3

PADOVA UNIVERSITY PRESS

Dolomites Research Notes on Approximation

Volume 18 - 2025 - Pages 91-105

On Error Bounds for Milne-Mercer type inequalities through
differentiable s-convex functions

Benaissa Bouharket?® - Azzouz Noureddine?

Communicated by Maria Carmela De Bonis

Abstract

This study presents Milne-Mercer-type inequalities for a specific integral connected to differentiable
s-convex functions using conformable fractional operators. Furthermore, we introduce novel findings
that extend and generalize specific known inequalities in current literature. We examine additional cases
where the derivative functions are both Lipschitzian and bounded.

1 Introduction

Fractional calculus is an extension of classical calculus, which has progressed rapidly, particularly thanks to the fascinating idea of
convexity. This sophisticated mathematical framework has discovered numerous applications in various fields such as optimization
theory, stochastic theory, and functional analysis. Fractional calculus is now a highly sought-after field of study, generating
substantial advances and interest in both theoretical and applied mathematics due to its ability to offer more flexible models and
deeper perspectives. The constant discovery of new applications and the creation of increasingly complex instruments further
enhance its significance and adaptability in contemporary scientific research. In [8], the author presents a class of functions
known as s-convex functions.

Definition 1.1. Lets € (0,1]. The function ® : I € R — R is defined as s-convex in the second sense if & is non-negative and for
any z,,2, €I, £ € [0, 1], the following condition holds
B(Ez +(1—8)2,) < & 0(21) + (1 — &) ®(z). @
If the inequality (1) is reversed, then & is classified as s-concave function in the second sense.
By setting
¢ s=1, the notion of s-convex function simplifies to convex function [18].
e s — 0, the concept of s-convex function reduces to P-functions [20].

According to [17], the Jensen-Mercer inequality is as follows. If f is a convex function on [b,, b, ], then
f (bl +Db, _Zgjzj) < f(by) +f(b2)_Z€jf(zj),
=1 =1

for each z; € [b;, b,] and &; €(0,1) (j =1;n) with > & =1
=1
Based on [13], the conformable fractional integral operators with order @ > 0 and p € (0, 1] are represented as follows.

U T R A C ) it (o ) 20 SO
"% ()= s Jb ( ; ) by @i x>b,

e 1 [ (b= x)P = (by— )P\ B
przf(x)_@L ( 5 ) (by—t)P7Lf(t)dt, x < b,.
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For p = 1, the preceding operators are reduced to Riemann-Liouville fractional operators of order a > 0, as follows:

% f) = ﬁfbl (x— 0 f(0)dt, x> by,

by
% 00 = ﬁf (t—x) f(0)dt, x<b,.

The beta-Euler function (.,.) is defined for any p,q > 0 as follows:

1
B(q,p) = J (1—y)t yrdy.

One of the most well-known quadrature rules is the Milne rule, which is a successful numerical approach for estimating the
integral of a function. It is derived from the larger family of Simpson’s rule, which is also known as the principle of quadrature.
There have been several studies that investigate the error estimates associated with this formula over a variety of integrals and
classes of functions, and these works have been used to conduct significant research on the correctness of Milne’s rule. Readers
are encouraged to consult [3, 4, 5, 6, 9, 14, 15, 16, 19]for more research on this formula.

In 2022, Djenaoui and Meftah introduced a Milne inequality for convex functions with Riemann integral [9, Corollary 2.4.].

3|20 —f (2522 20| - = J:f(t)dt

< X022 (1) + |7 0))- @

In 2023, Budak et al. established a fractional Milne type inequality for convex functions using Riemann-Liouville integral operators
[7, Theorem 1.].

1 b, +b, 27 M (a+ 1) [ -, N
’g [Zf(b1)—f (T) +2f(b2)] T b 3@+f(bz) +3@7f(b1)
€)
4a+1 , ,
< Taaa e o) (I ] + [ @a)]).
In [1], Benaissa and Sarikaya established the required Lemma.
Lemma 1.1. Let £ € (0,1) and s € [0, 1]. The following inequality holds:
£+(1-g&y <2, )

Theorem 1.2 (Holder inequality). Let p, g > 1 with % + % = 1. If ¥ and ® are real functions defined on [A,,A,] and if |[¥|?, |®|?
are integrable functions on [A,, A,] then

Ao A2 % Az %
J W ()®(t)|dt < (j ()P dt) (J |®(6)|? dt) .
A A M

The power-mean integral inequality, derived from the Holder inequality, can be expressed as follows:

Theorem 1.3 (Power mean integral inequality). Let p = 1 and W, & be two real functions defined on [A, A, ]. If |[W|, |[W||®|P are
integrable functions on [b,, b,] then

Az A2 17%’ Az %
f |W(t)<1>(t)|dtSU IW(t)Idt) U IW(t)Ilé(t)lpdt) .
A A A

For additional details and improvements of the power-mean integral inequality, consult references [12] and [2].

Building on previous research, we have developed an enhanced version of the Milne-Mercer type inequality specifically
for s-convex functions. This new formulation utilizes conformable fractional integral operators, offering a more refined and
comprehensive approach. Our work expands the theoretical framework, providing deeper insights and potentially broader
applications in the study of s-convex functions. By integrating these advanced mathematical tools, we aim to contribute
significantly to the ongoing development and understanding of inequalities in the context of conformable fractional calculus.
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2 Fundamental Identity

Lemma 2.1. Let a> 0, p €(0,1] and 2,y € [b;, b,] C R where z < y. If f : [b;, b,] = R is a differentiable mapping such that
f’ €Ly ([by, b,]), then the following identity holds.

S[2r i+ b,=y) =7 (b5, = X ) 256 + b, —5)]

2P pT(a+1) [

L% _f(by+by—y)+ 37
(y —z)pe (b1+b-5%) by 2= ) (b1+b2

Ly flbit by —z)]
5)

= y;z Ll(g_(1—tp)a){f’((1—t)(bl+b2—z+Ty)+t(bl+b2_z))

—f/((l—t)(bl+b2—Z+Ty)+t(b1+b2—y))}dt.

Proof. First, the following integral calculus is required. Let z,y € [b;, b,] where z < y and putting & = t(b; + b, —y) + (1 —
t)(b, + b, — %), we get

J:(l_tp)a_ltp_lf(t(bl+b2_y)+(1_t)(b1+b2—z;y))dt

-G=) f [((bi 5= E2) b+ b)) (100232 ) )

1+b2—y

x ((by +by— ) =€) F(E)dE

— 2 P a—1 p~a
_(y_z) U@, L f bt b

Taking & = (1 —t)(b; + b, — ZJrTy) +t(by + b, —2), we get

z+Yy
2

J (1— Py o1 f ((1 — )by + by— 2y t(b, + b, —z))dt

by+by—2z

- (yiz)paﬁﬁbzﬂzy [(Cbr+ b, =)= (b1 + b, Z*Z'Y))” (g~ (s +b2_22y))f7]“

x (&= (by + by — Z)) ' F(E)dE

— 2 e a—1 p~a
_(y_z) P F(a) j(b1+b2—Z+Ty)+f(b1+b2_z)'

By utilizing the integration by parts method, we can obtain the following expression:

I8 :Ll((l—tp)a_g)f/(t(lh+b2—y)+(1—t)(b1+b2_Z+TJ’))dt

=_(yi—z)((1—tp)a_g)f(t(b1+b2—y)+(1—t)(b1+b2_z;y))

_(Zap)J1(1_tp)a—1tp—lf(t(b1+b2—y)+(1—t)(b1+bz_z;y))dt
0

y—z
(Zproenen-Yloen-)
_(y iz)le PT(a+1) pjgbﬁbz_%y)‘f(bl +by,—y).
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Similarly,
= ) ((1 )f ((1—t)(b1+b2—%)+t(b +b2—z))

(ﬁz)
(

2aP J(l tP)21 o= 1f((1—t)(b1+b2——y)+t(b1+bz—z))df

1

tP)* —g)f((l—t)(bl+b2—z+Ty)+t(b1+b2—z)) .

+
z

y—
(7=
+ (E)pm RICERErA

(25 by=5)= 35 (b4 0, 32
g B4, =0),

As a result, the following equality is valid:

—p)= S[25 b+ b= f (bt b= X )4 26y + b, -2

20071 o (o +1)
(y —=)p
So the proof is complete. O

pra pra _
[3'(bl+bz_z%y),f(b1+b2 WAPT o f it by z)].

(b1+by—

3 Milne-Mercer inequality via power-mean integral inequality
To demonstrate the next results, we require the following inequality.

E 421 (1—&) <4 forall £€(0,1)and s < (0,1]. (6)
Proof. Fors € (0,1], it follows that 0 < 1—s < 1 and 1 < 2'"*. By using (4), we obtain

gs + 2173 (1 _ g)s < 217555 + 2175 (1 _ 6)5 — 2175 [gs + (1 _ E)S] < (2175)2 .

We present the first result for the Milne-Mercer type inequality relying on conformable fractional integral operators.

Theorem 3.1. Let p > 1 and s € (0, 1]. Assume that the assumptions of Lemma 5 hold. If |f'|P is an s-convex mapping in the second
sense on [ by, b, ], then the following Milne-Mercer type inequality via conformable fractional integral operators holds.

z+Yy

%[Zf(bl"'bz_J’)_f(bl"'bz_ )+2f(b1+b2—z)]

_2"“’1 pT(a+1)
(y —z)pe

(br+b 7

p~Na — p~a —
(73 ey Pt b= 4238 (b b =5)]

25— , 1 4 ]_ ].
<O= ()T (7t b= + 1+ b=} (52 (a1, 1)),
Proof. Using the absolute value of identity (5) gets

S[25 0+ =)= (b4 b= X ) 127 (b, + b,-9)]

_29‘7‘_1 pT(a+1) [
(y —=)ee

<22 [ (3-a-er)
|
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Let p > 1, applying the Power-mean integral inequality yields:

[[(-o-em)
ol

f((1 t)(b1+b2 y)+t(b1+b2 z))| ‘f ((1 t)(b1+b2 ;y)+t(b1+b2 y))H

(] o))

l(f ——(1 tP)* |f (1 t)(lerbz—%)+t(b1+b2 z)) );

+J ——(1 tP)* ‘f (1 t)(b1+b2 *2'3’)+t(b1+b2 y))| );]

Given that A7 +B? < 2177 (A+ B)7, we get

[ (Gomen) ool on)
(f ((1 t)(b +b, —%)+t(b +b,— y))H
< (Jl (% -(1- tP)“) dt)l_; 2"
0
X[J;l(g_(1_tp)a)(‘f/((1_t)(bl+b2_z—;y)+t(b1+bz—2))‘p

+(f’((1—r)(b1+bz—zzy)+t(b1+b2—y))|P) dt]%.

As |f’|P is an s-convex function, then

f’((1—t)(b1+b2—zzy)+t(b1+b2—z))‘p <(1—-t)F ‘f’(b1+b2—z-|2_y)r+ts |F(by+ by =),

e ‘f’((l—t)(bl+bz—Z;y)+t(b1+b2—z))r+‘f’((l—t)(bl+b2—Z;y)+t(b1+b2—y)))P
®
S2(1—t)s‘f (b2 + 2, —%)‘ + 6 [ by + by = )| + | by + by =)',
and
‘f’(b1+b2— z+y 'f b1+b2 Y. b, +b,— )
: ©

3(5) [15Chy + b= +[/Cby + by =2)]' .
Adding (9) to (8) and applying (6), we deduce

‘f (1- t)(bl—i—bz—%)—i—t(bl—i—bz

+|f’((1—t)(b1+b2—Z+Ty)+t(b1+b2—y)))p

< (27— ey + ) [|F/(by + by =Y + |f/(by + by —2)[]

< 41_5[|f/(b1 +by =y +1f (b, + bz—z)|"],
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Therefore
Ll(g—(1—tﬂ)“)[)f’((1—t)(bl b= )ty 4, )|
+ f'((l—t)(bl+b2—Z+Ty)+t(b1+b2—y))Hdt

lra . -5 (a4 N | .
S(JO (g—(l—tp) )dt) 2175 |:J0 (g—(l—ﬁ’) )4 (|f (b1+b2—y)|P+|f (b1+b2—z)|p) dt]

=217 G)s"l £y + by =]+ |FCby + b, =)' Ll (g -(1- tﬂ)“) de.

Consequently
1 z+
'g[Zf(bl+b2+y)—f(b1+b2—Ty)+2f(b1+b2—z)]
2071 o (o +1) ora pra
e e [ R S N R D]
y—z 1 1 % 1 1 4
< 2% (-) (|£/ @y + by = )| + £ (by + by —2)|")" (——(1—tp)“) dt
4 4 , \3
p+2s—1 1
1 P / p / p le 4 yoRY:2
=0-2(5)  (Flrb= +[f b +b,=2)" | (3-(—")")dr.
0
Since
! 1 (! ! 1 1
J(1—t”)“dt=—J(1—t)°‘tp_1dt=—ﬂ(a+1,—).
0 P Jo P P
This accomplishes the proof of the desired. O

Using p =1 in Theorem 3.1 yields the following Corollary.

Corollary 3.2. Let s € (0,1] and assume that the assumptions of Lemma 5 hold. If |f’| is an s-convex mapping in the second sense
on [by, by], then the following Milne-Mercer type inequality via conformable fractional integral operators holds.

z+Yy

~[25 0+ b=y =7 (b4 b,

)+zf(b1 4 bQ—z)]

_2“""_1 p°T(a+1) [

5o | Ty ey B 2=+ 077 _sz)+f(b1+b2—z)]‘ (10)

(b1+b2 (b1+by

— / / 4 1 1
< L2 (15 by + b= )| + ]y + by =) ] (E—l—)ﬂ(a+1,;)),

Remark 1. Theorem 3.1 is a generalization of Theorem 3 in [21], simply by setting p =1,s =1,z =b; and y = b,.

Consider some particular cases of the preceding Theorem 3.1.

* Taking p = 1 in Theorem 3.1 and Corollary 3.2, we get Milne-Mercer inequality via Riemann-Liouville operators for
s-convex function.

Corollary 3.3. Let p > 1 and s € (0,1]. Assume that the assumptions of Lemma 5 hold. If |f’|P is an s-convex mapping in the
second sense on [ by, b, ], then the following Milne-Mercer type inequality holds.

S[2r b=y = (b b, = X ) 256, + b, —2)]

_2“71 I'(a+1) [ an

(_)’—Z)‘l J %)*f(bl-{_bz_y)‘i'j 7%)+f(b1+b2—z)i|

(b1+by— (b1+bs

p+2s—1

<(-2)(3) 7

4a+1 )

(|f/(b1 +by=Y)P +1f (b + bz_z)|P)% (3(a+ 1)
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For p =1, we get

E 271+ b= =1 (b1 +5,= 22 )+ 25, + b, —2)]

_Za_l INa+1) |: (12)

(y—2)*

R O R R E)
2 2

Sy—z ( 4a+1

o (5 ) [ O+ b=+ + b2 .
The inequalities (11) and (12) are generalizations of the inequality (3).
e Putting a =1 in the Corollary 3.3 gives the following Milne-Mercer inequalities.

Corollary 3.4. Let p > 1 and s € (0, 1]. Assume that the assumptions of Lemma 5 hold. If |f’|P is an s-convex mapping in the
second sense on [ by, b, ], then the following Milne-Mercer type inequality via Riemann integral holds.

by+by—2z
1 z2+Yy 1
'5 (27 by =)= 5 (b1 b= 557 ) 425 (b 4 b9 | = = LMY F(0d

(13)

< S0 (1 + b=+ |7y + b, =)
For p =1, we get

1 1 by+by—z
s[2£0+ == (b4 b= T ) w25 b+ - 0) |- L F(0)de

YT Jbiabay

< S0 1, 5, ]y by

The above inequality (13) generalized the inequality (2), simply take p =1 and s = 1.
3.1 Milne-Mercer inequality via class P-functions

Setting s — 0 in Theorem 3.1 and Corollary 3.2 gives the following new results involving the class P-functions.

Corollary 3.5. Let p > 1 and s € (0,1]. Assume that the assumptions of Lemma 5 hold. If |f’|P is a P-functions on [b,, b,], then the
following Milne-Mercer type inequality via conformable fractional integral operators holds.

S2r i+ b=y =7 (b5~ X ) 125 (b, + b, -9)]

2041 HaT(q 4+ 1) a .
T = [pj(bﬁbz—%y)'f(bl +b,—y)+ pJ(b1+bz—”Ty)+f(bl +b, —z)]‘ 14)
7 174 1 1
<=2 (3)7 (If(by+by— )P +If'(by + by —2))” (%‘;ﬂ(ul,;))'

For p =1, we get

E (25, +b=3) = f (b + b= T2 ) +2£ (b, + b, —2)]

_2“""’l p°T(a+1) [

(y_z)pa Pae _erTy)—f(lerbZ_.y)Jr P3e _Z?,)+f(bl+b2_z):” (15)

(b1+by (b1+by

< (=) [|f(by + b= y)| + |F'(by + b, —2)]] (g—})ﬂ (a+1,%)).
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Remark 2. 1. Taking p =1 in the inequalities (14) and (15) gives the following Milne-Mercer inequality via Riemann-Liouville
operators.

‘%[Zf(bﬁbz—y)—f(bﬁ = L) v 2f (b + by -2
_2a—1 T(a+1) [ zb . (16)

R R A O]

<(y—2) (%),%1 (IF/(by + by =y +1F/(by + bz—Z)Ip)‘l’ (3‘:211))

For p =1, we get
1 z+
‘5 271+ b, =)=1 (by+ b= 52 ) +2£ (b + b, —2)]

_2"’1 T(a+1)

a7
(y —2)*

(38, ey Pt =) 38 (b, —5)]

4a+1
<(=2) (g1 ) /(b1 o+ by =+ 1F by + by =21,

2. By setting a@ = 1 in the inequalities (16) and (17), we use the Riemann integral to derive the following Milne-Mercer

inequality.
by+by—2z
f(t)de
L

1+b2—y

'%[Zf(bﬁbz D=1 (bt b= L) +2£ (b +5,-2) |-

y—z

< 225 (b, 4 by = )|+ by + by =)
For p =1, we get
by+by—z
O R e s AL
5(y

< |f (by+by— )|+ [f/(by + by —2)|].

Remark 3. Putting z = b; and y = b, in the previous inequalities gives the Milne inequalities version via conformable fractional
integral operators, Riemann-Liouville operators and Riemann integral (respectively).

4 Milne-Mercer inequality via Holder inequality

Theorem 4.1. Let p > 1, , + 1 =1 and assume that a, p, f are defined as in Lemma 2.1. If |f’|" is an s-convex mapping on
[by, by], the following Mllne-Mercer type inequality holds

‘% [2£ 1+ b= 3) = £ (b1 + 5= 52 ) 4 25 (5, + b, —2) |

_2"“’1 p°T(a+1)

= [p:;zbﬁbzﬁ%)ff(bﬁbz N Zgy)+f(b1+b2—z)]

(18)

1

— 1 4 . p’ 4 E
Sy4z(2L(§_(1—tp)) dt) 47 [|f/(by + by = )| + |f/(by + by —2)|"]

-

Dolomites Research Notes on Approximation ISSN 2035-6803



/OA,\ Bouharket - Noureddine 99

Proof. Using the absolute value of identity (5), we get

‘% 281+ b= )= £ (b + b= 2 ) 425 (b, + b, —2) |

2°* 1 poT(a+1)

- ~ P2 — pya —
TR FB b =) ity z)]‘

<212 Jol(g—a—tp)“)
2 t0eer)

Since A? +B? < 2r (A+B) » , by using Holder inequality we deduce

f’((l—t)(bl + bz—”Ty)H(b1 + bz—z))(dt

f/((l—t)(b1+b2—Z+Ty)+t(b1+b2—y))’dt.

E[Zf(bl by =)= f (b + b= X )+ 25(by + b, —3)]

_2""‘_1 pT(a+1) [
(y —z)pe

szt ([ (3o o) (]

1
7

1 / 1
y—z 4 2\ p
+ 2 (JO (5—(1—#’)) dt) (JO

1
o7

1 / 1

y—z 4 a b ! 1—%
< 2 (L (g—(l—tp)) dt) 2 {Jo
+>f

Given that |f’|P is an s-convex function, we result

Z+y)P ='f,(b1+b2—y+b1+b2—z)

p~a —_ pPra —
j(bﬁbz—%)’f(bl +by—y)+ 3(b1+b2_z+Ty)+f(b1 + b, Z)]

1
P

IA

f’((l—t)(bl +b2—z+Ty)+t(b1 +b2—z))‘pdt)

f’((l—t)(bl +b2—z+Ty)+t(b1 +b2—y))‘pdt);

f’((l—t)(bl + bz—”Ty)H(b1 + bz—z))(pdt

1

f’((l—t)(bl+b2—Z+Ty)+t(b1+b2—y))‘pdt}p.

p

f’(b1+b2—

2 2

<(5) L+ b= 15y 4 5,-)] ),
hence

E 28+ b= y)= (b1 + b= 52 )+ 27 by + b, —9)]

20971 paT(a+1) [ oy .
o [pj(bﬁbz—%*f T ‘Z)]

1

e (o[ (ame) ) [ (oo
+f((1-r)s

=y4_z(2f0 (g—(l—t”)“) dt) U [r5+21‘5(1—t)S]dt) [[F/(br+ by =)+ |f(by + b, —2)|]7 .

p
f’(b1+b2—z—;y)‘ +r

£, +b2—z)|p)dt

1
p

z+Yy

7 (by+ b, - )(pﬂs |f’(b1+b2—y)|P)dt}

LT
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Remark 4. Withs =1, z = b, and y = b,, Theorem 4.1 improves Theorem 4 from [21].
We suggest specific Milne-Mercer’s type inequalities for s-convex functions.

* By putting p = 1 in inequality (18), we obtain a Milne-Mercer type inequality using Riemann-Liouville operators for
s-convex functions.

2@+ b5 (b4 b= L)+ 25, b, - )

~a

ey T bR T b=

_27'T(a+1)
(b1+by

(y —2)

(19)
1 N

y—z 4 a P R / ’ %

<= (2L(§—(1—t)) dt) 47 [|f/(by+by—= Y +|f/(by + b, —2)[]7 .

* By setting a = 1 in inequality (19), we derive a Milne-Mercer type inequality through the Riemann integral for s-convex
functions.

f(t)dt

1 z+y 1 b
'5[Zf(bl+bz—y)—f(b1+bz—T)+2f(b1+bz—Z)]— J
Y=z J,

1+ba—y

(20)
— 1+P/ 1+Pl I% 1=s ’
Sy4z[1fp/ ((g) _(%) )] 47 [|f /by + by =) +|f/(by + by —2)|"]" .

* Putting s = 1 in inequality (20), we get Milne-Mercer inequality via Riemann integral for convex function.

by+by—2z
S (24 =)= 5 (b4 b= 22 )+ 27y 4 by -2)] - inJ; f(0de

1+b2—y

— 2 4 1+p 1 14+p"\ 7 , ,
[ () Woner o on

By setting s — 0 in Theorem 4.1, we identify an interesting new results about the class P-functions.

3|

ESTI

Corollary 4.2. Assume a, p and f are defined according to Theorem 4.1. If |f'|P is a P-function on [by, b,], then

‘%[Mbl b= )= f (b + b, L) 425 (b, + b, -2) |

p~a

— prya _
(bp‘bz*%)if(bl + bz ‘y) +°3 7Z+Ty)+f(bl + b2 Z)]

201 poT(a +1)
(b1+by

(y —z)re

y—z "4 P v 1
<= (zjo(g—u—tp)“) dt) {4 'y + b= N[ +|F'(by +b,—2)| 1}

Setting p = 1 yields next Milne-Mercer type inequality through Riemann-Liouville operators.

~2r i+ b= )= (b b= L) w25 (b + b, —5)]

a

_W[ (bl+bz_ﬂ)_f(b1+b2—y)+ 3¢ _Zﬂyf(bﬁ‘bz_z)]

(y—2)* 2 (br+by

- e ) ' ' '
sy4z(2L (3-a-o) dr_) {4117y + b= + 156+ 0,2 T}

By setting p =1 and a = 1, one obtains the next Milne-Mercer type inequality.

by+by—2
3 [2Fu b= (bt b= T ) 2p by )| - L f(0de

1+ba—y

1

. 1+p’ +p"\ ¢ 7
sy4z[1fpf((§) _G) )] {4 [ r+ by =) +[f by + b =2)" ]} .
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5 Supplementary studies regarding the Milne inequality

Theorem 5.1. Let f : [by, b,] — R be a differentiable function on (b, b,) such that f’ € L, ([by, b,]). If there exist constants
—00 <m < M < +00 such that m < f'(x) < M for all x € [by, b,], then the following inequality holds.

‘ [2f(b +by—y)— f(b +b, —%)+2f(b +b, —z)]

_2"“’1 p°T(a+1)
(y —z)pe

D)

Proof. Through the Lemma 2.1, we have

25+ b=y =7 (b b= X ) 125 (b, + b, -9)]

["j‘Ebﬁbr%ff(bﬁbz NI zgy)+f(b1+bz—z)]‘

_2"‘7‘_1 p*T(a+1)
(y —z)pe

(y_z) —(1—P)" ){(f’((l—t)(b1+b2 ;y)+t(b1+b2 ))—M;m)

_(f’((l—t)(bl+bz—HT“V)“(bl”’Z‘”)_M;m)}dt'

Applying the absolute value to the previously equality, we obtain

[Pﬁgbﬁbr%ﬂbl Fhmy)4PTE (bt b))

[Zf(b by —y)— f(b +b, —%)+2f(b +b, —z)]

2Pl Hap(g 41
T pMat]) )[Pﬁa B O AR z+y)+f(b1+bz—z)]
2 2

(y —z)pe (b1+b> (by+by
2n
T, + M+
<V (1—¢") [ ((1—t)(b1+b2—¥)+t(b1+b2—z))— ’"'
, + M+
((1—t)(b1+b2—zTy)+t(b1+b2—y))— zdet.
Given that m < f’(x) < M for all x € [by, b, ],
, + M+ M-
((1—t)(b1+b2—%)+t(b1+bz—z))— m‘s 2’”, 22)
and
) + M+ M-
((1—t)(b1+bz—¥)+t(b1+bz—z))— m’s zm’ 23)
adding (22) and (23) to (21) yields
ty
‘ [2f(b +hy—y)— f(b +b, —T)+2f(b +b, —z)]
2°* 1 poT(a+1) o
_W[ (b1+br“Ty)’f(b1+b2 J’)+pj(b by z;y)+f(b1+bz—2)]‘
< & (1—tP)¥|dt
:(y—Z)(M—m)(‘_t_lﬁ(aH’l)).
4 3 p P
O
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e In Theorem 5.1, we can determine the following result using Riemann-Liouville operators by assuming p = 1.

E 271+ b= =1 (b1 +5,= 22 )+ 25, + b, —2)]

2 T(a+1) [ -, a
IR [J(bﬁbz—%‘f (it b= 1)+ 3, L,

g b+ b —2)|

< (y—z)(M—m)( 4a+1 )
4 3(a+1)

e Bysetting p =1 and a =1 in the above Theorem 5.1, we can derive an interesting result using the Riemann integral.

by+by—2z
1 z+y 1
e R R (R e R T | Lb F(0)de

L S =2)(M—m)
24

Theorem 5.2. Let f : [b;,b,] — R be a differentiable function on (b, b,) such that f’ € L, ([by,b,]). If f’ is a L-Lipschitzian
function on [by, b, ], then

’% (251 + b= )= f (B + b= T2 )+ 25 (b, + b, —2)]

_2"""1 pT(a+1) [
(y —z)p

!

Proof. According to Lemma 2.1, we have

Py — prya _
3(b1+b2_z+Ty)—f(b1 +by—y)+ J(bl+b2_ﬁTy)+f(b1 +b, Z)]‘

=25+ b=y =7 (b4 b, = X ) 125 (b, + b, -9)]

_2""‘_1 pT(a+1) [

e oy fbit by —z)]

L3¢ Z+Ty),f(b1+b2—y)+“’30‘b1

(b1+by— +by

—b=2) Jl (3-a=er) (7 (=0 (br+ b= X )+ ety + b, =) =5 by + b, -)
0

—(r(a=0(bi+ b= L)+ by + b= ) = 5By + by =) )|
By applying the absolute value to the previous equality, we can derive

E [2£bu+ =)= (b1 + b= 252 )+ 27 by + b, —9)]

_2""‘_1 pT(a+1) [
(y —z)pe

s(y‘z)Jl
4 0

+ )f’(u—t)(bl +b,— ”Ty) +e(b + bz—y))—f’(bl + bz—z)Hdt.

pAa _ pra _
R ORI R A CRe]

(b1+by—

z+Yy

%—(1—#3)" Hf’((l—t)(bl +b2—T)+t(b1 +b,=5)) = f/(by + b, —2)
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Given that f’ is a L-Lipschitzian function on [b,, b,], so
’%[2f(b1+b2_J’)_f(b1+bz_Z+Ty)+2f(b1+b2—z)]
2P pT(a+1) [ o o
_W [ J(bﬁbz_ﬁTy)—f(lH *hy=y)+ j(b”bz_z%yyf(bl + bz_z)]
<=2 ! 4 -ty [L(l—t)(g)-i—L(l—i—t)(y_z)]dt
- 4 o |3 2 2
_a2 (1!
4 o |13
—_ )2
O

* In Theorem 5.2, we can ascertain another result via Riemann-Liouville operators with the supposition that p = 1.

325 b= (b bam T ) 21,0,

~Q

_27'T(a+1)
(by+by—

5o o Pt b )+ 08 b+ b))

U2 (a2t

* Setting p =1 and a = 1 in the preceding Theorem 5.2 yields an intriguing conclusion with the Riemann integral.

5L(y —2)*
24 ’

<

by+by—2z
S[2r i+ b=y =7 (b4 b, = X ) 1256, + b, —2)] - L f(t)ae

1+ba—y

yY—z

6 Applications

for any positive values b,, b, > 0, we consider the following means:

¢ The arithmetic mean:

b;+b
A(b,, b,) = %
¢ The harmonic mean: 9b.b
H(by,by) = —2.
(by,b) = 3
e The n-logarithmic mean:
n+1 n+1 1
—b"

Ln(bl’bz)z ( g

————— | , neR—{-1,0}, b, > b;.
(bz_b1)(n+1)) 2 !

¢ The logarithmic mean:
b,—b, )
L(by,by)=| ————— b, > b;.
( 1> 2) (lnbz—lnbl > 2 1

In [11], the following example is given: Let s € (0,1) and d, k,c € R. We define a function f : [0,+00) =R, as

d ,t=0;
kt*+c ,t>0.

f(t)={

If k>0and 0 <c <d, then f is an s-convex function.
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Example 6.1. Lett >0, p > 1, 0<s <1 and consider the function f(t) = t(%“), then
, N s
f (t):(—+1) tr.
p

Fop = (g s e,

In reference to

thus, ford=c =0, k = (;—7 + 1)p, we have |f’|P is an s-convex function.
The next results are attained by employing the previous example to inequality (13).

Proposition 6.1. Let b, >b; >0,p>1,0<s<landn= ;—7 + 1. Then the following inequality holds:

‘%A((bl +by— )", (by + by —2)") — %A"((bl + by — ), (by + by —2))— L"((by + by — y), (by + by —2))

5(y—2)n (1)*77 1
< 202D ()7 A (b + b=y, (b4 5, -2,

Proof. Letn= 3 +1and f(t)=1t". We get

f(by+by—y)+f(by+by—y)
2

2L (by+ by—y) + £ by + by— )] =4[ ] = 4A((by + by —y )", (by + by —2)"),

f(bl+b2_”z):f((bﬁbz—y)ﬂbl+b2—z)

2 2 )=A"((b1+bz—y):(b1+bz—z))’

bi+by—z n+1 n+1
e G G ) R RN CR DL
b

Y2 Jons -2+ D)
and
1 F((Bytby—y) +(by+by—2))?
(|f’(b1+b2—y)|p+|f’(b1+b2—z)|p)" zn(%) (( + y) ;( + ) )
=n(3) " A} b+ by yY (b b)),
O
Declarations

Funding: not applicable
Availability of data and materials: not applicable
Conflict of interest: The authors declare that they have no conflicts of interest.

References

[1] B. Benaissa, M. Z. Sarikaya, Milne-type inequalities for h-convex functions, Real Anal. Exchange., 49(2) (2024), 363-376.
https://doi.org/10.14321/realanalexch.49.2.1709554687

[2] B. Benaissa and M. Z. Sarikaya. On the refinements of some important inequalities with a finite set of positive numbers. Math. Meth. Appl. Sci.,
47(12) (2024), 9589-9599. https://doi.org/10.1002/mma.10084

[3] B. Benaissa, M.Z .Sarikaya, On Milne type inequalities for h-convex functions via conformable fractional integral operators, Appl. Math.
E-Notes., 25 (2025), 213-220

[4] B. Benaissa, N. Azzouz, H. Budak, Parameterized inequalities based on three times differentiable functions, Bound Value Probl., 2025, 45
(2025). https://doi.org/10.1186/s13661-025-02032-8

[5] B. Benaissa, N. Azzouz, A novel generalized inequality through multiplicative calculus, Proc. Amer. Math. Soc., (2025).
https://doi.org/10.1090/proc/ 17445

Dolomites Research Notes on Approximation ISSN 2035-6803



/OA,\ Bouharket - Noureddine 105

(6]

(7]
(8]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]
[21]

B. Benaissa, N. Azzouz, Hiiseyin Budak, Artion Kashuri A novel perspective on the Bullen and Milne inequalities through the use of multiplicatively
absolute value,Filomat., 39(28) (2025).

H. Budak, P K6sem, Fractional Milne type inequalities, Preprint - January 2023. https: //www.researchgate.net/publication/370818703

W.W. Breckner, Stetigkeitsaussagen fiir eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Rdumen, Publ. Inst. Math.,
23 (1978) 13-20.

M. Djenaoui, B. Meftah, Milne type inequalities for differentiable s-convex functions, Honam Math. J., 44 (2022), 325-338.
S.S. Dragomir, J. Pecaric, L.E. Persson, Some inequalities of Hadamard-type, Soochow J. Math., 21 (1995), 335-341.
H. Hudzik and L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.

L. Iscan. New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 304 (2019). https://doi.org/10.1186/s13660-
019-2258-5

E Jarad, E. Ugurlu, T. Abdeljawad and D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017, 247 (2017).
https://doi.org/10.1186/s13662-017-1306-z

A. Lakhdari, H. Budak, M.U. Awan and B. Meftah, Extension of Milne-type inequalities to Katugampola fractional integrals, Bound Value
Probl., 2024, 100 (2024). https://doi.org/10.1186/s13661-024-01909-4

A. Lakhdari, H. Budak, N. Mlaiki, B. Meftah and T. Abdeljawad, New insights on fractal-fractional integral inequalities: Hermite-Hadamard
and Milne estimates, Chaos Solitons Fractals., 193 (2025). https://doi.org/10.1016/j.chaos.2025.116087

B. Meftah, A. Lakhdari, W. Saleh, Milne-type inequalities for differentiable s-preinvex functions via Riemann-Liouville fractional integrals,
Filomat., 38:27 (2024), 9727-9742. https://doi.org/10.2298 /FIL2427727M

A. McD. Mercer, A variant of Jensen’s inequality, J. Ineq. Pure and Appl. Math., 4 (4) (2003), Article 73.

D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Springer Dordrecht, 1993. https://doi.org/10.1007/978-
94-017-1043-5

A. Moumen, R. Debbar, B. Meftah, K. Zennir, H. Saber, T. Alraqad and E. Alshawarbeh, on a certain class of GA-convex functions and their
Milne-type Hadamard fractional integral inequalities. Fractal and Fractional., 9(2):129 (2025). https://doi.org/10.3390/fractalfract9020129

C.E.M. Pearce, A.M. Rubinov, P-functions, quasi-convex functions and Hadamard-type inequalities, J. Math. Anal.Appl., 240 (1999), 92-104.

R. Ying, A. Lakhdari, H. Xu, W. Saleh, B. Meftah, On conformable fractional Milne-type inequalities, Symmetry., 16, 196 (2024).
https://doi.org/10.3390/sym16020196

Dolomites Research Notes on Approximation ISSN 2035-6803



	Introduction
	Fundamental Identity
	Milne-Mercer inequality via power-mean integral inequality
	Milne-Mercer inequality via class P-functions

	Milne-Mercer inequality via Hölder inequality
	Supplementary studies regarding the Milne inequality 
	Applications

