shown that actually |cn−1,n−3|+ |cn−1,n−1|< |tn,n−2|= n2n−3 holds, if n≥ 6.

For instance, if n≥ 7 is odd, then this inequality becomes equivalent to showing that
n+ 3

sin π

2n

+
1

sin 3π
2n

≤ n2, in view of (28)

and (69), and a look at the graphs of the corresponding functions in n = x will furnish evidence to the claim. A formal
proof can be based on the identity lim

t→0

sin t
t
= 1.

Remark 3. Proceeding similarly as in the proofs of Theorems 2.1 and 3.1, one can deduce estimates for compositions which
contain even more leading coefficients of Pn ∈ Cn. For example, we have determined the cases where ±Tn is the extremizer
for compositions which contain even the fifth leading coefficient, an−4 (unpublished).
Remark 4. It is interesting to compare, at least asymptotically, the sharp upper bounds tn−1,n−1 for |an−1| and |tn−1,n−3| for
|an−3|, if Pn ∈ Bn, with the sharp upper bounds cn−1,n−1 for |an−1| and |cn−1,n−3| for |an−3|, if Pn ∈ Cn. The greater free moving
space of the graphs of Pn ∈ Cn should result in a larger extremal magnitude of |an−1| and |an−3| when compared with the
extremal magnitude of |an−1| and |an−3| in case of Pn ∈ Bn, since the graphs of the latter polynomials are captured entirely
within the unit square I2. One obtains from (8), (10), (27) resp. (28), and (68) resp. (69), by approximating sin π

2n
by π

2n

and sin 3π
2n

by 3π
2n

, in view of lim
t→0

sin t
t
= 1,

cn−1,n−1/tn−1,n−1 ∼
4

π
and cn−1,n−3/tn−1,n−3 ∼

4

π
= 1.27323... for n→∞. (129)

Thus the majorants tn−1,n−1 and |tn−1,n−3| are tighter than the majorants cn−1,n−1 and |cn−1,n−3|, and they must be scaled,
asymptotically, by the factor 4

π
> 1 in order to equalize the latter ones.

Remark 5. Extremizers in coefficient inequalities for polynomials Pn ∈ Cn need not be unique and may differ by more than
just the sign. Here are two examples to substantiate this claim:

(i) Consider inequality (36) and take n = 4, i.e., |a3|+|a4| ≤ 8. The sharp upper bound 8 will be attained if one takes as an
extremizer P4 = ±T4 ∈ C4, with T4(x) = 1−8x2+8x4, or P4 = ±Q∗4 ∈ C4, with Q∗4(x) =

1
5
(5+3x−37x2−6x3+34x4).

Actually, in inequality (36) there are, for each n≥ 1, infinitely many extremizers from Cn. A constructive proof for
this claim is given in [34, Theorem 2.4].

(ii) Consider inequality (79) and take n = 6, i.e., |a3 + a4 + a5 + a6| ≤ 16. The sharp upper bound 16 will be attained
if one takes as an extremizer P6 = ±T6 ∈ C6, with T6(x) = −1 + 18x2 − 48x4 + 32x6, or P6 = ±Q∗6 ∈ C6, with
Q∗6(x) =

1
6
(−6+ 3x + 105x2 − 16x3 − 272x4 + 16x5 + 176x6).

Remark 6. To derive our coefficient inequalities, we have deployed a conversion from the monomial basis to the Lagrange
interpolation formula. It was pointed out by one of the referees that a transformation from the monomial basis to the
barycentric interpolation formula or to the Chebyshev polynomial basis will simplify the analysis. We will incorporate this
valuable hint in future work on coefficient estimates.
Remark 7. Related papers which deal with estimates for pointwise bounded polynomials are [8], [11], and [46]. Estimates
for pairs of coefficients of bounded complex polynomials are to be found in [4]. Alternative variations on Chebyshev’s
inequality (7) are to be found in [9] and [27].
Remark 8. Some papers of ours related to the subject-matter considered here include

(i) [33] and [34]: Estimates for non-consecutive pairs of coefficients of Pn ∈ Cn.

(ii) [35] and [36]: Adaptions of V.A. Markov’s and Szegö’s coefficient inequalities to polynomials with two prescribed
zeros (at ±1) respectively with one prescribed zero (at −1 or at +1).

(iii) [28] and [29]: Estimates for j-th forward partial sums of coefficients,
j
∑

k=0
ak.

(iv) [30] and [31]: Estimates for leading coefficients of bounded multivariate polynomials.
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