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The effect of adding endpoint masspoints on bounds for
orthogonal polynomials

D.S. Lubinsky a

Abstract

Let ν be a positive measure supported on [−1,1], with infinitely many points in its support. Let
{pn (ν, x)}n≥0 be its sequence of orthonormal polynomials. Suppose we add masspoints at ±1, giving
a new measure µ = ν+ Mδ1 + Nδ−1. How much larger can |pn (µ, 0)| be than |pn (ν, 0)|? We study
this question for symmetric measures, and give more precise results for ultraspherical weights. Under
quite general conditions, such as ν lying in the Nevai class, it turns out that the growth is no more than
1+ o (1) as n→∞.

1 Results
Let µ be a finite positive Borel measure on the real line with infinitely many points in its support, and all finite moments

∫

t j dµ (t) , j = 0,1, 2, ... .

Then we may define orthonormal polynomials

pn (µ, x) = γn (µ) xn + ...,γn (µ)> 0,

n= 0,1, 2, ... satisfying the orthonormality conditions
∫

pn (µ, x) pm (µ, x) dµ (x) = δmn.

The zeros of pn (µ, x) are denoted by

xnn (µ)< xn−1,n (µ)< ...< x2n (µ)< x1n (µ) .

The nth reproducing kernel for µ is

Kn (µ, x , t) =
n−1
∑

j=0

p j (µ, x) p j (µ, t) =
γn−1

γn
(µ)

pn (µ, x) pn−1 (µ, t)− pn−1 (µ, x) pn (µ, t)
x − t

.

The three term recurrence relation has the form

(x − bn (µ)) pn (µ, x) = an+1 (µ) pn+1 (µ, x) + an (µ) pn−1 (µ, x) ,

where
an (µ) =

γn−1

γn
(µ) .

A central problem in the theory of orthonormal polynomials is to establish bounds on pn (µ, x), and there is an extensive
literature. See for example [1], [3], [5], [8], [12], [14]. In this paper, our goal is to assess how adding masspoints at ±1 can
increase the size of the orthonormal polynomial at the origin. We take advantage of the fact that a lot is known about the
orthogonal polynomials for measures formed by adding such masspoints. Differential equations and other identities have been
obtained, asymptotics as n→∞ have been established, and Sobolev analogues have been investigated. See [2], [4], [7], [10],
[11] for some references.

Consider a fixed positive measure ν supported on [−1, 1] with infinitely many points in its support, and that is symmetric
about 0, so that ν ([−b,−a]) = ν ([a, b]) for all [a, b] ⊂ [−1, 1]. Fix S > 0. We let M (ν, S) denote the class of all measures

µ= ν+Mδ1 + Nδ−1 (1)

where M , N ≥ 0 and M + N ≤ S. We let M (ν) denote the class of all measures of this form with M , N ≥ 0 and no restriction on
M + N .
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We shall need some auxiliary parameters that depend only on n and ν. For even integers n, we set

rn =
γn−1

γn
(ν)

pn−1 (ν, 1)
pn (ν, 1)

= −
Kn (ν,−1,1)

p2
n (ν, 1)

. (2)

The second formula for rn follows from the Christoffel-Darboux formula, and symmetry of ν. Also let

Un = Kn (ν, 1, 1)− Kn (ν,−1,1) ;
Vn = Kn (ν, 1, 1) + Kn (ν,−1,1) .

(3)

We note that it follows from the recurrence relation that 0< rn < 1, while the symmetry of ν and Cauchy-Schwarz show that
Un, Vn > 0 (see (27) below).

We prove:

Theorem 1.1
Let ν be a positive measure with support in [−1,1] and with infinitely many points in its support. Assume also that ν is symmetric, so
that ν ([−b,−a]) = ν ([a, b]) for all subintervals [a, b] of [−1,1]. Let n≥ 2 be even. Then

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

=max

�

1,
U2

n

VnVn+1

�

. (4)

Moreover,

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

=
U2

n

VnVn+1
> 1 (5)

iff
2p2

n (ν, 1)

Vn
>

1− 2rn

r2
n

. (6)

Remarks
(a) We have been unable to find a measure for which (6) fails, but nor have we been able to prove that it is always true. It is true
for all even Jacobi weights and large enough n, as we shall see below.
(b) Interestingly enough, the supremum in (4) is not attained. It occurs as M = N →∞. However, we note that for a large class
of measures, it decays to 1 as n→∞:

Corollary 1.2
Assume in addition to the hypotheses of Theorem 1.1, that ν lies in the Nevai class, so that the recurrence coefficients satisfy

lim
n→∞

an (ν) =
1
2

. (7)

Then

lim
n→∞

�

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2�

= 1. (8)

Remarks
(i) Note that since ν is symmetric about 0, bn (ν) = 0 for all n.
(ii) The only property that we use of the Nevai class is subexponential growth at 1 :

lim
n→∞

pn (ν, 1)2 /Kn (ν, 1, 1) = 0.

Next, we consider the case where we maximize over the class M (ν, S). For a given S > 0, and given n, let

XS = p2
n (ν, 1)

S + S2Un/2
S2UnVn/4+ SKn (ν, 1, 1) + 1

. (9)

In the course of our proofs, we shall show that XS is an increasing function of S > 0, and its limit as S→∞ coincides with the
left-hand side of (6). We prove:

Theorem 1.3
Let ν be a positive measure with support in [−1,1] and with infinitely many points in its support. Assume also that ν is symmetric, so
that ν ([−b,−a]) = ν ([a, b]) for all subintervals [a, b] of [−1, 1]. Let n≥ 2 be even and S > 0 and let M (ν, S) denote the class of
measures defined above.
(a) There exists µ∗ = ν+M ∗δ1 + N ∗δ−1 ∈M (ν, S) satisfying

|pn (µ
∗, 0)|=max {|pn (µ, 0)| : µ ∈M (ν, S)} . (10)
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(b) If XS <
1−2rn

r2
n

, then M ∗ = N ∗ = 0, µ∗ = ν, and

|pn (µ
∗, 0)|= |pn (ν, 0)| . (11)

(c) If XS >
1−2rn

r2
n

, then M ∗ = N ∗ = S
2 , µ∗ = ν+ S

2 (δ−1 +δ1), and

�

pn (µ∗, 0)
pn (ν, 0)

�2

=

�

S2U2
n/4+ SUn + 1

�2

(S2UnVn/4+ SKn (ν, 1, 1) + 1) (S2UnVn+1/4+ SKn+1 (ν, 1, 1) + 1)
> 1.

(12)

(d) If XS =
1−2rn

r2
n

, then there are two extremal measures, namely µ∗ = ν, and µ∗ = ν+ S
2 (δ−1 +δ1), and (11) holds.

(e) In all cases,

max
µ∈M(ν,S)

�

pn (µ, 0)
pn (ν, 0)

�2

=max

�

1,
(1+ rnXS)

2

1+ XS

�

.

Thus the extremal measure is always symmetric. It is also unique, except when XS =
1−2rn

r2
n

. For even Jacobi weights (or
equivalently ultraspherical weights), we obtain more explicit results:

Theorem 1.4
Let α > −1 and

ν′ (t) =
�

1− t2
�α

, t ∈ (−1,1) . (13)

For even n≥ 2, the inequality (5) holds, and

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

= 1+

�

1
n+α

�2
2 (α+ 1) {1+ 2α+1

n }

1+ 2 α+1
n+α +

α+1
(n+α)2

�

α− 1− 2(2α+1)
n

	

= 1+
2 (α+ 1)

(n+α)2
+O

�

n−3
�

.

(14)

Thus for all α > −1, the supremum exceeds 1 for large enough n, but decays to 1 with rate O
�

n−2
�

as n→∞. For fixed S,
we prove:

Theorem 1.5
Let ν, n be as in Theorem 1.4 and let S > 0. Let µ∗ = ν+M ∗δ1 + N ∗δ−1 ∈M (ν, S) be an extremal measure satisfying (10).
(a) Suppose −1 < α < − 1

2 . Then there exists n0 (α) such that for n ≥ n0 (α), rn >
1
2 . Moreover, for n ≥ n0 (α) and for all S > 0,

M ∗ = N ∗ = S
2 and µ∗ = ν+ S

2 (δ−1 +δ1).
(b) Suppose α > − 1

2 . Then there exists n0 (α) such that for n ≥ n0 (α), rn <
1
2 . Then for n ≥ n0 (α) and S > 0 so small that

XS <
1−2rn

r2
n

, M ∗ = N ∗ = 0 and µ∗ = ν. For n≥ n0 (α) and XS =
1−2rn

r2
n

, we may take µ∗ = ν, or µ∗ = ν+ S
2 (δ−1 +δ1). For n≥ n0 (α)

and XS >
1−2rn

r2
n

, M ∗ = N ∗ = S
2 and µ∗ = ν+ S

2 (δ−1 +δ1).

(c) Suppose α= − 1
2 . Then rn =

1
2 . For n≥ 2, M ∗ = N ∗ = S

2 and µ∗ = ν+ S
2 (δ−1 +δ1).

Observe that if α > − 1
2 , the extremal measure is µ∗ = ν for small enough S, but once S increases beyond a certain threshold,

µ∗ = ν+ S
2 (δ−1 +δ1). It is possible to give a more explicit form to the expression for the sup in (10) for ultraspherical weights,

but it is messy and so omitted.
This paper is organized as follows: In Section 2, we present a basic identity. In Section 3, we first prove Theorem 1.3 and

then Theorem 1.1 and Corollary 1.2. In Section 4, we first prove Theorem 1.4 and then Theorem 1.5.
In the sequel C , C1, C2, ... denote constants independent of n, x , t. The same symbol does not necessarily denote the same

constant in different occurences.

2 The Basic Identity
Throughout this section, ν satisfies the hypotheses of Theorem 1.1. Recall that rn, Un, Vn and XS are defined by (2), (3) and (9).
Our analysis is based on the identity in Lemma 2.2 below. We do not claim that it is new, as identities of this type are commonly
used in analyzing measures with added masspoints, but derive it in a form that we can apply it:
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Theorem 2.1
Let n≥ 2 be even. Let M , N ≥ 0 and

µ= ν+Mδ1 + Nδ−1.

Let

x = x (M , N) = p2
n (ν, 1)

2MNUn +M + N
MNUnVn + (M + N)Kn (ν, 1, 1) + 1

. (15)

(a) Then
�

pn (µ, 0)
pn (ν, 0)

�2

= g (x) :=
(1+ rn x)2

1+ x
.

(b) If rn <
1
2 , the function g is a strictly decreasing function of x ∈ (0, 1−2rn

rn
) and is a strictly increasing function of x ∈ ( 1−2rn

rn
,∞).

(c) If rn ≥
1
2 , the function g is a strictly increasing function of x ∈ (0,∞).

(d) g (x)> 1 iff

x >
1− 2rn

r2
n

. (16)

while g (x) = 1 iff x = 1−2rn
rn

or x = 0.
We begin the proof with

Lemma 2.2
(a) Let

πn−1 (y) = pn (µ, y)−
γn (µ)
γn (ν)

pn (ν, y) ; (17)

A=
�

1+MKn (ν, 1, 1) −MKn (ν, 1,−1)
−NKn (ν, 1,−1) 1+ NKn (ν, 1, 1)

�

; (18)

and
d = MNUnVn + (M + N)Kn (ν, 1, 1) + 1. (19)

(a) Then

pn (µ, y) =
γn (µ)
γn (ν)

�

pn (ν, y) +
pn (ν, 1)

d

�

−NKn (ν, y,−1)
−MKn (ν, y, 1)

�T

A
�

1
1

�

�

. (20)

(b)
�

γn (µ)
γn (ν)

�2�

1+
p2

n (ν, 1)

d

�

1
1

�T

AT
�

N
M

�

�

= 1. (21)

Proof
(a) Using orthogonality, we see that

πn−1 (y) =

∫ 1

−1

Kn (ν, y, t)πn−1 (t) dν (t)

=

∫ 1

−1

Kn (ν, y, t) pn (µ, t) dν (t)

= −MKn (ν, y, 1) pn (µ, 1)− NKn (ν, y,−1) pn (µ,−1) .

(22)

Taking y = −1 and y = 1, and gathering the terms involving pn (µ,±1), gives the matrix equation
�

1+ NKn (ν,−1,−1) MKn (ν,−1,1)
NKn (ν, 1,−1) 1+MKn (ν, 1, 1)

��

pn (µ,−1)
pn (µ, 1)

�

=
γn (µ)
γn (ν)

�

pn (ν,−1)
pn (ν, 1)

�

.

The determinant d of the matrix can be put into the form in (19), if we take account of the definition (3) of Un, Vn. Solving the
matrix equation and using the symmetry of ν gives

�

pn (µ,−1)
pn (µ, 1)

�

=
γn (µ)
γn (ν)

1
d

�

1+MKn (ν, 1, 1) −MKn (ν, 1,−1)
−NKn (ν, 1,−1) 1+ NKn (ν, 1, 1)

��

pn (ν, 1)
pn (ν, 1)

�

=
γn (µ)
γn (ν)

pn (ν, 1)
A
d

�

1
1

�

.

(23)
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From (22) and this last identity,

πn−1 (y) =
γn (µ)
γn (ν)

pn (ν, 1)
d

�

−NKn (ν, y,−1)
−MKn (ν, y, 1)

�T

A
�

1
1

�

.

Then (20) follows from the definition of πn−1.
(b) We obtain equations for γn(µ)

γn(ν)
in two ways:

∫ 1

−1

π2
n−1 (y) dν (y)

=

∫ 1

−1

p2
n (µ, y)2 dν (y)− 2

�

γn (µ)
γn (ν)

�2

+
�

γn (µ)
γn (ν)

�2

= 1−M pn (µ, 1)2 − N pn (µ,−1)2 −
�

γn (µ)
γn (ν)

�2

.

Also, from (22),
∫ 1

−1

π2
n−1 (y) dν (y)

=

∫ 1

−1

(−NKn (ν, y,−1) pn (µ,−1)−MKn (ν, y, 1) pn (µ, 1))2 dν (y)

= N 2p2
n (µ,−1)Kn (ν,−1,−1) +M2p2

n (µ, 1)Kn (ν, 1, 1) + 2MN pn (µ,−1) pn (µ, 1)Kn (ν,−1,1) .

Then using the last two equations and solving for 1−
�

γn(µ)
γn(ν)

�2
,

1−
�

γn (µ)
γn (ν)

�2

= p2
n (µ,−1)

�

N + N 2Kn (ν,−1,−1)
	

+ p2
n (µ, 1)

�

M +M2Kn (ν, 1, 1)
	

+2MN pn (µ,−1) pn (µ, 1)Kn (ν,−1,1)

=
�

pn (µ,−1)
pn (µ, 1)

�T � N 0
0 M

��

1+ NKn (ν, 1, 1) MKn (ν,−1, 1)
NKn (ν,−1,1) 1+MKn (ν, 1, 1)

��

pn (µ,−1)
pn (µ, 1)

�

= d
�

pn (µ,−1)
pn (µ, 1)

�T � N 0
0 M

�

A−1
�

pn (µ,−1)
pn (µ, 1)

�

.

Using (23) gives

1−
�

γn (µ)
γn (ν)

�2

=
p2

n (ν, 1)

d

�

γn (µ)
γn (ν)

�2 � 1
1

�T

AT
�

N 0
0 M

��

1
1

�

and (21) follows.�

Proof of Theorem 2.1(a)
Setting y = 0 in (20), squaring and multiplying by the factor {} in (21) gives

p2
n (µ, 0)

�

1+
p2

n (ν, 1)

d

�

1
1

�T

AT
�

N
M

�

�

=

�

pn (ν, 0) +
pn (ν, 1)

d

�

−NKn (ν, 0,−1)
−MKn (ν, 0, 1)

�T

A
�

1
1

�

�2

.

(24)

Here from the Christoffel-Darboux formula and as pn−1 (ν, 0) = 0, while pn−1 (ν,−1) = −pn−1 (ν, 1),

Kn (ν, 0,±1) = −
γn−1

γn
(ν) pn (ν, 0) pn−1 (ν, 1)

so using Christoffel-Darboux again,
pn (ν, 1)Kn (ν, 0,±1) = pn (ν, 0)Kn (ν,−1, 1) .
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Thus (24) becomes
�

pn (µ, 0)
pn (ν, 0)

�2�

1+
p2

n (ν, 1)

d

�

1
1

�T

AT
�

N
M

�

�

=

�

1−
Kn (ν,−1,1)

d

�

N
M

�T

A
�

1
1

�

�2

.

(25)

Here from (18) and (19), followed by (15),

p2
n (ν, 1)

d

�

1
1

�T

AT
�

N
M

�

= p2
n (ν, 1)

N +M + 2MNUn

MNUnVn + (M + N)Kn (ν, 1, 1) + 1
= x .

Also, from (2),

Kn (ν,−1,1) = −
γn−1

γn
(ν) pn (ν, 1) pn−1 (ν, 1) = −rnp2

n (ν, 1)

(26)

so (25) becomes
�

pn (µ, 0)
pn (ν, 0)

�2

{1+ x}= {1+ rn x}2 .

�

Proof of Theorem 2.1 (b), (c), (d)
A calculation shows that

g (x) = r2
n x +

�

2rn − r2
n

�

+
(rn − 1)2

1+ x
so

g ′ (x) = r2
n







1−

�

1− 1
rn

�2

(1+ x)2







.

Thus g ′ (x) is an increasing function of x ∈ [0,∞), with limit r2
n > 0 as x →∞. Also

g ′ (x) = 0⇔ 1+ x = ±
�

1−
1
rn

�

so as x > 0, and rn > 0,

g ′ (x) = 0⇔ x =
1− 2rn

rn
.

Then if rn <
1
2 , it follows that g (x) decreases in

�

0, 1−2rn
rn

�

and increases in
�

1−2rn
rn

,∞
�

. If rn ≥
1
2 , it follows that g (x) increases

in [0,∞). Finally

g (x) > 1⇔ 1+ 2rn x + r2
n x2 > 1+ x

⇔ x >
1− 2rn

r2
n

,

as x > 0. Also g (x) = 1 iff x = 0 or x = 1−2rn
r2
n

.�

3 Proof of Theorems 1.1 and 1.3
Recall that x = x (M , N) is given by (15). We begin with

Lemma 3.1
(a) For M , N ≥ 0,

∂ x
∂M

> 0;
∂ x
∂ N

> 0.

(b) The maximum of x = x (M , N) in the triangular region T = {(M , N) : 0≤ M , N and M + N ≤ S} occurs when and only when

M = N =
S
2

.
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(c) Moreover, the maximum is

x = XS = p2
n (ν, 1)

S2Un/2+ S
S2UnVn/4+ SKn (ν, 1, 1) + 1

.

(d)

X∞ := lim
S→∞

XS =
2p2

n (ν, 1)

Vn
.

Proof
(a) Note that from Cauchy-Schwarz, and as p j (ν,−1) = (−1) j p j (ν, 1),

|Kn (ν,−1,1)| =

�

�

�

�

�

n−1
∑

j=0

p j (ν, 1) p j (ν,−1)

�

�

�

�

�

<

n−1
∑

j=0

�

�p j (ν, 1) p j (ν,−1)
�

�

≤
Æ

Kn (ν, 1, 1)Kn (ν,−1,−1) = Kn (ν, 1, 1)

so that
Un, Vn > 0. (27)

Next, using Vn − 2Kn (ν, 1, 1) = −Un, and from (15),

1
p2

n (ν, 1)
(MNUnVn + (M + N)Kn (ν, 1, 1) + 1)2

�

∂ x
∂M

�

= (2NUn + 1) (MNUnVn + (M + N)Kn (ν, 1, 1) + 1)− (2MNUn +M + N) (NUnVn + Kn (ν, 1, 1))
= MNUn {(2NUn + 1)Vn − 2 (NUnVn + Kn (ν, 1, 1))}

+(M + N) {(1+ 2NUn)Kn (ν, 1, 1)− (NUnVn + Kn (ν, 1, 1))}+ 2NUn + 1

= MNUn {Vn − 2Kn (ν, 1, 1)}+ (M + N) {NUn (2Kn (ν, 1, 1)− Vn)}+ 2NUn + 1

= MNUn {−Un}+ (M + N)
�

NU2
n

	

+ 2NUn + 1

= (NUn + 1)2 > 0.

Thus
∂ x
∂M

= p2
n (ν, 1)

(NUn + 1)2

d2
.

Then as Un > 0, ∂ x
∂M > 0 and similarly ∂ x

∂ N > 0.
(b) Since ∂ x

∂M > 0, ∂ x
∂ N > 0 for all M , N ≥ 0, so there are no critical points within the interior of the triangle. Moreover, it then

follows that the maximum cannot occur on the axes M = 0 or N = 0, so occurs when M + N = S. Then on this line segment,

x = p2
n (ν, 1)

2M (S −M)Un + S
M (S −M)UnVn + SKn (ν, 1, 1) + 1

=
p2

n (ν, 1)

Vn

§

2+
SVn − 2SKn (ν, 1, 1)− 2

M (S −M)UnVn + SKn (ν, 1, 1) + 1

ª

=
p2

n (ν, 1)

Vn

§

2−
SUn + 2

M (S −M)UnVn + SKn (ν, 1, 1) + 1

ª

.

(28)

Here we have used the definition of Un, Vn. Since S ≥ 0 is fixed and Un, Vn > 0, this last expression is an increasing function of
M (S −M) and in turn that is maximized over M ∈ [0, S] when and only when M = S

2 .
(c) This follows by substituting M = N = S

2 into the first line in (28).
(d) This is immediate from (c). �

Proof of Theorem 1.3(a)
We can choose sequences {Mm} and {Nm} of nonnegative numbers with 0≤ Mm + Nm ≤ S and if

µm = ν+Mmδ1 + Nmδ−1,

then
lim

m→∞
|pn (µm, 0)|= sup {|pn (µ, 0)| : µ ∈M (ν, S)} .
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By passing to a subsequence, and relabeling, we can assume that {µm} converges weakly to µ∗ while Mm→ M ∗ and Nm→ N ∗ so
that µ∗ = ν+M ∗δ1 + N ∗δ−1. Then for each fixed j ≥ 0,

lim
m→∞

∫

t j dµm (t) =

∫

t j dµ∗ (t) .

It follows from the determinantal representation of orthonormal polynomials [9, p. 57], [16, p. 23] that

|pn (µ
∗, 0)|= lim

m→∞
|pn (µm, 0)|= sup {|pn (µ, 0)| : µ ∈M (ν, S)} .

�

Proof of Theorem 1.3(b)
We’re assuming that XS <

1−2rn
r2
n

. Of course this is possible only if rn <
1
2 , since XS > 0. Let 0 ≤ M , N and M + N ≤ S and

µ= ν+Mδ1 + Nδ−1. By Theorem 2.1, if x = x (M , N), we have
�

pn (µ, 0)
pn (ν, 0)

�2

=
(1+ rn x)2

1+ x
= g (x) .

Here by Lemma 3.1, 0≤ x ≤ XS <
1−2rn

r2
n

, so Theorem 2.1(d) shows that

�

pn (µ, 0)
pn (ν, 0)

�2

< 1,

unless x = 0. It follows that the maximum possible value of
�

pn(µ,0)
pn(ν,0)

�2
for µ ∈M (ν, S) occurs iff M = N = 0. �

Proof of Theorem 1.3(c)
We’re assuming that XS >

1−2rn
r2
n

. By Theorem 2.1, if x = x (M , N), we have

�

pn (µ, 0)
pn (ν, 0)

�2

=
(1+ rn x)2

1+ x
= g (x)

is maximal when x is large as possible under the restrictions 0≤ M , N and M +N ≤ S. By Lemma 3.1, this occurs iff M = N = S
2 ,

and then x = XS . Here from (2) and (9),

rnXS = −SKn (ν,−1,1)
1+ SUn/2

S2UnVn/4+ SKn (ν, 1, 1) + 1

so

1+ rnXS

=
S2 (UnVn − 2UnKn (ν,−1,1))/4+ S (Kn (ν, 1, 1)− Kn (ν,−1, 1)) + 1

S2UnVn/4+ SKn (ν, 1, 1) + 1

=
S2U2

n/4+ SUn + 1

S2UnVn/4+ SKn (ν, 1, 1) + 1

while

1+ XS

=
S2Un

�

Vn + 2p2
n (ν, 1)

�

/4+ S
�

Kn (ν, 1, 1) + p2
n (ν, 1)

�

+ 1

S2UnVn/4+ SKn (ν, 1, 1) + 1

=
S2UnVn+1/4+ SKn+1 (ν, 1, 1) + 1

S2UnVn/4+ SKn (ν, 1, 1) + 1
.

Then
�

pn (µ, 0)
pn (ν, 0)

�2

=
(1+ rnXS)2

1+ rnXS

=

�

S2U2
n/4+ SUn + 1

�2

(S2UnVn/4+ SKn (ν, 1, 1) + 1) (S2UnVn+1/4+ SKn+1 (ν, 1, 1) + 1)
.

By Theorem 2.1(d), and as XS >
1−2rn

r2
n

, this exceeds 1. �

Proof of Theorem 1.3(d)
Here as XS =

1−2rn
r2
n

, we have g (X s) = 1= g (0), and for any other value of x = x (M , N) we have g (x)< 1. �
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Proof of Theorem 1.3(e)
It follows from Theorem 2.1 and Lemma 3.1, that for a given S > 0,

sup
µ∈M(ν,S)

�

pn (µ, 0)
pn (ν, 0)

�2

=max

�

1,
(1+ rnXS)

2

1+ XS

�

and moreover the sup is attained. Indeed if XS ≤
1−2rn

r2
n

, the maximum is 1, while if XS >
1−2rn

r2
n

, the maximum is achieved when

M = N = S
2 . If XS =

1−2rn
r2
n

, the maximum is achieved when M = N = S
2 and M = N = 0. �

Proof of Theorem 1.1
From Lemma 3.1, Theorem 1.3(e) and (12),

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

= lim
S→∞

sup
µ∈M(ν,S)

�

pn (µ, 0)
pn (ν, 0)

�2

= max

(

1,

�

U2
n/4

�2

(UnVn/4)UnVn+1/4

)

= max{1,
U2

n

VnVn+1
}.

Finally, the above considerations show that we can drop the 1 in the max, that is

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

=
U2

n

VnVn+1
> 1

iff for large enough S, XS >
1−2rn

r2
n

, which is true iff (recall Lemma 3.1(d))

2p2
n (ν, 1)

Vn
= X∞ >

1− 2rn

r2
n

. (29)

�

We have been unable to resolve if (29) is always true. Here is an equivalent form:

Lemma 3.2
The inequality (29) is equivalent for even n to

−Kn (ν,−1,1)
Kn+1 (ν,−1, 1)

>
Kn (ν, 1, 1)

Kn+1 (ν, 1, 1)
.

Proof
From the second identity in (2),

1− 2rn

r2
n

=
p2

n (ν, 1)

Kn (ν, 1,−1)2
�

2Kn (ν, 1,−1) + p2
n (ν, 1)

�

,

so (29) is equivalent to

2p2
n (ν, 1)

Vn
>

p2
n (ν, 1)

Kn (ν,−1, 1)2
�

p2
n (ν, 1) + 2Kn (ν,−1,1)

�

⇔ 2Kn (ν,−1,1)2 > (Kn (ν, 1, 1) + Kn (ν,−1,1))
�

p2
n (ν, 1) + 2Kn (ν,−1,1)

�

⇔ 0> (Kn (ν, 1, 1) + Kn (ν,−1, 1)) p2
n (ν, 1) + 2Kn (ν, 1, 1)Kn (ν,−1,1)

⇔ 0>
�

Kn (ν, 1, 1) + p2
n (ν, 1)

�

Kn (ν,−1,1) +
�

Kn (ν,−1,1) + p2
n (ν, 1)

�

Kn (ν, 1, 1)
⇔ 0> Kn+1 (ν, 1, 1)Kn (ν,−1, 1) + Kn+1 (ν,−1,1)Kn (ν, 1, 1)

⇔
−Kn (ν,−1, 1)
Kn+1 (ν,−1,1)

>
Kn (ν, 1, 1)

Kn+1 (ν, 1, 1)
.

Here we are using Kn (ν,−1,1)< 0< Kn+1 (ν,−1,1). �

Proof of Corollary 1.2
By the Christoffel-Darboux formula, and symmetry of ν, ,

|Kn (ν,−1, 1)|/Kn (ν, 1, 1) =
γn−1

γn

|pn (ν, 1) pn−1 (ν, 1)|
Kn (1,1)

.
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Here as the support of ν is [−1,1], γn−1
γn
≤ 2 [9, p. 41, Lemma 7.2] while as ν lies in the Nevai class, we have subexponential

growth [13, Thm. 2.1, p. 218]:
lim

n→∞
pn (ν, 1)2 /Kn (ν, 1, 1) = 0.

See also [6], [15]. It follows that

lim
n→∞

Un

Kn (ν, 1, 1)
= 1= lim

n→∞

Vn

Kn (ν, 1, 1)

and also

lim
n→∞

Vn

Vn+1
= 1.

Thus

lim
n→∞

U2
n

VnVn+1
= 1

and Theorem 1.1 gives the result. �

4 Proof of Theorems 1.4 and 1.5
Let us first recall the values of some orthogonal polynomial quantities for the ultraspherical weight (or even Jacobi weight)

ν′ (t) =
�

1− t2
�α

, t ∈ (−1, 1) .

Here α > −1 is fixed. Throughout this section, we drop the parameter ν in pn (ν, x) etc. The classical Jacobi polynomials P(α,α)
n

are normalized by [16, p. 58]

P(α,α)
n (1) =

�

n+α
n

�

. (30)

The leading coefficient of P(α,α)
n is [16, p. 63]

2−n
�

2n+ 2α
n

�

.

Also, the orthonormal polynomial is given by [16, p. 68]

pn (x) = cnP(α,α)
n (x) , (31)

where

cn =

�

2n+ 2α+ 1
22α+1

Γ (n+ 1) Γ (n+ 2α+ 1)

Γ (n+α+ 1)2

�1/2

, (32)

so that

pn (1) = cn

�

n+α
n

�

(33)

and

γn = cn2−n
�

2n+ 2α
n

�

. (34)

Furthermore, taking account that our reproducing kernel sums to n− 1 while that in [16] adds to n, [16, p. 71, eqn. (4.5.3)]

Kn (x , 1) = 2−2α−1 Γ (n+ 2α+ 1)
Γ (α+ 1) Γ (n+α)

P(α+1,α)
n−1 (x) (35)

so that

Kn (1, 1) = 2−2α−1 Γ (n+ 2α+ 1)
Γ (α+ 1) Γ (n+α)

�

n+α
n− 1

�

(36)

while using that P(α+1,α)
n−1 (−x) = (−1)n−1 P(α,α+1)

n−1 (x) ,

Kn (−1,1) = (−1)n−1 2−2α−1 Γ (n+ 2α+ 1)
Γ (α+ 1) Γ (n+α)

�

n− 1+α
n− 1

�

. (37)

The proofs of this section involve several straightforward calculations. We shall exclude some of the line by line computations.

Lemma 4.1
Let n≥ 2 be even.
(a)

pn−1 (1)
pn (1)

=
�

1−
1+ 2α

n
+ηn

�1/2

, (38)

where

ηn = (2α+ 1)
n (4α+ 1) + 2α (2α+ 1)
(2n+ 2α+ 1) (n+ 2α)n

. (39)
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(b)

rn =
1
2

�

1+
1− 4α2

4 (n+α)2 − 1

�1/2 �

1−
1+ 2α

n
+ηn

�1/2

=
1
2

�

1−
1+ 2α

2n
+O

�

n−2
�

�

.

(40)

(c)
1− 2rn

r2
n

=
2(1+ 2α)

n

�

1+O
�

n−1
��

. (41)

(d)

X∞ =
2p2

n (1)

Vn
>

1− 2rn

r2
n

. (42)

(e)
2p2

n (1)

Kn (1, 1)
= 4

�

α+ 1
n

��

1+
1

2 (n+α)

�

. (43)

(f)
−Kn (−1, 1)

Kn (1,1)
=
α+ 1
n+α

. (44)

Proof
(a) Firstly using (32),

cn−1

cn
=

�

2n+ 2α− 1
2n+ 2α+ 1

Γ (n) Γ (n+ 2α)
Γ (n+ 1) Γ (n+ 2α+ 1)

Γ (n+α+ 1)2

Γ (n+α)2

�1/2

=

�

2n+ 2α− 1
2n+ 2α+ 1

(n+α)2

n (n+ 2α)

�1/2

so by (34), and a straightforward calculation,

γn−1

γn
= 2

cn−1

cn

�

2n− 2+ 2α
n− 1

�

/

�

2n+ 2α
n

�

=
1
2

�

1+
1− 4α2

4 (n+α)2 − 1

�1/2

.

(45)

Next, from (33),

pn−1 (1)
pn (1)

=
cn−1

�n−1+α
n−1

�

cn

�n+α
n

�

=
�

2n+ 2α− 1
2n+ 2α+ 1

n
n+ 2α

�1/2

=
�

1−
1+ 2α

n
+ηn

�1/2

,

where

ηn = −2
�

1
2n+ 2α+ 1

−
1

2n
+

α

n+ 2α
−
α

n

�

+
4α

(2n+ 2α+ 1) (n+ 2α)

= (2α+ 1)
n (4α+ 1) + 2α (2α+ 1)
(2n+ 2α+ 1) (n+ 2α)n

,

again, by a straightforward calculation.
(b) From (45) and (38),

rn =
γn−1

γn

pn−1 (1)
pn (1)

=
1
2

�

1+
1− 4α2

4 (n+α)2 − 1

�1/2 �

1−
1+ 2α

n
+ηn

�1/2

=
1
2

�

1−
1+ 2α

2n
+O

�

n−2
�

�

.
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(c) This follows immediately from (b).
(d) Recall from Lemma 3.2 that

2p2
n (ν, 1)

Vn
= X∞ >

1− 2rn

r2
n

is equivalent to
−Kn (−1,1)
Kn+1 (−1, 1)

>
Kn (1,1)

Kn+1 (1,1)
. (46)

Now substitute in our values from (36) and (37):

−Kn (−1,1)
Kn+1 (−1, 1)

=

�

Γ (n+2α+1)
Γ (n+α)

�

�n−1+α
n−1

�

�

Γ (n+2α+2)
Γ (n+1+α)

�

�n+α
n

�

= 1−
2α+ 1

n+ 2α+ 1
.

(47)

Also

Kn (1, 1)
Kn+1 (1,1)

=

�

Γ (n+2α+1)
Γ (n+α)

�

�n+α
n−1

�

�

Γ (n+2α+2)
Γ (n+1+α)

�

�n+1+α
n

�

=
n+α

n+ 2α+ 1
n

n+α+ 1

=
�

1−
α+ 1

n+ 2α+ 1

��

1−
α+ 1

n+α+ 1

�

= 1− (α+ 1)
�

1
n+ 2α+ 1

+
1

n+α+ 1

�

+
(α+ 1)2

(n+ 2α+ 1) (n+α+ 1)

= 1−
2 (α+ 1)

n+ 2α+ 1
−

(α+ 1)α
(n+α+ 1) (n+ 2α+ 1)

+
(α+ 1)2

(n+ 2α+ 1) (n+α+ 1)

so recalling (46) and (47), we want to check when

2α+ 1
n+ 2α+ 1

<
2 (α+ 1)

n+ 2α+ 1
+

(α+ 1)α
(n+α+ 1) (n+ 2α+ 1)

−
(α+ 1)2

(n+ 2α+ 1) (n+α+ 1)

which is equivalent to

0 < 1+
(α+ 1)α
(n+α+ 1)

−
(α+ 1)2

(n+α+ 1)

= 1−
α+ 1

n+α+ 1
.

which is true for all even n≥ 2.
(e) From (33), (36), and then (32),

2p2
n (1)

Kn (1, 1)
=

2
�

cn

�n+α
n

�	2

2−2α−1 Γ (n+2α+1)
Γ (α+1)Γ (n+α)

�n+α
n−1

�

= 4 (α+ 1)
�

1+
1

2 (n+α)

�

1
n

.

(f) From (36), (37),
−Kn (−1,1)

Kn (1, 1)
=

�n−1+α
n−1

�

�n+α
n−1

� =
α+ 1
n+α

.

�

Proof of Theorem 1.4
As shown in the previous lemma, we have the inequality (42) for n≥ 2. For such n, we have from Theorem 1.1 that

sup
µ∈M(ν)

�

pn (µ, 0)
pn (ν, 0)

�2

=
U2

n

VnVn+1
.
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Here from (44),

Un = Kn (1,1)
§

1−
Kn (−1,1)
Kn (1,1)

ª

= Kn (1,1)
§

1+
α+ 1
n+α

ª

;

Vn = Kn (1,1)
§

1+
Kn (−1,1)
Kn (1,1)

ª

= Kn (1,1)
§

1−
α+ 1
n+α

ª

;

and from (43) and (44), and as pn (−1) = pn (1) ,

Vn+1 = Kn (1,1)

�

1+
Kn (−1, 1)
Kn (1,1)

+
2p2

n (1)

Kn (1,1)

�

= Kn (1,1)
§

1−
α+ 1
n+α

+ 4
�

α+ 1
n

��

1+
1

2 (n+α)

�ª

= Kn (1,1) {1+ 3
α+ 1
n+α

+
2 (α+ 1) (2α+ 1)

n (n+α)
}

so

VnVn+1 = K2
n (1,1)

¨

1+ 2 α+1
n+α +

2(α+1)(2α+1)
n(n+α)

−3
�

α+1
n+α

�2
− 2(α+1)2(2α+1)

n(n+α)2

«

= K2
n (1,1)

�

1+ 2 α+1
n+α

+ α+1
n+α

¦

α−1
n+α −

2(2α+1)
n(n+α)

©

�

.

Then by yet another calculation,

U2
n

VnVn+1

=
1+ 2 α+1

n+α +
�

α+1
n+α

�2

1+ 2 α+1
n+α +

α+1
n+α

¦

α−1
n+α −

2(2α+1)
n(n+α)

©

= 1+

�

1
n+α

�2
2 (α+ 1) {1+ 2α+1

n }

1+ 2 α+1
n+α +

α+1
(n+α)2

�

α− 1− 2(2α+1)
n

	 .

�

Proof of Theorem 1.5
(a) From Lemma 4.1(b), as α < − 1

2 , so rn >
1
2 for n≥ n0 (α). Then 1−2rn

r2
n
< 0 for n≥ n0 (α), so for all S ≥ 0, XS > 0> 1−2rn

r2
n

. By

Theorem 1.3(c), the extremal measure has the form ν+ S
2 (δ1 +δ−1).

(b) From Lemma 4.1(b), as α > − 1
2 , so rn <

1
2 for n≥ n0 (α). From Lemma 4.1(d), X∞ >

1−2rn
r2
n

while from (9), X0 = 0< 1−2rn
r2
n

.
Also we know XS is an increasing function of S. By Theorem 1.3(b), (c), there is a threshold S∗ such that for 0 ≤ S < S∗, the
extremal measure is ν, while for S > S∗, the extremal measure is ν+ S

2 (δ1 +δ−1). For S = S∗, where XS∗ =
1−2rn

r2
n

, there are two

extremal measures, namely ν and ν+ S
2 (δ1 +δ−1).

(c) For α= − 1
2 , (39) and (40) show that rn =

1
2 , so XS > 0= 1−2rn

r2
n

for all S and the extremal measure is ν+ S
2 (δ1 +δ−1) for all

S ≥ 0. �
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