
Volume 7 · 2014 · Pages 1–12

On the backward stability of the second barycentric formula
for interpolation

Walter Mascarenhas a · André Camargo b

Abstract

We present a new stability analysis for the second barycentric formula, showing that this formula is
backward stable when the relevant Lebesgue constant is small.

1 Introduction
We discuss the numerical stability of the second barycentric formula for interpolation at nodes x0 < x1 < . . . < xn. This
formula is given by

q
�

x;x,y,w
�

:=
n
∑

k=0

wk yk

x − xk

Â

n
∑

k=0

wk

x − xk
(1.1)

(note that we write the vector x ∈Rn+1 in bold face, and xk is its kth coordinate.) The function q may be a polynomial in
x for particular choices of the weights wk, but we work in the more general context of rational barycentric interpolation
discussed in [1],[2], [3], [4] and [7].

In practice, we approximate a function f : [x−, x+]→R using the formula q in (1.1) in three steps:

Step I: Abstract approximation theory provides convenient nodes xk and weights wk, so that, in exact arithmetic, the error
f (x)− q

�

x;x, f (x) ,w
�

is small for x ∈ [x−, x+].

Step II: We then obtain floating point approximations x̂k, yk and ŵk for xk, f
�

xk

�

and wk.

Step III: Finally, we approximate f (x) evaluating q
�

x; x̂,y, ŵ
�

numerically.

This article presents upper and lower bounds on the backward errors in Steps II and III. We also emphasize the importance
of considering the errors in these two steps. We focus on the effects of the errors in the nodes x and weights w, and assume
that the function values yk are exact, because perturbations in the function values can be easily handled using Lebesgue
constants or by assuming that the perturbed function values are of the form yk

�

1+ βk

�

with βk small. We discuss both the
case in which the end points of the interval [x−, x+] are nodes and the case in which x− and x+ are not nodes, and allow
for the possibility that some nodes lie outside of the interval [x−, x+].

The overall conclusion is that formula q in (1.1) is backward stable when the relevant Lebesgue constant is small, in the
sense that the values q

�

x; x̂,y, ŵ
�

obtained numerically in Steps II and III are equal to the exact value q
�

x̃;x, ỹ,w
�

, with
x̃ near x and ỹk = yk

�

1+ βk

�

for small βks. This conclusion is different from the one presented in [6], which states that
the second barycentric formula is not backward stable. However, there is no contradiction between our conclusion and
Higham’s, because we consider the favorable case in which the Lebesgue constant is small and his conclusion applies to the
worst possible scenarios.

This article has three more sections. Section 2 presents upper bounds on the backward errors, showing that the second
barycentric formula is backward stable under reasonable assumptions. Section 3 gives lower bounds on the backward errors,
showing that, for Lagrange polynomials and except for log n factors, the bounds in Section 2 are sharp. The last section
contains a perturbation theory for the barycentric formula, which covers the rational as well as the polynomial case. It also
presents a proof of the main theorem, which is stated in Section 2.

2 Upper bounds on the backward error
In this section we present upper bounds on the backward errors in the evaluation of the second barycentric formula (1.1),
complementing the bounds presented in [8] and [9]. We look at the second formula in (1.1) as a linear transformation Ix,w
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mapping y ∈Rn+1 to the rational function defined by

Ix,w

�

y
�

(x) :=











yk when x = xk ∈
�

x0, x1, . . . , xn

	

,

n
∑

k=0

wk yk
x−xk

�

n
∑

k=0

wk
x−xk

for x ∈R \
�

x0, . . . , xn

	

.
(2.1)

The letter I in Ix,w stems from Interpolant, because the function Ix,w

�

y
�

:R→R defined by (2.1) interpolates the yk at the
xk.

The linear map Ix,w is an abstract way of looking at the second barycentric formula (1.1), and a practical minded reader
can think of Ix,w

�

y
�

as a synonym for the function q in (1.1). However, by considering the linear map Ix,w we can think at a
deeper level. When the nodes and weights are such that

n
∑

k=0

wk

x − xk
6= 0 for x ∈ [x−, x+] \

�

x0, . . . , xn

	

, (2.2)

the function q in (1.1) does not have poles in the interval [x−, x+], and Ix,w

�

y
�

is an element of the vector space Q
�

x−, x+
�

of continuous rational functions from [x−, x+] to R, in which we can define the sup norm. It is then natural to study the
norm of Ix,w with respect to the sup norm in Rn+1 and Q

�

x−, x+
�

. This norm is the Lebesgue constant mentioned in the
abstract, and we denote it by Λx− ,x+ ,x,w. Formally, we define

Λx− ,x+ ,x,w :=




Ix,w







∞ := sup
x∈[x− ,x+] and y6=0

�

�q
�

x;x,y,w
��

�





y






∞

. (2.3)

The articles [2], [3] and [4] present bounds on these Lebesgue constants, and their bounds allow us to apply the theory
developed in Section 4 to the Floater-Hormann interpolants.

Throughout the article we consider a reference interval [x−, x+], nodes x and weights w, and perturbed (or rounded)
nodes x̂, with a corresponding interval [ x̂−, x̂+] and weights ŵ. Besides the Lebesgue constant, our analysis of the backward
stability of the second barycentric formula is based on the relative errors in the length of the intervals [x j , xk], which are
measured by

δkk := δkk(x, x̂) := 0 and δ jk := δ jk(x, x̂) :=
x j − xk

x̂ j − x̂k
− 1. (2.4)

In order to handle rounding errors in the endpoints x− and x+, and errors in nodes close to them, we also consider

δ−j := δ−j
�

x−,x, x̂−, x̂
�

:=
x− − x j

x̂− − x̂ j
− 1, (2.5)

δ+j := δ+j
�

x, x+, x̂, x̂+
�

:=
x+ − x j

x̂+ − x̂ j
− 1, (2.6)

with δ−j = 0 in the particular case in which x̂− = x̂ j , and δ+j = 0 when x̂+ = x̂ j . We combine the δ−j , δ jk and δ+j in the δ
given by

δ := max
0≤ j,k≤n

n
�

�

�δ−j

�

�

� ,
�

�δ jk

�

� ,
�

�

�δ+j

�

�

�

o

. (2.7)

Another important measure of the perturbations are the relative differences ζk between the reference weights w and the
weights ŵ used in computation:

ζk := ζk(w, ŵ) :=
wk − ŵk

ŵk
, (2.8)

and to avoid pathological cases we assume that

wk 6= 0 and ŵk 6= 0. (2.9)

We also make the following definitions and assumptions regarding the nodes and endpoints:

xk < xk+1, (2.10)

xk ∈
�

x−, x+
�

if and only if x̂k ∈
�

x̂−, x̂+
�

, (2.11)

xk = x− if and only if x̂k = x̂−, (2.12)

xk = x+ if and only if x̂k = x̂+, (2.13)

k− is the smallest k such that xk > x−, (2.14)

k+ is the largest k such that xk < x+, and k+ ≥ k−. (2.15)

We can now state our main theorem, which provides an upper bound on the backward errors in steps II and III.
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Theorem 2.1. Under the conditions (2.2) and (2.9)–(2.15), let ε be the machine precision, assume that (2n+ 5)ε < 1 and
define

Z :=





ζ(w, ŵ)






∞ + (n+ 2)ε

1− (n+ 2)ε
. (2.16)

If, for δ in (2.7),
(δ+ Z)Λx− ,x+ ,x,w + Z < 1, (2.17)

and x̂ ∈ [ x̂−, x̂+] is a floating point number then the computed value fl
�

q
�

x̂; x̂,y, ŵ
��

is equal to q
�

x;x, ỹ,w
�

, for some
x ∈ [x−, x+] such that

|x − x̂ | ≤max
�

‖x− x̂‖∞ ,
�

� x̂− − x−
�

� ,
�

� x̂+ − x+
�

�

	

, (2.18)

ỹk = yk

�

1+αk

� �

1+ νk

�

with ‖ν‖∞ ≤
(2n+ 5)ε

1− (2n+ 5)ε
(2.19)

and

‖α‖∞ ≤

�

1+Λx− ,x+ ,x,w

�

(δ+ Z)

1− Z − (δ+ Z)Λx− ,x+ ,x,w
. (2.20)

Theorem 2.1 states that the value obtained by the numerical evaluation of the second barycentric formula using
approximate nodes x̂ and approximate weights ŵ is the exact value corresponding to ỹ “near” y and x “near” x̂ , according
to the measures of nearness in (2.18)–(2.20). We emphasize that this theorem takes into account the fact that both the
nodes and the weights may have errors in practice, and that by disregarding one of these errors we may underestimate the
backward error.

Theorem 2.1 is abstract and general, and we now present examples of its applicability in concrete situations. We state
two corollaries regarding polynomial interpolation at the Chebyshev points of the second kind, which are defined as

x (c)k := −cos(kπ/n) , (2.21)

in combination with weights obtained using the traditional formula

wk = λk(x) :=
∏

j 6=k

1

xk − x j
. (2.22)

We analyze two scenarios:

• In the first case we consider weights ŵ given by the closed form expressions in [11]. These weights are floating point
numbers and we call them Salzer’s weights.

• In the second case we consider the weights obtained by evaluating (2.22) numerically, using the rounded nodes
x̂c := fl(xc) and ŵ= fl(λ(x̂c)), and we call them Numerical weights.

Figure 1 shows that these two cases are quite different for Lagrange polynomials: although Salzer’s weights contain no
rounding errors, they lead to much worse results for large n (the data in this plot comes from Tables 1 and 2 in Section 3.)
This difference is also present in Corollaries 2.2 and 2.3 below, and by studying their proof the reader will appreciate how
Theorem 2.1 can be applied in practice. Note that these corollaries provide upper bounds on the backward error of order
εn2 log n for Salzer’s weights and εn log n for the Numerical weights, and these numbers are in remarkable agreement with
the corresponding lines fitted by the least squares method in Figure 1 (recall that ε≈ 2.3× 10−16.)

Figure 1: The dependency on the weights of the errors with rounded nodes.

We now present our corollaries and their proofs. In the statement of these corollaries, xc are the Chebyshev nodes in
(2.21), x̂c are their rounded counterparts and q

�

x; x̂c ,y,λ(x̂c)
�

is the nth degree polynomial that interpolates y at the nodes
x̂c used in practice.
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Corollary 2.2. If x̂ ∈ [−1,1] is a floating point number, 10≤ n≤ 2.000.000, ε≤ 2.3× 10−16, ‖x̂c − xc‖∞ ≤ 2ε, and ŵs are
Salzer’s weights, then there exists x ∈ [−1,1] with |x − x̂ | ≤ ‖x̂c − xc‖∞ and β ∈Rn+1 such that





β






∞ ≤ 3.7×
�

3+ log n
�

εn2, (2.23)

for which the vector ỹ ∈Rn+1 with entries ỹk =
�

1+ βk

�

yk satisfies

fl
�

q
�

x̂; x̂c ,y, ŵs
��

= q
�

x; x̂c , ỹ,λ(x̂c)
�

. (2.24)

Proof of Corollary 2.2. In the context of Corollary 2.2, the δ in (2.7) is equal to zero, because we consider the rounded
nodes as the interpolation points from the start. When w = λ(x̂c) and ŵ = λ(xc), the ζk in definition (17) in [9] is the same
as the ζk in definition (2.8) here and Table 2 in that article shows that





ζ






∞ ≤ 2.4624‖xc − x̂c‖∞ n2 ≤ 4.9248εn2. (2.25)

Using that 10≤ n≤ 2× 106, we conclude that Z in (2.16) satisfies

Z ≤
4.9248εn2 + (n+ 2)ε

1−
�

2× 106 + 2
�

× 2.3× 10−16
≤
�

4.9249n2 + 1.0001n+ 2.0001
�

ε

≤
�

4.9249+
1.0001

n
+

2.0001

n2

�

εn2 ≤ 5.0450εn2

≤ 5.0450× 4× 1012 × 2.3× 10−16 ≤ 0.0046414.

Table 2 in [9] also shows that

Λ−1,1,x̂c ≤ 0.67667 log n+ 1.0236 and Λ−1,1,x̂c ≤ 10.841,

and it follows that the α in (2.19) satisfies

‖α‖∞ ≤
0.67667 log n+ 2.0236

1− 0.0046414× 11.841
× 5.0450εn2 ≤ 3.6124

�

3+ log n
�

εn2.

The assumptions on ε and n lead to

(2n+ 5)ε≤
�

4× 106 + 5
�

× 2.3× 10−16 < 9.2001× 10−10,

and (2.19) leads to |ν|k ≤ 1.0001 (2n+ 5)ε < 9.2011× 10−10. It follows that βk := νk +
�

1+ νk

�

αk satisfies
�

�βk

�

�≤ 1.0001 (2n+ 5)ε+
�

1+ 9.2011× 10−10
�

× 3.6124
�

3+ log n
�

εn2

≤

�

1.0001 (2n+ 5)

3.6124n2
�

3+ log n
� + 1

�

× 3.6124×
�

3+ log n
�

εn2 ≤ 3.6597
�

3+ log n
�

εn2

Therefore, βk satisfies (2.23). Theorem 2.1 yields x̂ as in (2.24) and we are done.

Corollary 2.3. If x̂ ∈ [−1, 1] is a floating point number, 10≤ n≤ 2.000.000, ε≤ 2.3× 10−16, ‖x̂c − xc‖∞ ≤ 2ε, and ŵr are
the Numerical weights fl(λ(x̂c)), then there exists x ∈ [−1,1] with |x − x̂ | ≤ ‖x̂c − xc‖∞ and β ∈Rn+1 such that





β






∞ ≤
�

2.2 log n+ 9.1
�

εn. (2.26)

for which the the vector ỹ ∈Rn+1 with entries ỹk =
�

1+ βk

�

yk satisfies

fl
�

q
�

x̂; x̂c ,y, ŵr
��

= q
�

x; x̂c , ỹ,λ(x̂c)
�

. (2.27)

Proof of Corollary 2.3. Lemma 3.1 in [6] states that

w(r)k = wk〈2n〉k,

and using Lemma 3.1 in [5] we conclude that the ζk in (2.8) satisfy

�

�ζk

�

� =

�

�

�

�

wk −wk〈2n〉k
wk〈2n〉k

�

�

�

�

=

�

�1− 〈2n〉k
�

�

�

�〈2n〉k
�

�

=
�

�〈2n〉k′ − 1
�

� ≤
2εn

1− 2εn
≤

2εn

1− 2× 2× 106 × 2.3× 10−16 ≤ 2.0001εn,

and the arguments after equation (2.25) lead to (2.26) and (2.27).
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3 Lower bounds on the backward error
This section shows that Theorem 2.1 is sharp, except for log n factors. These factors are not relevant for n up to one million
and we present examples in which the upper bounds provided by Theorem 2.1 are not much larger than the maximum
error observed in practice. We use a combination of theory and experiments. We cannot prove that the rounding errors
will be always above some positive number, because sometimes the value we obtain numerically is exact. For instance,
the numerical result is exact when we evaluate the second barycentric formula at the node xk and yk is exact, regardless
of the errors in the weights. Therefore, we can only obtain meaningful lower bounds under appropriate hypothesis, and
experiments help us to show that these hypothesis are fulfilled in practice.

We use Lagrange polynomials as guinea-pigs. Since we consider reference weights λ(x), where x are the nodes used in
interpolation, there are no errors in the Step I mentioned in the introduction in this case. Moreover, we have only one yk to
worry about. Formally, Lagrange polynomials can be written in second barycentric form as

`k(x;x) =
λk(x) yk

x − xk

� n
∑

k=0

λk(x)
x − xk

= q
�

x;x,ek,λ(x)
�

,

where yk = 1 and ek ∈Rn+1 is the vector with e(k)k = 1 and e(k)j = 0 for j 6= k.
There is a simple expression for the backward error in Step II and Step III for Lagrange polynomials. In fact, when there is

no perturbation in the nodes and we measure the backward error in terms of the relative perturbation in the function values,
the backward error βk in Steps II and III for Lagrange polynomials is such that fl

�

q
�

x;x,ek, ŵ
��

= q
�

x;x,ek
�

1+ βk

�

,λ(x)
�

,
and this condition leads to

βk =
fl
�

q
�

x;x,ek, ŵ
��

− q
�

x;x,ek,λ(x)
�

q
�

x;x,ek,λ(x)
� . (3.1)

This expression for βk allows us to prove the following theorem:

Theorem 3.1. Assume that the x i and ŵi are floating point numbers, let j and k be indexes such that
�

�ζk

�

� =




ζ






∞ and ζkζ j ≤ 0
and define

S =
∑

i 6= j

�

�wi

�

�

�

�x j − x i

�

�

. (3.2)

If 2.5(n+ 3)ε≤




ζ






∞ ≤ 0.001 and x is such that

0<

�

�

�

�

�

x − x j

w j

�

�

�

�

�

S ≤ 0.01 and sup
i 6= j

�

�

�

�

�

x − x j

x i − x j

�

�

�

�

�

< 0.01, (3.3)

then the backward error βk in (3.1) satisfies
�

�βk

�

�≥ 0.16




ζ






∞.

Proof of Theorem 3.1. As in the proof of Theorem 2.1, we use Stewart’s relative error counter 〈n〉. Equations (1.1) and
(3.1) and the arguments after equation 4.1 in [6] show that βk satisfies

ŵk〈n+3〉k
x−xk

n
∑

i=0

ŵi 〈n+2〉i
x−xi

=

wk(1+βk)
x−xk

n
∑

i=0

wi
x−xi

. (3.4)

The identities wi = ŵi

�

1+ ζi

�

and θi := 〈n+ 2〉i − 1 lead to

ŵi〈n+ 2〉i = wi

1+ θi

1+ ζi
= wi

�

1− ζi +ψi

�

, where ψi :=
1+ θi

1+ ζi
− 1+ ζi =

ζ2
i + θi

1+ ζi
.

The hypothesis 2.5 (n+ 3)ε≤




ζ






∞ ≤ 0.001 and Lemma 3.1 in [5] yield

�

�θi

�

�≤
1

1− 0.001/2.5
(n+ 2)ε≤ 0.401





ζ






∞

and
�

�ψi

�

�≤
0.401+





ζ






∞

1−




ζ






∞





ζ






∞ ≤ 0.403




ζ






∞ . (3.5)

Analogously, ŵk〈n+ 3〉k = wk

�

1− ζk +φ
�

for φ such that
�

�φ
�

�≤ 0.403




ζ






∞ . (3.6)
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We can then rewrite (3.4) as
�

1− ζk +φ
�

n
∑

i=0

wi

x − x i
=
�

1+ βk

�

n
∑

i=0

wi

�

1− ζi +ψi

�

x − x i

and deduce that βk = N/D for

ξ :=
�

x − x j

�

/w j , D := ξ
n
∑

i=0

wi

�

1− ζi +ψi

�

x − x i
and N := ξ

�

1− ζk +φ
�

n
∑

i=0

wi

x − x i
− D. (3.7)

It follows that
D = 1− ζ j +ψ j + ξ (A− B + C) (3.8)

for

A :=
∑

i 6= j

wi

x − x i
, B :=

∑

i 6= j

wiζi

x − x i
and C :=

∑

i 6= j

wiψi

x − x i
(3.9)

and
N =

�

1− ζk +φ
�

(1+ ξA)− 1+ ζ j −ψ j − ξ (A− B + C)

= ζ j − ζk +φ −ψ j + ξ
�

Aφ − Aζk + B − C
�

. (3.10)

The hypothesis (3.3) yields the bound

�

�x − x i

�

�=
�

�x j − x i

�

�

�

�

�

�

�

1−
x j − x

x j − x i

�

�

�

�

�

≥
�

�x j − x i

�

� (1− 0.01)≥ 0.99
�

�x j − x i

�

� ,

and combining this bound with (3.3), (3.7) and (3.9) we obtain

|A| ≤
1

0.99
S, |B| ≤

1

0.99





ζ






∞ S and |C | ≤
1

0.99





ψ






∞ S,

for S in (3.2). The hypothesis (3.3) tells us that ξS ≤ 0.01 and the last equation yields

|ξA| ≤
0.01

0.99
, |ξB| ≤

0.01

0.99





ζ






∞ and |ξC | ≤
0.01

0.99





ψ






∞ . (3.11)

Combining this estimate with the hypothesis that ζk and ζ j have opposite signs and using (3.10) and reminding that
�

�ζk

�

�=




ζ






∞ we deduce that

|N | ≥
�

�ζk

�

�−
�

�φ
�

�−




ψ






∞ − |ξ|
�

|A|
�

�ζk

�

�+ |A|
�

�φ
�

�+ |B|+ |C |
�

≥




ζ






∞ −
�

�φ
�

�−




ψ






∞ −
0.01

0.99

�



ζ






∞ +
�

�φ
�

�+




ζ






∞ +




ψ






∞

�

≥
�

1−
0.02

0.99

�





ζ






∞ −
�

1+
0.01

0.99

�

��

�φ
�

�+




ψ






∞

�

,

and using the bounds (3.5) and (3.6) we conclude that

|N | ≥ 0.979




ζ






∞ − 0.815




ζ






∞ = 0.164




ζ






∞ . (3.12)

Moreover, (3.5), (3.8) and (3.11) lead to

|D− 1| ≤
�

�ζ j

�

�+
�

�ψ j

�

�+ |ξ| (|A|+ |B|+ |C |)

≤




ζ






∞ +




ψ






∞ +
0.01

0.99

�

1+




ζ






∞ +




ψ






∞

�

≤ 10−3 + 0.403× 10−3 +
0.01

0.99

�

1+ 10−3 + 0.403× 10−3
�

≤ 0.012.

Therefore, 0.988≤ D ≤ 1.012. Combining these bounds on D with (3.12) we obtain

�

�βk

�

�=

�

�

�

�

N

D

�

�

�

�

≥
0.164





ζ






∞

1.012
≥ 0.162





ζ






∞

and we are done.

Theorem 3.1 is relevant in Salzer’s case in Figure 1 because
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(i) The columns for




ζ






∞ and




ζ






∞ / (εn) in Table 1 below provide strong empirical evidence that 2.5 (n+ 3)ε ≤




ζ






∞ ≤ 0.001 for 60≤ n≤ 1.000.000 in Salzer’s case in practice.

(ii) Table 2 in [9] shows that




ζ






∞ ≤ 0.005 in this case, and Lemma 10 in [9] leads to S ≤ 1.23n2 ≤ 5× 1012, for S in
(3.2) and 10≤ n≤ 2.000.000. This bound on S, the fact that

�

�w j

�

�≥ 1/2 and equation (3.3) show that we can apply
Theorem 3.1 if

�

�x − x j

�

� ≤ 10−15. Since
�

�xk

�

� ≤ 1 and ε ≤ 2.3× 10−16, the floating point number x ∈ [−1,1]−
�

x j

	

closest to x j satisfies this condition on x . Therefore, there exist x j and a floating point number x that satisfies the
hypothesis of Theorem 3.1 when n≤ 10≤ 2.000.000.

(iii) The column for




ζ






∞ /
�

εn2
�

in Table 1 shows that in practice




ζ






∞ is of order εn2 in Salzer’s case. This is not
surprising because Lemma 1 in [9] shows that ζk ≈

∑

j 6=k δ jk, the shortest intervals [xk−1, xk] have lengths of order

1/n2 and x̂k − xk is of order ε, and as a result the largest δ jk in (2.4), and




ζ






∞, are of order εn2.

(iv) In summary, Theorem 3.1, in combination with the empirical evidence, shows that in Salzer’s case the maximum
backward error for the barycentric interpolation of Lagrange polynomials grows at least like εn2, and Theorem 2.1
shows that this error grows at most like εn2 log n. Therefore, in this case Theorem 2.1 is sharp except for a factor of
order log n.

We end this section with two tables presenting the results of experiments with rounded Chebyshev nodes. The backward
errors β in these tables are the maximum values found by evaluating the second barycentric formula in double precision
and comparing the result with the value obtained in quadruple precision, with ε≈ 10−30. For each n, we chose trial points
near what we expect to be critical nodes, as described in Subsection 3.1. Table 1 regards the Salzer’s weights ŵs, and Table
2 considers the weights obtained by evaluating numerically λ(x̂c).

Table 1: The maximum backward error β and the relative errors ζs in the weights for Lagrange polynomials with Salzer’s weights

n β




ζs






∞
β

‖ζs‖∞
β

εn

‖ζs‖∞
εn

β

εn2
‖ζs‖∞
εn2

10 1.9e-15 8.5e-16 2.17 8.3e-01 3.8e-01 0.083 0.038
20 9.7e-15 7.1e-15 1.37 2.2e+00 1.6e+00 0.110 0.080
40 1.3e-14 9.0e-15 1.45 1.5e+00 1.0e+00 0.037 0.025
60 5.9e-14 5.0e-14 1.18 4.4e+00 3.7e+00 0.074 0.062
80 1.3e-13 9.0e-14 1.49 7.5e+00 5.1e+00 0.094 0.063

100 1.8e-13 1.6e-13 1.19 8.3e+00 7.0e+00 0.083 0.070
200 4.1e-13 3.1e-13 1.31 9.2e+00 7.1e+00 0.046 0.035
400 2.9e-12 2.3e-12 1.27 3.2e+01 2.6e+01 0.081 0.064
600 6.4e-12 4.1e-12 1.54 4.8e+01 3.1e+01 0.080 0.052
800 1.4e-11 1.2e-11 1.17 7.7e+01 6.5e+01 0.096 0.082

1.000 2.4e-11 2.2e-11 1.10 1.1e+02 9.8e+01 0.107 0.098
2.000 3.2e-11 2.5e-11 1.28 7.3e+01 5.7e+01 0.036 0.028
4.000 4.3e-10 3.8e-10 1.14 4.8e+02 4.2e+02 0.120 0.106
6.000 3.5e-10 1.7e-10 2.00 2.6e+02 1.3e+02 0.044 0.022
8.000 1.7e-09 1.6e-09 1.09 9.8e+02 9.0e+02 0.122 0.112

10.000 3.2e-09 2.7e-09 1.17 1.4e+03 1.2e+03 0.142 0.122
20.000 9.4e-09 7.9e-09 1.19 2.1e+03 1.8e+03 0.106 0.089
40.000 6.6e-08 6.2e-08 1.06 7.4e+03 6.9e+03 0.185 0.174
60.000 2.3e-08 1.7e-08 1.36 1.7e+03 1.2e+03 0.028 0.021
80.000 1.3e-07 1.1e-07 1.20 7.5e+03 6.2e+03 0.093 0.078

100.000 1.9e-07 1.2e-07 1.63 8.5e+03 5.2e+03 0.085 0.052
200.000 1.5e-06 1.1e-06 1.33 3.3e+04 2.5e+04 0.167 0.125
400.000 2.6e-06 1.9e-06 1.39 2.9e+04 2.1e+04 0.073 0.053
600.000 4.4e-06 3.1e-06 1.40 3.3e+04 2.4e+04 0.055 0.039
800.000 9.3e-06 6.9e-06 1.36 5.3e+04 3.9e+04 0.066 0.048

1.000.000 8.9e-06 7.0e-06 1.26 4.0e+04 3.2e+04 0.040 0.032

Tables 1 and 2, the fact that ε≈ 2.3× 10−16, and the least squares lines in Figure 1, support the back-of-the-envelope
estimates

βs ≈ 0.1εn2 and βr ≈ 0.2εn

for the maximum backward errors in the family of Lagrange polynomials, and Tables 1 and 2 show also that




ζ






∞ gives
a quite good estimate of the order of magnitude of the backward error: the ratio β/





ζ






∞ is in the range [1,4] for all n
considered in both tables (and we obtained similar results in literally more than a thousand other experiments.) Therefore,
for large n the ζ for Salzer’s weights are considerably larger than the ζ for rounded nodes.
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Table 2: The maximum backward error β and the relative errors ζr in the weights for Lagrange polynomials with rounded weights

n β




ζr






∞
β

‖ζr‖∞
β

εn

‖ζr‖∞
εn

β

εn2
‖ζr‖∞
εn2

10 9.5e-16 3.5e-16 2.70 0.429 0.159 4.3e-02 1.6e-02
20 2.4e-15 6.9e-16 3.44 0.535 0.156 2.7e-02 7.8e-03
40 2.4e-15 8.3e-16 2.92 0.273 0.094 6.8e-03 2.3e-03
60 3.0e-15 1.2e-15 2.55 0.225 0.088 3.8e-03 1.5e-03
80 4.8e-15 2.1e-15 2.27 0.270 0.119 3.4e-03 1.5e-03

100 5.2e-15 2.2e-15 2.37 0.235 0.099 2.3e-03 9.9e-04
200 1.2e-14 5.0e-15 2.36 0.263 0.111 1.3e-03 5.6e-04
400 2.0e-14 9.6e-15 2.06 0.223 0.108 5.6e-04 2.7e-04
600 2.5e-14 1.2e-14 2.09 0.190 0.091 3.2e-04 1.5e-04
800 3.6e-14 1.6e-14 2.20 0.202 0.092 2.5e-04 1.1e-04

1.000 4.2e-14 2.1e-14 2.02 0.188 0.093 1.9e-04 9.3e-05
2.000 8.7e-14 4.3e-14 2.01 0.196 0.097 9.8e-05 4.9e-05
4.000 1.7e-13 8.3e-14 2.11 0.196 0.093 4.9e-05 2.3e-05
6.000 2.5e-13 1.3e-13 2.02 0.190 0.094 3.2e-05 1.6e-05
8.000 3.5e-13 1.6e-13 2.11 0.194 0.092 2.4e-05 1.1e-05

10.000 4.1e-13 2.0e-13 2.03 0.187 0.092 1.9e-05 9.2e-06
20.000 8.4e-13 4.2e-13 2.00 0.188 0.094 9.4e-06 4.7e-06
40.000 1.6e-12 8.2e-13 2.00 0.183 0.092 4.6e-06 2.3e-06
60.000 2.5e-12 1.2e-12 2.00 0.184 0.092 3.1e-06 1.5e-06
80.000 3.2e-12 1.6e-12 2.00 0.182 0.091 2.3e-06 1.1e-06

100.000 4.1e-12 2.1e-12 2.00 0.186 0.093 1.9e-06 9.3e-07
200.000 8.1e-12 4.1e-12 2.00 0.183 0.092 9.2e-07 4.6e-07
400.000 1.6e-11 8.2e-12 2.00 0.183 0.092 4.6e-07 2.3e-07
600.000 2.4e-11 1.2e-11 2.00 0.183 0.091 3.0e-07 1.5e-07
800.000 3.3e-11 1.6e-11 2.00 0.183 0.092 2.3e-07 1.1e-07

1.000.000 4.1e-11 2.0e-11 2.01 0.184 0.092 1.8e-07 9.2e-08

3.1 Experimental settings
Our experiments used C++11 code, compiled with g++4.8.1, with usual options for optimization in release builds: -mavx
-O3 -DNDEBUG. We did not use any tricks to improve performance or accuracy. The experiments were performed in standard
processors: an Intel Core i7-2700K and an Intel Xeon E5-2640. The quadruple precision computations were performed with
g++’s __float128 type, which has machine precision of order 10−30 (we compiled the code with option -fext-numeric-literals
and linked the library quadmath in order to use these floating point numbers and the constant π with precision of 10−30.)
We checked the results by comparing them with the ones obtained using the MPFR library (Fousse et al. , 2007) There were
differences in the results obtained by the two processors. For instance, some nodes computed by the Core i7 have error
or order 10−16 while the same nodes computed by the Xeon have error of order 10−18, and vice versa. As a result, some
numbers in Tables 1 and 2 computed by these two processors had differences even in their leading digit. However, all entries
for Tables 1 and 2 computed by both processors had the same order of magnitude, and these tables present the same overall
picture in both cases.

For each n in Tables 1 and 2 we computed the weights ŵr and ŵs in quadruple precision and then obtained ζr and ζs.
We then choose a set of pairs of indexes (k, j) for Tables 1 and 2 as follows:

• We formed a vector indexes containing the indexes 0, n/2 and n, the ten indexes corresponding to the largest z r
k ,

the ten indexes corresponding to the largest zs
k, the ten indexes corresponding to the smallest z r

k and the ten indexes
corresponding to the smallest zs

k, and removed the repetitions.

• We then formed all the pairs (k, j) with distinct j and k in indexes, with j 6= n/2, because x very close to xn/2 = 0
may lead to underflow.

• For each pair (k, j) in which j > 0, we considered the 5000 floating point numbers x to the left of x j . When j < n, we
considered the 5000 floating point numbers to the right of x j . For each trial point x we computed the backward error
for the kth Lagrange polynomial evaluated at x , for both sets of weights, and Tables 1 and 2 report the maximum
backward error found for each n.

4 The stability of the linear map Ix,w

The main result in this section is Theorem 4.3, which gives general bounds on the effects of the perturbations of the nodes
and weights of the second barycentric formula, and leads to the proof of Theorem 2.1 presented at the end of the section.
In order to allow for general perturbations in the nodes and in the endpoints of the interpolation interval, this theorem is
stated in terms of a generic map χ : [ x̂+, x̂−]→ [x+, x−], so that the readers could consider maps that would allow them to
use Theorem 4.3 in situations which are not considered here. For instance, it is possible to find a map χ which allows one to
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handle cases in which xk = x− and x̂k < x̂−, but we do not consider such cases here for the sake of brevity. Lemma 4.1
and its Corollary 4.2 present a canonical map χ, which will be appropriate in most practical situations. The constant d in
Theorem 4.3 for this map is the δ in (2.7), and the readers which are not concerned with utmost generality can go directly
to Theorem 4.3, ignore the function χ in the statement of this theorem and take d = δ in (2.7).

Lemma 4.1. Given numbers x̂0 < x̂1 < · · · < x̂n and x0 < x1 < · · · < xn, the piecewise linear map χ : [ x̂0, x̂n]→ [x0, xn]
given by χ

�

x̂0

�

:= x0 and

χ( x̂) := xk +
�

x̂ − x̂k

� xk+1 − xk

x̂k+1 − x̂k
for x̂k < x̂ ≤ x̂k+1,

is strictly increasing, χ
�

x̂k

�

= xk,
�

�χ( x̂)− x̂
�

�≤ ‖x̂− x‖∞ for x̂ ∈ [ x̂0, x̂n] and, for 0≤ j ≤ n and
�

�

�

�

�

χ( x̂)− x j

x̂ − x̂ j
− 1

�

�

�

�

�

≤max
��

�δ jk

�

� ,
�

�δ j(k+1)

�

�

	

, (4.1)

for x̂k < x̂ < x̂k+1 and δ jk in (2.7).

Proof of Lemma 4.1. The function
�

�χ( x̂)− x̂
�

� is convex in [ x̂k, x̂k+1] and, therefore, its maximum value in this interval
is reached at x̂k or x̂k+1, that is,

max
x̂∈[ x̂k , x̂k+1]

�

�χ( x̂)− x̂
�

�=max
��

�χ
�

x̂k

�

− x̂k

�

� ,
�

�χ
�

x̂k+1

�

− x̂k+1

�

�

	

=max
��

�xk − x̂k

�

� ,
�

�xk+1 − x̂k+1

�

�

	

≤ ‖x̂− x‖∞ .

In order to prove (4.1) it suffices to show that the functions

h jk( x̂) :=
χ( x̂)− x j

x̂ − x̂ j
− 1=

1

x̂ − x̂ j

�

xk − x j +
�

x̂ − x̂k

� xk+1 − xk

x̂k+1 − x̂k

�

− 1

satisfy
�

�h jk( x̂)
�

�≤max
��

�δ jk

�

� ,
�

�δ j(k+1)

�

�

	

(4.2)

for x̂k < x̂ < x̂k+1. Note that h jk( x̂) = A/
�

x̂ − x̂ j

�

+ B for constants

A := xk − x j +
�

x̂ j − x̂k

� xk+1 − xk

x̂k+1 − x̂k
and B :=

xk+1 − xk

x̂k+1 − x̂k
− 1.

When j ∈ {k, k+ 1} we have that A = 0, h jk is constant and equal to δk(k+1) in the interval
�

x̂k, x̂k+1

�

and (4.2) holds.
Otherwise, x̂ j 6∈ [ x̂k, x̂k+1] and h jk is monotone and continuous in this interval. Therefore, when j 6∈ {k, k+ 1} we have that

max
x̂k≤ x̂≤ x̂k+1

�

�h jk( x̂)
�

�=max
��

�h jk

�

x̂k

��

� ,
�

�h jk

�

x̂k+1

��

�

	

=max
��

�δ jk

�

� ,
�

�δ j(k+1)

�

�

	

.

This proves (4.2) and this proof is complete.

Corollary 4.2. Under the conditions (2.9)–(2.15), if δ in (2.7) is smaller than one then x̂k < x̂k+1 for 0 ≤ k ≤ n and there
exists a bijection χ : [ x̂−, x̂+]→ [x−, x+] such that χ

�

x̂−
�

= x−, χ
�

x̂k

�

= xk, χ
�

x̂+
�

= x+,
�

�χ( x̂)− x̂
�

�≤max
�

‖x− x̂‖∞ ,
�

�x− − x̂−
�

� ,
�

�x+ − x̂+
�

�

	

,

and, for 0≤ j ≤ n,

• If x̂− < x̂ < x̂k− then
�

�

�

�

�

χ( x̂)− x j

x̂ − x̂ j
− 1

�

�

�

�

�

≤max
n
�

�

�δ−j

�

�

� ,
�

�δ jk−
�

�

o

.

• If k− ≤ k < k+ and x̂k < x̂ < x̂k+1 then
�

�

�

�

�

χ( x̂)− x j

x̂ − x̂ j
− 1

�

�

�

�

�

≤max
��

�δ jk

�

� ,
�

�δ j(k+1)

�

�

	

.

• If x̂k+ < x̂ < x̂+ then
�

�

�

�

�

χ( x̂)− x j

x̂ − x̂ j
− 1

�

�

�

�

�

≤max
n

�

�δ jk+
�

� ,
�

�

�δ+j

�

�

�

o

.
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Proof of Corollary 4.2. Corollary 4.2 follows from Lemma 4.1 applied to the vectors obtained by inserting x̂−, x̂+,x−,
x+ in the appropriate positions of x̂ and x. In fact, consider the vectors

x̂′ :=
�

x̂0, . . . , x̂k−−1,
�

x̂−, x̂k−
	

, x̂k−+1, . . . , x̂k+−1,
�

x̂k+ , x̂+
	

, . . . , x̂n

�t
,

x′ :=
�

x0, . . . , xk−−1,
�

x−, xk−
	

, xk−+1, . . . , xk+−1,
�

xk+ , x+
	

, . . . , xn

�t
,

where
�

x−, xk−
	

represents xk− when x− = xk− and the pair x−, xk− when x− 6= xk− , and the other braces are analogous.
The hypothesis x̂− = x̂k ⇔ x− = xk and x̂+ = x̂k ⇔ x− = xk ensures that x̂′ and x′ have the same dimension, and the
definitions of k− and k+ guarantee that x ′k < x ′k+1 for the relevant k. Finally, the vector x̂′ is strictly sorted because, for
instance for j > k−,

x̂ j − x̂− =
x j − x−

1+δ−j
≥

x j − x−

1−
�

�

�δ−j

�

�

�

> 0,

and we can indeed derive Corollary 4.2 from Lemma 4.1.

Theorem 4.3. Under the conditions (2.2) and (2.9)–(2.15), if x̂ ∈ [ x̂−, x̂+] \
�

x̂0, . . . , x̂n

	

, d ∈R and the function

χ : [ x̂−, x̂+] \
�

x̂0, . . . , x̂n

	

→ [x−, x+] \
�

x0, . . . , xn

	

,

are such that

max
0≤k≤n

�

�

�

�

χ( x̂)− xk

x̂ − x̂k
− 1

�

�

�

�

≤ d <
1−





ζ(w, ŵ)






∞

Λx− ,x+ ,x,w
−




ζ(w, ŵ)






∞ (4.3)

then
n
∑

k=0

ŵk

x̂ − x̂k
6= 0 (4.4)

and there exists β ∈Rn+1 such that





β






∞ ≤

�

d +




ζ(w, ŵ)






∞

� �

1+Λx− ,x+ ,x,w

�

1−




ζ(w, ŵ)






∞ −
�

d +




ζ(w, ŵ)






∞

�

Λx− ,x+ ,x,w

, (4.5)

and
Ix̂,ŵ

�

y
�

( x̂) = Ix,w

�

ỹ
��

χ( x̂)
�

for ỹk = yk

�

1+ βk

�

. (4.6)

Moreover, if (4.3) holds for all x̂ ∈ [ x̂−, x̂+] then

Λ x̂− , x̂+ ,x̂,ŵ ≤
(1+ d)Λx− ,x+ ,x,w

1−




ζ(w, ŵ)






∞ −
�

d +




ζ(w, ŵ)






∞

�

Λx− ,x+ ,x,w

. (4.7)

Proof of Theorem 4.3. Equation (4.3) shows that

νk :=
χ( x̂)− xk

x̂ − x̂k
− 1

satisfies
�

�νk

�

�≤ d, and also that




ζ






∞ < 1. Therefore 1+ ζk 6= 0 and we can write ŵk = wk/
�

1+ ζk

�

and deduce that

n
∑

k=0

ŵk

x̂ − x̂k
=

n
∑

k=0

wk

χ( x̂)− xk

1

1+ ζk

χ( x̂)− xk

x̂ − x̂k
=

n
∑

k=0

wk

χ( x̂)− xk

1+ νk

1+ ζk

= D

�

1+
1

D

n
∑

k=0

wk

χ( x̂)− xk

νk − ζk

1+ ζk

�

= D (1+ E) , (4.8)

for

D :=
n
∑

k=0

wk

χ( x̂)− xk
, σk :=

νk − ζk

1+ ζk
and E :=

1

D

n
∑

k=0

wkσk

χ( x̂)− xk

(Note that (2.2) implies that D 6= 0.) The bound
�

�νk

�

�≤ d yields

�

�σk

�

�≤
d +





ζ






∞

1−




ζ






∞

,
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and (4.3) and the definition of the Lebesgue constant (2.3) lead to

|E|=

�

�

�

�

�

1

D

n
∑

k=0

wkσk

χ( x̂)− xk

�

�

�

�

�

=
�

�Ix,w[σ]
�

χ( x̂)
��

�

≤ Λx− ,x+ ,x,w ‖σ‖∞ ≤
d +





ζ






∞

1−




ζ






∞

Λx− ,x+ ,x,w < 1, (4.9)

and this bound, in combination with (4.8), proves (4.4). Therefore, Ix̂,ŵ

�

y
�

( x̂) is well defined and Ix̂,ŵ

�

y
�

( x̂) = N/(D (1+ E)),
for D and E as above and

N :=
n
∑

k=0

ŵk yk

x̂ − x̂k
=

n
∑

k=0

wk

χ( x̂)− xk
yk

1

1+ ζk

χ( x̂)− xk

x̂ − x̂k
=

n
∑

k=0

wk

χ( x̂)− xk
θk,

for

θk :=
1+ νk

1+ ζk
yk.

It follows that Ix̂,ŵ

�

y
�

( x̂) = Ix,w

�

ỹ
��

χ( x̂)
�

, with

ỹk =
θk

1+ E
= yk

�

1+ βk

�

and βk :=

1+νk
1+ζk
− 1− E

1+ E
=
σk − E

1+ E
,

and (4.9) leads to
�

�βk

�

�≤

�

�σk

�

�+ |E|
1− |E|

≤

�

d +




ζ






∞

� �

1+Λx− ,x+ ,x,w

�

1−




ζ






∞ −
�

d +




ζ






∞

�

Λx− ,x+ ,x,w

,

and we have verified (4.5) and (4.6). Let us now prove (4.7). For each x̂ ∈ [ x̂−, x̂+], the hypothesis about d and equation
(4.4) guarantee that Ix̂,ŵ

�

y
�

( x̂) is well defined and
�

�Ix̂,ŵ

�

y
�

( x̂)
�

�=
�

�Ix,w

�

ỹ
��

χ( x̂)
��

�≤ Λx− ,x+ ,x,w





ỹ






∞ ≤ Λx− ,x+ ,x,w





y






∞

�

1+




β






∞

�

,

and the bound (4.5) yields

�

�Ix̂,ŵ

�

y
�

( x̂)
�

�≤
1+ d

1−




ζ






∞ −
�

d +




ζ






∞

�

Λx− ,x+ ,x,w

Λx− ,x+ ,x,w





y






∞ .

Taking the sup in x̂ ∈ [ x̂−, x̂+] of this expression we deduce (4.7).

Proof of Theorem 2.1. We use Stewart’s error counter (Higham, 2002)

〈k〉 =
k
∏

i=1

(1+ ξi)
σi , for σi = ±1, and |ξi | ≤ ε,

and write 〈k〉` to give a label ` to the specific k rounding errors we are concerned with. We note that [5]’s Lemma 3.1
implies that

if kε < 1 then |〈k〉 − 1| ≤
kε

1− kε
and 0< 〈k〉 ≤

1

1− kε
.

If x̂ = x̂k for some k then we can simply take x = xk and ỹ = y. Let us then consider the case x̂ ∈ [ x̂−, x̂+] \
�

x̂0, . . . , x̂n

	

.
[6] shows that

fl
�

Ix̂,ŵ

�

y
�

( x̂)
�

=

n
∑

k=0

ŵk yk〈n+3〉k
x̂− x̂k

n
∑

k=0

ŵk〈n+2〉k
x̂− x̂k

=

n
∑

k=0

w′k y ′k
x̂− x̂k

n
∑

k=0

w′k
x̂− x̂k

= Ix̂,w′
�

y′
�

( x̂) , (4.10)

for

w′k := ŵk〈n+ 2〉k and y ′k := yk

〈n+ 3〉k
〈n+ 2〉k

= yk〈2n+ 5〉k.

Recalling that wk = ŵk

�

1+ ζk

�

and using Higham’s Lemma 3.1 we obtain

�

�ζ′k

�

�=

�

�

�

�

wk −w′k
w′k

�

�

�

�

=

�

�

�

�

1+ ζk − 〈n+ 2〉k
〈n+ 2〉k

�

�

�

�

=
�

�

�

1+ ζk

�

〈n+ 2〉k′ − 1
�

�
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≤
�

�ζk〈n+ 2〉k′
�

�+
�

�〈n+ 2〉k′ − 1
�

�≤

�

�ζk

�

�+ (n+ 2)ε

1− (n+ 2)ε
≤ Z .

Corollary 4.1 implies that there exists a function χ as required by the hypothesis of Theorem 4.3 with d = δ in (2.7), and
this theorem applied to x̂= x̂, ŵ=w′, and y= y′ and equation (4.10) show that fl

�

Ix̂,ŵ

�

y
�

( x̂)
�

= Ix,w

�

ỹ
��

χ( x̂)
�

, with

ỹk := y ′k
�

1+αk

�

= yk〈2n+ 5〉k
�

1+αk

�

,

and
�

�αk

�

�≤
(δ+ Z)

�

1+Λx− ,x+ ,x,w

�

1− Z − (δ+ Z)Λx− ,x+ ,x,w
.

Higham’s Lemma shows that νk := 〈2n+ 5〉k − 1 satisfies
�

�νk

�

�≤ (2n+ 5)ε/ (1− (2n+ 5)ε) ,

and this completes the proof of Theorem 2.1.
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