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My joint research with Mirosław Baran

Wiesław Pleśniak a

Two things have a significant impact on a scientist’s research: whether he had a competent teacher and whether he gathered
talented students around him. In both cases I was very lucky, my teacher was an outstanding mathematician, Józef Siciak, and I
can include Mirosław Baran among my best students. I recently devoted an extensive article to Józef Siciak, in which I discussed
his most important results and their impact on the development of complex analysis in the world (see [28]). Mirosław’s sixtieth
birthday is a good opportunity to summarize the results of our joint research. Before I move on to that, I would like to remind
you how this cooperation came about. I met Mirosław in 1983, when as a student he asked me to be the tutor of his master
thesis. I did not know him before, because at that time I did not teach students of the first three years of studies at the Institute of
Mathematics of the Jagiellonian University. However, I agreed, and as it turned out later, it was a very good decision. For the
subject of that work, I chose, with some risk, the then current problem related to the famous Siciak extremal function. Let us
recall that it can be defined as follows. Given a compact subset E of the space CN of N complex numbers, the function

ΦE(z) := sup
n∈N

sup{|p(z)|1/n : p ∈ Pn(CN ), ∥p∥E ≤ 1}, z ∈ CN ,

where Pn(CN ) is the space of polynomials on CN of (total) degree at most n, and ∥p∥E := supE |p|, is called the (polynomial)
extremal function associated with the set E. It was introduced in [32]. Zakharyuta [35] (if ΦE is continuous) and later Siciak
[33] (for any E) showed that logΦE is equal to the function

VE(z) := sup{u(z) : u ∈ L(CN ), u≤ 0 on E},

where L(CN ) is the Lelong class of all plurisubharmonic functions on CN with logarithmic growth as |z| →∞. By the Bedford-
Taylor results on the complex Monge-Ampère operator [11], the function VE is known to be a multidimensional counterpart of
the classical Green function of the unbounded component of C \ E with (logarithmic) pole at∞. From the definition of ΦE one
can immediately derive the Bernstein-Walsh-Siciak inequality: for each polynomial p on CN ,

|p(z)| ≤ ∥p∥E [ΦE(z)]
deg p for z ∈ CN , (B-W-S)

which is specially useful if ΦE is continuous on E. (Then it must be continuous on the whole space CN and the set E is said to be
L-regular.) If, moreover, logΦE is Hölder continuous, i.e.

VE(z) = logΦE(z)≤ M (dist(z, E))s for z ∈ CN (HCP)

with some constants M > 0 and s ∈ (0,1] independent of z, then by Cauchy’s Integral Formula one easily gets a (multivariate)
Markov type inequality: for each polynomial p,

∥grad p∥E ≤ M1(deg p)r∥p∥E , (M)

where M1 is a positive constant and r = 1/s. So far, all known (Andrei) Markov sets have the HCP property. It is a long-standing
open problem of whether both properties (M) and (HCP) are equivalent. Surprisingly, however, in the paper [4] Baran and
Białas-Cież showed that the HCP condition is equivalent to a Vladimir Markov type inequality

∥DαP∥E ≤ M |α|(deg P)m|α|(|α|!)1−m∥P∥E ,

where the constants m, M > 0 are independent of the polynomial P ∈ C[z1, . . . , zN ], which is a multivariate counterpart of the
classical Vladimir Markov inequality

∥P(k)∥[−1,1] ≤
n2(n2 − 1) · · · (n2 − (k− 1)2)

1 · 3 · · · (2k− 1)
∥P∥−1,1]

for any polynomial P of degree not greater than n.

Siciak introduced the function ΦE in order to extend to the multidimensional case the well-known Bernstein-Walsh theorem
characterizing analytic functions in a neighbourhood of a (regular) compact set E in C by uniform polynomial approximation on
E with geometric rate. Thus, in particular, he got a far reaching strengthening of Runge’s theorem. A crucial role was played there
by the (B-W-S) inequality. It has appeared (see [27]) that an analogous role but in polynomial approximation of C∞ functions is
played by the Markov inequality (M). Let us also recall a uniform version of the Bernstein-Walsh-Siciak theorem which turned out
to be very useful in many problems of the constructive function theory. It first appeared in my paper [23].
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Theorem. Let H∞(U) be the Banach space of bounded holomorphic functions on an open subset U of CN equipped with the
uniform norm ∥ f ∥U := sup | f |(U). Then for every polynomially convex compact subset E of U there exist constants C > 0 and
a ∈ (0,1) such that for each function f ∈ H∞(U) and for each n ∈ N,

distE( f ,Pn)≤ C∥ f ∥U an.

Since the introduction of the extremal function, Siciak has asked for a formula for ΦE in case E is the unit ball in the
space Rn. The problem has been extensively studied starting from the 70s of the last century. An answer was first given by
Lundin in [18]. I recommended the reading of this paper to Mirosław. The results of his work on Lundin’s article went far
beyond the standard master degree paper. Using an original method based on the properties of the Joukovski transformation
J(ζ) = 1

2 (ζ+ ζ
−1) (ζ ∈ C \ {0}) and its generalized form Jz(ζ) =

1
2 (ζz + ζ

−1z), where z ∈ CN and ζ ∈ C \ {0}, Baran extended
Lundin’s ideas and provided formulas for Siciak’s function for a wider family of subsets in RN . In particular, if E = B := B(0, 1) is
the unit ball in RN , he got again Lundin’s formula

ΦB(z) =
q

h(∥z∥2 + |z2
1 + · · ·+ z2

N − 1|), (z ∈ CN ),

where h(ζ) = ζ+
p

ζ2 − 1 (ζ ∈ C \ [−1,1]) is the inverse of the map J restricted to {z ∈ C : |z| > 1}, and the branch of the
square root is chosen so that h(t)> 1 for t > 1, which also was proved independently by Bedford and Taylor [10] and Sadullaev
[30]. If E = SN is the standard simplex in RN , i.e. SN is the convex envelope of the set {0, e1, . . . , eN}, where {e1, . . . , eN} is the
standard orthonormal basis in RN , Baran’s method provides the formula

ΦSN (z1, . . . , zN ) = h(|z1|+ · · ·+ |zN |+ |z1 + · · ·+ zN − 1|)

for (z1, . . . , zN ) ∈ CN , and the same method can be applied to other non-symmetric convex compact sets. The results of Baran’s
master degree paper were published in the Annales Polonici Mathematici [1], which is not often the case with such works.
Moreover, they were also included in Maciej Klimek’s well-known monograph on the pluripotential theory [17], section 5.4. To
paraphrase a well-known saying about Hitchcock’s films, Mirosław’s first results were like an earthquake, and the later ones were
more and more louder. This is evidenced by the awards he received for them: the award of the Minister of National Education for
his doctoral dissertation "Siciak’s extremal functioin and complex equilibrium measure for subsets of the space Rn" written under my
supervision and defended in 1990 at the Jagiellonian University, the prestigious Stanisław Zaremba Prize awarded to him by the
Polish Mathematical Society in 1993 for papers on pluripotential theory published in 1992 or the Prime Minister Award for the
habilitation thesis "Conjugate norms in Cn and related geometrical problems" (see [3]) defended at the Institute of Mathematics of
the Polish Academy of Sciences in 1998.

It is not my intention, nor would it be possible, to discuss in this short article all the achievements of Mirosław Baran. I will
limit myself here to only a few results obtained in cooperation with me. The study of the properties of Siciak’s extremal function
found a prominent place in both the investigations of Baran and myself. It was also the starting point for our common interest in
polynomial inequalities in the space CN . We focused a lot of attention in these studies on the classical Markov and Bernstein
inequalities and their multidimensional generalizations.

Given a non-empty compact set E in CN and a number r ≥ 1, consider the following condition

M(r) there exists a constant C > 0 such that for every polynomial P ∈ Pn(CN ) (n= 1,2, . . . ) one has

∥grad P∥E ≤ Cnr∥P∥E .

If E satisfies M(r) for some r ≥ 1, we say that E is a Markov set. If N = 1 and E = [−1, 1] then by the classical Markov inequality
E satisfies M(2) with C = 1. We define

µ(E) := inf{r : E satisfies M(r)}

and call this number Markov’s exponent of E. If E is a continuum in the complex plane C, then by the well-known result of
Pommerenke [29], 1 ≤ µ(E) ≤ 2. For any compact subset E of RN , we have µ(E) ≥ 2, which easily follows from extremal
properties of Chebyshev polynomials. If E is a fat (i.e. E = intE) convex compact subset of RN then µ(E) = 2. Goetgheluck
[16] showed that if E = {(x , y) ∈ R2 : 0 ≤ x ≤ 1,0 ≤ y ≤ x p} (p ≥ 1), then µ(E) = 2p. This result inspired me to study the
L-regularity and Markov’s property of semianalytic and more general, subanalytic subsets of RN (cf. [26],[20]). If E is an m-UPC
subset of RN (for the definition of a UPC set see [20]), whence in particular, if (for some m) E is a fat subanalytic compact set,
then by Baran [2], µ(E)≤ 2m. If E = {(x , y) ∈ R2 : 0< x ≤ 1, 0< y ≤ e−1/x}∪ {(0, 0)}, then by Zerner [36], µ(E) =∞, which
means that E is not Markov (although it is L-regular). If E is a Markov set in CN (N > 1) then E does not have to satisfy M(r)
with r = µ(E). Such an example was constructed by Baran in R2; it can be found in [5].

In constructive function theory, there is an important question concerning the invariance of fundamental inequalities (like the
Bernstein-Walsh or Markov ones) under polynomial or more general, holomorphic maps. Such a problem for inequalities related
to Siciak’s extremal function ΦE (multidimensional Bernstein-Walsh-Siciak inequality or Hölder property of ΦE) was studied by
myself in [24] and [25]. (The results of the latter paper have recently been been essentially sharpened by Rafał Pierzchała [22].)
In [6], there was investigated a corresponding problem for Markov’s inequality. In particular we showed the following

Theorem. Let E be a polynomially convex, compact subset of CN satisfying M(r). Let f be a holomorphic mapping defined in a
neighbourhood U of E, with values in CN , such that f (E) is not pluripolar and Jac f (z) ̸= 0 for each z ∈ E. Then f (E) satisfies
M(r) as well.
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Here the assumption that f (E) is not pluripolar seems to be too restrictive. If we knew that the Markov sets are not pluripolar, we
could replace it by the requirement that f is non-degenerate on at least one of the connected components of U , say V , that meets
E at a non-pluripolar set (i.e. rankV f := supz∈V rank f (z) = N), since then f (E) would also be non-pluripolar. This, however,
still seems to be unknown except for N = 1 due to a long-awaited result of Leokadia Białas-Cież [12]. The situation is much
better if E is a UPC compact set in RN and f : RN → RN is a polynomial map such that Jac f (x) ̸= 0 for each x ∈ int E. Then
by [6],Theorem 2.8, f (E) is Markov. Actually, in this case, one can also give an estimate for µ( f (E)) in function of µ(E) and
parameters of E and f . Results of [6] have recently been essentially extended by Pierzchała, who succeded in replacing our
(rather strong) assumption of non-vanishing of Jac f on E by a natural one of non-degeneracy of f .

Theorem ([21]). Let ; ≠ E ⊂KN (K= R∨C) be a Markov set and f : KN →KN ′ be a polynomial map such that

rank f :=max{rank f (ζ) : ζ ∈KN}= N ′ (N , N ′ ∈ N).

Then f (E) is also a Markov set.

In case N = N ′ = 1 this result was also proved in [5].

Theorem ([22]) Let f : U → CN ′ , where U ⊂ CN is an open set, be a non-degenerate holomorphic map (N , N ′ ∈ N). Assume
that a compact set E ⊂ CN is Markov, the polynomial hull K̂ of K is contained in U , and f (K) is a non-pluripolar subset of CN ′ .
Then h(K) is Markov as well.

At the end of the 20th century, many authors dealt with Markov or Bernstein type inequalities on algebraic subvarieties. Such
investigations were conducted by L. Bos, N. Levenberg, P. Milman, B.A. Taylor, A. Brudnyi, V. Totik, C. Fefferman, R. Narasimhan,
N. Roytvarf, Y. Yomdin among others. Also, Baran and I devoted three papers [7], [8] and [9] to these issues; one can find there
references to the papers of the authors cited above.

In 1983, Sadullaev [31] proved an important characterization of algebraic sets in the class of analytic subsets A of the
space CN , viz. A is algebraic if and only if Siciak’s extremal function ΦE is locally bounded in A for some (and hence for each)
non-pluripolar compact subset K of A. In other words, he characterized algebraic sets in terms of the Bernstein-Walsh-Siciak
inequality for compact subsets of an analytic set. It appears that analogously one can characterize algebraic submanifolds of the
space RN with the aid of (tangential) Markov or Bernstein type inequalities for derivatives of polynomials on curves. Let us add
that such inequalities do not directly follow from their full-dimensional versions. In paper [7], motivated by earlier results of
Bos, Levenberg, Milman and Taylor (see [14], [15]), we characterized semialgebraic curves in RN admitting so called analytic
parameterization in terms of Bernstein type or van der Corput-Schaake type inequalities. The ingenious concept of analytic
parameterization that was introduced by Baran, helped us to overcome problems with the regularity of compact submanifolds of
RN .

Definition. A compact curve K in RN is said to admit an analytic parameterization if there exist r ∈ N, α > 1 and R-analytic maps
ϕ j = (ϕ j,1, . . . ,ϕ j,N ) : αI → K , j = 1, . . . , r, where I = [−1,1], such that each ϕ j |I is a bijection onto ϕ j(I) and K =

⋃r
j=1ϕ j(I).

Observe that the natural parameterization h(t) = t of the line segment I = [−1,1] does not fit the requirements of the above
definition, since there is no α > 1 such that h((−α,α)) ⊂ I . If we replace h by ϕ(t) = sin π2 t then (K ,ϕ) becomes a curve with
an analytic parameterization. A curve may admit an analytic parameterization even without being of class C1. An example is
given by K = {(x , y) ∈ R2 : y2 = (1− x2)3} which can be parameterized by ϕ(t) = (cosπt, sin3πt). Any curve K in RN such
that K = h(I) where h is an analytic map in an open neighbourhood of I , obviously admits an analytic parameterization. By
Puiseux’s theorem (see e.g. [19]) any semialgebraic curve in RN , i.e. a finite union of subsets of RN of the form

{x ∈ RN : fi(x) = 0, g j(x)> 0, i = 1, . . . , m, j = 1, . . . , n},

where fi and g j are in R[x1, . . . , xN ], is piecewise C1 and moreover, it admits an analytic parameterization. The main result of
[7] reads as follows.

Theorem. Let K be a compact curve in RN with an analytic parameterization {ϕ j} with parameters r and α. Then the following
conditions are equivalent:

(i) K is semialgebraic;

(ii) there exist positive constants M1 and δ0 such that

VK(ϕ j(ζ))≤ M1δ if dist(ζ, I)≤ δ ≤ δ0, j = 1, . . . , r;

(iii) there exist positive constants M2 and C such that for each j = 1, . . . , r and P ∈ C[z1, . . . , zN ],

|P(ϕ j(ζ))| ≤ M2∥P∥K if dist(ζ, I)≤ C/deg P;

(iv) K admits a Bernstein type inequality: there exists a constant M3 > 0 such that for each j = 1, . . . , r and P ∈ C[x1, . . . , xN ],

|(P ◦ϕ j)
′(t)| ≤ M3(deg P)∥P∥K , t ∈ I ;

(v) K admits a van der Corput-Schaake type inequality: there exists a constant M4 > 0 such that for each j = 1, . . . , r and
P ∈ R[x1, . . . , xN ],

|(P ◦ϕ j)
′(t)| ≤ M4(deg P)

�

∥P∥2K − P2(ϕ j(t))
�1/2

, t ∈ I .
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In the proof of the above theorem we needed, among other things, the estimate

δn(E) = O(ndim X (E))

of the dimension δn(E) of the space Pn(E) of the restrictions to a compact set E ⊂ CN of all polynomials on CN of degree at most
n, where X (E) is the Zariski closure of E. Such an estimate is well-known in algebraic geometry. However, we found it interesting
to provide its proof by "purely analytic methods". To do this, we combined the uniform version of the Bernstein-Walsh-Siciak
theorem with the Krein-Krasnoselski-Milman Lemma from the geometric theory of Banach spaces and Sadullaev’s criterion as well.
In the proof of the estimates of VK in (ii) we have used delicate techniques involving properties of the inverse of the Joukovski
function which is spécialité de la maison of Baran. For the convenience of the reader we cite here in extenso the

Krein-Krasnoselski-Milman Lemma (see e.g. [34], p. 269). Let X be a normed linear space and G1, G2 two linear subspaces
of X such that dim G1 <∞, dim G1 < dim G2. Then there exists a point x ∈ G2 \ {0} that is orthogonal to G1 in the sense of
Birkhoff, i.e.

∥x + y∥ ≥ ∥x∥ for every y ∈ G1.

Paper [8] deals with tangential Markov type inequalities for (the traces of) polynomials on algebraic sets. A crucial role
there is played by the invariance of non-pluripolarity of sets under non-degenerate analytic maps defined on open subsets of CN ′ ,
with values in a locally analytic subsetM of CN of pure dimension min(N ′, N) (see [8], Lemma 0.1). This fact together with the
unifom Bernstein-Walsh-Siciak theorem and again Sadullaev’s criterion made it possible to prove the following estimate for the
Zakhariuta-Siciak extremal function:

Proposition. Let E be a compact non-pluripolar subset of CN ′ and let f be an analytic map defined in an open neighbourhood
U of Ê, the polynomial hull of E, with values in a min(N ′, N)-dimensional algebraic set M in CN (where M = CN if N ′ ≥ N).
Assume that rankE f =min(N ′, N). Then there exist constants M > 0 and δ0 > 0 such that

Vf (E)( f (z))≤ MVE(z) as dist(z, E)≤ δ ≤ δ0.

The above estimate combined with Cauchy’s Integral Formula yield a tangential Markov type inequality, which reads as follows.

Theorem. With the above assumptions on f , if E is an HCP compact subset of CN ′ with parameter r, then there exists a constant
C1 > 0 such that for any polynomial Q ∈ C[z1, . . . , zN ] of degree d one has

|DT (t,v)Q(z)| ≤ C1d r∥Q∥ f (E),

where z = f (t) with t ∈ E. Here T (t, v) = Dv f (t), the derivative at the point t of the map f in direction v.

If k = 1 and E = [0, 1], Theorem above covers in particular Proposition 6.1 of [15]. Some special cases have also been handled,
namely if E is a UPC subset of the space RN or f is a polynomial map from R to RN .

In the last joint paper [9] we go back to the problem of the characterization of semialgebraic curves in RN in terms of Bernstein
and van der Corput-Schaake type inequalities but now in the essentially more difficult setting of semialgebraic sets in RN of
higher dimensions. For this purpose we had to introduce an analytic parameterization of order m.

Definition. A compact subset K of RN is said to admit an analytic parameterization of dimension m, 1≤ m≤ N , if there exist
ρ > 1, r ∈ N an real-analytic maps ϕ j = (ϕ j1, . . . ,ϕ jN ) : Bm(ρ)→ K , j = 1, . . . , r, such that for each j we have rankϕ j = m and

K =
r
⋃

j=1

ϕ j(Bm).

It is not difficult to see that in the Definition above, instead of the unit ball Bm, we could be working with the m-dimensional cube
Im = [−1, 1]m. A large family of compact sets with an analytic parameterization is furnished by the Gabrielov-Hironaka-Łojasiewicz
subanalytic geometry (for the rudiments of this theory the reader is referred to [13]). It follows from the famous Hironaka
Rectilinearization Theorem that for any compact, subanalytic subset K of an m-dimensional real-analytic manifoldM of pure
dimension m there exist a finite number of real-analytic maps ϕk : Rm→M such that

⋃

kϕk(Im) = K (see [20], Corollary 6.2).
Hence such a K admits an analytic parameterization of dimension m. Let us recall that ifM = RN , then such a K is UPC, whence
HCP, and consequently it admits Markov’s inequality ([20]). The main result of [9] reads as follows.

Theorem. Let K be a compact subset of RN with an analytic parameterization {ϕ j}rj=1 of dimension m, 1 ≤ m ≤ N , with
parameters r ∈ N and ρ > 1. Then the following conditions are equivalent:

(a) the Zariski dimension of K is m;

(b) there exist positive constants C2 and δ2 such that

VK(ϕ j(z))≤ C2δ

for dist(z,BN )≤ δ ≤ δ2, z ∈ Cm, j = 1, . . . , r;

(c) there exist positive constants C3 and δ3 such that for every polynomial P ∈ C[x1, . . . , xN ] of degree at most k,

|P(ϕ j(z))| ≤ C3∥P∥K
for dist(z,Bm)≤ δ3/k, z ∈ Cm, j = 1, . . . , r;
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(d) (Bernstein Inequality) there exists a constant C4 > 0 such that for each polynomial P ∈ C[x1, . . . , xN ],

DT j (t,v)P(x)| ≤ C4(deg P)∥P∥K ,

for x ∈ K j := ϕ j(Bm), t ∈ ϕ−1(x)∩Bm and v ∈ Sm−1, j = 1, . . . , r. (here T j(t, v) = Dvϕ j(t));

(e) (van der Corput-Schaake Inequality) there exists a constant C5 > 0 such that for each polynomial P ∈ R[x1, . . . , xN ],

|DT j (t,v)P(x)| ≤ C5(deg P)(∥P∥2K − P2(x))1/2,

for x ∈ K j = ϕ j(Bm), where t ∈ ϕ−1
j (x)∩B

m, and v ∈ Sm−1,
j = 1, . . . , r.

Although the above theorem looks similar to the 1-dimensional counterpart from [7], its proof required much more difficult
techniques, developed by Baran in his papers [1] and [2] concerning formulas for Siciak’s extremal function for the unit ball
in Rm. We also took advantage of the fact that an irreducible closed analytic subset E of CN of pure dimension m (m ≤ N)is
algebraic if and only if dimPk(E)=O(km). Let us end by the remark that since every compact real-analytic manifold admits an
analytic parameterization, the equivalence (a)⇔ (d) covers the main result of [15].

My cooperation with Mirosław Baran was not limited to joint publications. For a long time, we animated together a seminar
on the theory of approximation in the Institute of Mathematics of the Jagiellonian University, which I initiated in the year 1979.
Mirosław was its pillar during this period and one of the most frequent speakers. This seminar ended in 2015 when I retired. But
that’s a quite different story. I also participated in his training of young reserchers, I was a reviewer of doctoral dissertations
of three of his students. We participated together in many international conferences on complex analysis and approximation
theory. I will mention only two here that were especially important to me: Journée d’analyse réelle et complexe, organized on 23th
October 2003 by the Université de Toulon et du Var which awarded me an honorary doctorate, and Conference on Constructive
Approximation of Functions, Bȩdlewo, 30th June - 5th July 2014, dedicated to me on the occasion of the 70th birthday, of which
Mirosław was the main organizer. With this article, I would like to thank him for our long-term cooperation. AD MULTOS ANNOS,
MIROSŁAW!

Figure 1: Toulon 2003. From the left: Mirosław Baran, Wiesław Pleśniak, Pierre Goetgheluck, Józef Siciak.
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[7] M. Baran, W. Pleśniak, Bernstein and van der Corput-Schaake type inequalities on semialgebraic curves, Studia Math. 125 (1) (1997), 83-96.
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