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Ten lectures on weighted pluripotential theory

Norm Levenberg∗

Abstract

These are notes from a ten lecture course given to a general audience of PhD students at the University of
Padova October 17-28, 2011. The goal is to present some basic notions in potential theory and weighted
potential theory in the complex plane C (lectures 1-5) with an eye towards developing pluripotential
theory and weighted pluripotential theory in CN , N > 1 (lectures 6-9), culminating in some very recent
results in the subject (lecture 10).
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1 Subharmonic functions and potential theory in C.
To motivate the definition of subharmonic functions on domains in the complex plane, we begin with their analogue on the
real line R. A twice-differentiable function h : I → R on an open interval I ⊂ R is linear if and only if h′′(x) = 0 on I . A
twice-differentiable function g : I → R on an open interval I ⊂ R is convex if and only if g ′′(x) ≥ 0 on I . The relation between
these classes of functions is as follows: if g ≤ h at the endpoints of any subinterval I ′ ⊂ I , then g ≤ h on I ′. Of course, the
notion of convexity does not require any differentiability.

In C= R2 with variables z = x+ i y , let ∆= ∂ 2

∂ x2 +
∂ 2

∂ y2 be the Laplacian operator. Recall that a twice-differentiable function
h : D→ R on a domain D ⊂ C is harmonic in D if ∆h= 0 there. Here is our first definition of subharmonic:

Definition 1.1. A function u : D→ R is subharmonic (shm) in a domain D ⊂ C if u is uppersemicontinuous (usc) in D and for
any subdomain D′ ⊂⊂ D and any h harmonic on a neighborhood of D

′
, if u≤ h on ∂ D′ then u≤ h on D′.

Recall u is usc on D means that for each a ∈ R, the set {z ∈ D : u(z)< a} is open; for such a function and a compact subset
K of D one can find a decreasing sequence of continuous functions {u j} with u j ↓ u on K (cf., Theorem 2.1.3 of [25]). There is
an analogous notion of lowersemicontinuous (lsc): v is lsc on D means that for each a ∈ R, the set {z ∈ D : v(z) > a} is open;
equivalently, u = −v is usc. Thus a function is continuous on D if and only if u is usc and lsc on D. If D = C and u(z) = −1 for
|z| < 1 while u(z) = 0 for |z| ≥ 1, then u is usc. For completeness, we say a function v : D→ R is superharmonic in D if u = −v
is shm there.

A second, equivalent definition of shm is the following:

Definition 1.2. A function u : D→ R is subharmonic in a domain D ⊂ C if u is usc in D and u satisfies a subaveraging property
in D: for each z0 ∈ D and r > 0 with B(z0, r) := {z : |z− z0|< r} ⊂ D,

u(z0)≤
1

2π

∫ 2π

0

u(z0 + reiθ )dθ . (1)

A harmonic function h on D satisfies a mean-value property: for each z0 ∈ D and r > 0 with B(z0, r)⊂ D,

h(z0) =
1

2π

∫ 2π

0

h(z0 + reiθ )dθ . (2)

Moreover, ∆h = 0 in D. We recall that if h is harmonic in a domain D and continuous in D, if h ≤ M on ∂ D then h ≤ M in
D (maximum principle); also, since −h is harmonic, harmonic functions satisfy a minimum principle as well. From our second
definition, we will see that shm functions satisfy a maximum principle.

Proposition 1.1. Let u be usc in a domain D ⊂ C and satisfy (1). Then

1. if u(z0) = supz∈D u(z) for some z0 ∈ D, then u(z)≡ u(z0);

2. if D is bounded and limsupz→ζ u(z)≤ M for all ζ ∈ ∂ D, then u≤ M in D.

Proof. For (1), let U = {z ∈ D : u(z) = u(z0)}. Then U 6= ; and D \ U = {z ∈ D : u(z) < u(z0)} is open by usc of u. Hence U is
closed. Using property (1), we show U is open. If w ∈ U then for any r > 0 with B(w, r)⊂ D,

u(w)≤
1

2π

∫ 2π

0

u(w+ reiθ )dθ ≤
1

2π

∫ 2π

0

u(w)dθ = u(w)

hence equality holds. Since u(w + reiθ ) ≤ u(w), we must have that u(w + reiθ ) = u(w) for almost all θ for all r > 0 with
B(w, r) ⊂ D. To complete the proof that U is open, we observe that, again by usc, if u(w + r0eiθ0) < u(w) for some point
w + r0eiθ0 in D, then the inequality u(w′) < u(w) persists for all points w′ in an open neighborhood of w + r0eiθ0 . This
contradicts the equality u(w+ reiθ ) = u(w) for almost all θ for all r > 0 with B(w, r)⊂ D.

For (2), the extension of u to ∂ D via u(ζ) := lim supz→ζ u(z) if ζ ∈ ∂ D gives an usc function on the compact set D. From
the exercises u attains its maximum value in D at some point w. If w ∈ ∂ D, by hypothesis u ≤ u(w) ≤ M in D. If w ∈ D, by (1)
u is constant on D and hence on D so u≤ M in D.

We prove the equivalence of Definitions 1.1 and 1.2: To show that the second definition implies the first, it clearly suffices
to check the domination property in the first definition on disks B(z0, r)⊂ D. If h is harmonic on a neighborhood of B(z0, r) and
u≤ h on ∂ B(z0, r), then by (1) and (2) u−h satisfies (1). Furthermore, u−h is usc (why?); hence, by Proposition 1.1, u−h≤ 0
on ∂ B(z0, r) implies u− h≤ 0 on B(z0, r).

For the converse, we recall the solution of the Dirichlet problem in the unit disk B := B(0,1). Let f be a continuous,
real-valued function on ∂ B. We seek a harmonic function h in B, h ∈ C(B), with h= f on ∂ B. This is achieved by writing down
the Poisson integral formula:

Pf ,B(z) := h(z) :=
1

2π

∫ 2π

0

1− |z|2

|eiθ − z|2
f (eiθ )dθ .

Note that

Pf ,B(0) =
1

2π

∫ 2π

0

f (eiθ )dθ
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is the mean value of f over ∂ B. A formula can easily be given for the solution of the Dirichlet problem with boundary data f in
any disk B(z0, r) and we will use the notation Pf ,B(z0 ,r) for such a function.

Given u usc satisfying (1), since u is usc, on ∂ B(z0, r) we can find a decreasing sequence of continuous functions f j with
f j ↓ u there. The functions h j(z) := Pf j ,B(z0 ,r)(z) then form a decreasing sequence of harmonic functions in B(z0, r). Then u ≤ f j

on ∂ B(z0, r) implies that u≤ h j on B(z0, r). Hence

u(z0)≤ lim
j→∞

h j(z0) = lim
j→∞

� 1

2π

∫ 2π

0

h j(z0 + reiθ )dθ
�

=
1

2π

∫ 2π

0

[ lim
j→∞

h j(z0 + reiθ )]dθ =
1

2π

∫ 2π

0

u(z0 + reiθ )dθ

by monotone convergence.
The canonical examples of shm functions are those of the form u = log | f | where f ∈ O(D) (the holomorphic functions on

D). The class of shm functions on a domain D, denoted SH(D), forms a convex cone; i.e., if u, v ∈ SH(D) and α,β ≥ 0, then
αu+ β v ∈ SH(D). The maximum max(u, v) of two shm functions in D is shm in D, and one can “glue” shm functions (see
exercise 6). Thus shm functions are very flexible to work with as opposed to holomorphic or harmonic functions. The limit
function u(z) := limn→∞ un(z) of a decreasing sequence {un} ⊂ SH(D) is shm in D (we may have u≡−∞); while for any family
{vα} ⊂ SH(D) (resp., sequence {vn} ⊂ SH(D)) which is uniformly bounded above on any compact subset of D, the functions

v(z) := sup
α

vα(z) and w(z) := limsup
n→∞

vn(z)

are “nearly” shm: the usc regularizations

v∗(z) := limsup
ζ→z

v(ζ) and w∗(z) := lim sup
ζ→z

w(ζ)

are shm in D. Finally, if φ is a real-valued, convex increasing function of a real variable, and u is shm in D, then so is φ ◦ u.
We will use the complex differential operators

∂

∂ z
:=

1

2

� ∂

∂ x
− i

∂

∂ y
�

and
∂

∂ z
:=

1

2

� ∂

∂ x
+ i

∂

∂ y
�

.

For a function u, ∂ u := ∂ u
∂ z

dz and ∂ u := ∂

∂ z
dz where dz = d x + id y and dz = d x − id y . We let

d = ∂ + ∂ , d c = i(∂ − ∂ ), so dd c = 2i∂ ∂ .

Thus for u ∈ C2(D), dd cu = ∆ud x ∧ d y and u is shm if and only if the Laplacian ∆u is a nonnegative function on D. In this
notation, a complex-valued function f : D → C is holomorphic in D if f ∈ C1(D) and ∂ f

∂ z
= 0 in D; this is easily seen to be

equivalent, writing f = u+ iv, to the Cauchy-Riemann equations

∂ u

∂ x
=
∂ v

∂ y
and

∂ v

∂ x
=−

∂ u

∂ y
.

We can smooth a shm function u by convolving with a regularizing kernel χ(z) = χ(|z|)≥ 0 with χ ∈ C∞0 (C) (C∞−functions
with compact support) and

∫

C χdm= 1 (here dm is Lebesgue measure on C= R2); i.e., if suppχ ⊂ B(0, r),

(u ∗χ)(z) :=

∫

C
u(z− ζ)χ(ζ)dm(ζ)

is shm and C∞ on {z ∈ D : dist(z,∂ D) < r}. (See exercise 12 for more on regularizing kernels). The regularity follows via a
change of variables:

(u ∗χ)(z) =
∫

C
u(ζ)χ(z− ζ)dm(ζ);

differentiating under the integral sign, we see that u ∗ χ is as differentiable as χ. The subharmonicity follows from Fubini’s
theorem:

1

2π

∫ 2π

0

(u ∗χ)(z0 + reiθ )dθ =
1

2π

∫ 2π

0

∫

C
u(z0 + reiθ − ζ)χ(ζ)dm(ζ)dθ

=

∫

C
χ(ζ)

� 1

2π

∫ 2π

0

u(z0 + reiθ − ζ)dθ
�

dm(ζ)

≥
∫

C
χ(ζ)u(z0 − ζ)dm(ζ) = (u ∗χ)(z0).

We claim that given u shm in a domain D, we can find a decreasing sequence {u j} of smooth shm functions with ∆u j ≥ 0
defined on {z ∈ D : dist(z,∂ D) > 1/ j} and lim j u j = u in D. For example, if suppχ ⊂ B(0, 1), we can take u j = u ∗ χ1/ j where
χ1/ j(z) := j2χ( jz). This will allow us to first verify properties of smooth shm functions and then pass to the limit. It remains to
show that u j = u ∗χ1/ j decrease to u on D as j→∞. We proceed in several steps, each one being interesting in itself.
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1. A radial function u(z) = u(|z|) = u(r) on a disk B(0, R) is shm if and only if r → u(r) is a convex, increasing function of
log r.
Note since v(z) = log |z| is shm in C and f ◦ v is shm for f convex and increasing, the “if” direction is proved. For
the converse, if u = u(r) is shm, then u is increasing by the maximum principle Proposition 1.1. The convexity is less
obvious; a relatively painless way to verify it goes as follows: given r1, r2 between 0 and R, choose constants a, b so that

a+ b log r1 = u(r1) and a+ b log r2 = u(r2).

Note that r → log r is harmonic for r > 0. Thus u(r)− [a+ b log r] is shm on the annulus B(0, r2)− B(0, r1). Applying
the maximum principle, we see that

u(r)≤ a+ b log r on B(0, r2)− B(0, r1).

Thus for r1 ≤ r ≤ r2, writing log r = (1− t) log r1 + t log r2 for some 0≤ t ≤ 1, we have

u(r)≤ a+ b log r = (1− t)[a+ b log r1] + t[a+ b log r2]

= (1− t)u(r1) + tu(r2).

2. For u(z) shm on a disk B(0, R), the function

Mu(r) :=
1

2π

∫ 2π

0

u(reiθ )dθ

is a convex, increasing function of log r and limr→0− Mu(r) = u(0).
This is left as an exercise for the reader (hint: use Fubini).

3. u j = u ∗χ1/ j decrease to u on D as j→∞.
We have

u j(ζ) =

∫

C
u(ζ− z)χ1/ j(z)dm(z)

=

∫ 2π

0

∫ 1/ j

0

u(ζ− rei t)χ1/ j(rei t)rdrd t (why?)

=

∫ 2π

0

∫ 1

0

v(
s

j
ei t)χ(s)sdsd t

=

∫ 1

0

�

∫ 2π

0

v(
s

j
ei t)d t

�

χ(s)sds

where we let s = r j and v(z) := u(ζ − z). By (2),
∫ 2π

0
v( s

j
ei t)d t decreases to 2πv(0) = 2πu(ζ) as j ↑ ∞; thus by

monotone convergence, u j(ζ) decreases to 2π
∫ 1

0
u(ζ)χ(s)sds = u(ζ) (why?).

We remark that the occurrence of the combination a+b log r in step (1) is very natural: see also exercise 10 and Proposition
1.3 below.

Corollary 1.2. If u, v are shm on D and u= v a.e. then u≡ v.

Proof. Since u= v a.e., u j = u ∗χ1/ j ≡ v ∗χ1/ j = v j . The result follows since u j ↓ u and v j ↓ v.

We can solve the Dirichlet problem on more general bounded domains D ⊂ C with reasonable boundaries; i.e., we can
construct h satisfying ∆h= 0 in D and h= f on ∂ D, one forms the envelope

U(0; f )(z) := sup{v(z) : v ∈ SH(D) : lim sup
z→ζ

v(z)≤ f (ζ)

for all ζ ∈ ∂ D}.

This family of all v ∈ SH(D) satisfying lim supz→ζ v(z) ≤ f (ζ) for all ζ ∈ ∂ D is a Perron family: for any such v and any disk
B̃ ⊂ D, the function ṽ defined as v in D \ B̃ and as Pv|∂ B̃ ,B̃ in B̃ is in the family (and is harmonic in B̃). This follows from the
Gluing lemma – see exercise 6. To show U(0; f ) is harmonic in D, it suffices to show harmonicity on any disk B̃ ⊂ D. We return
to this issue in the next section.

Subharmonic functions need not be twice-differentiable, let alone continuous. Thus we need a way of interpreting deriva-
tives, in particular, the Laplacian, in a generalized sense. A distribution L in one real variable is a linear functional on the vector
space C∞0 (R) of test functions, i.e., C∞ functions on R with compact support. Standard examples include, for any ψ ∈ C(R),
the distribution Lψ of integration with respect to ψ:

Lψ( f ) :=

∫

f (x)ψ(x)d x;
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and the distribution L( f ) := f (0), known as the delta function: we often write δ0( f ) = f (0). More generally, for any x ∈ R,
δx( f ) := f (x) is the delta function at x . These delta functions are examples of positive distributions: L is positive if f ≥ 0
implies L( f ) ≥ 0 for f ∈ C∞0 (R). It turns out that a positive distribution is a positive measure; in particular, δx is represented by
a point mass at the point x . If ψ ∈ C(R) is a nonnegative function, then Lψ is a positive distribution (and ψ(x)d x is a positive
measure).

We define the derivative L′ of a distribution L by L′( f ) := −L( f ′). The reader may check that if L = Lg for a C1 function
g, then L′g = Lg′ . We can also multiply a distribution by a smooth (C∞) function: since, clearly, for g, h ∈ C(R) and f ∈ C0(R)
(continuous functions on R with compact support) we have

∫

f (x)[g(x)h(x)]d x =

∫

[ f (x)g(x)]h(x)d x ,

we then define, for a distribution L and a smooth function g, the new distribution g ·L via

(g ·L)( f ) := L(g f ).

Convergence of a sequence {L(n)} of distributions is akin to, but easier than, weak-* convergence of a sequence of measures:
L(n)→ L as distributions if L(n)(φ)→ L(φ) for all φ ∈ C∞0 (R). All these notions are easily extended to higher (real) dimensions;
of particular interest to us is the case of R2 = C. We include some optional exercises on distributions in Appendix B at the end
of these notes.

Using some standard multivariate calculus, we prove a fundamental result on the Laplace operator in R2 = C. Recall that
a function u : D→ R is locally integrable on D if for each compact set K ⊂ D,

∫

K
|u(z)|dm(z)<+∞.

Proposition 1.3. E(z) := 1
2π

log |z| is a fundamental solution for ∆: we have ∆( 1
2π

log |z|) = δ0, the unit point mass at the origin,
in the sense of distributions.

Proof. To this end, fix φ ∈ C∞0 (D) where D is a neighborhood of the origin. We want to show that
∫

D

∆φ(z) · E(z)dm(z) = φ(0).

We make use of a standard multivariate calculus result, sometimes known as a Green’s identity: let u, v be twice-differentiable
functions defined in a neighborhood of the closure Ω of a bounded, open set Ω with C1−boundary. Then

∫

Ω

(u∆v− v∆u)dm=

∫

∂Ω

(u
∂ v

∂ n
− v

∂ u

∂ n
)ds (3)

where ds denotes arclength measure on ∂Ω. Apply (3) to the functions φ, E in Dε := {z ∈ D : |z|> ε} to obtain
∫

Dε

[∆φ(z) · E(z)−∆E(z) ·φ(z)]dm(z) =

∫

Dε

∆φ(z) · E(z)dm(z)

=

∫

∂ Dε

[E
∂ φ

∂ n
−φ

∂ E

∂ n
]ds =−

∫

∂ B(0,ε)

[E
∂ φ

∂ n
−φ

∂ E

∂ n
]ds.

The area integral tends to
∫

D
∆φ(z) · E(z)dm(z) as ε→ 0 since E is locally integrable. Since ε logε→ 0 as ε→ 0,

∫

∂ B(0,ε)

E
∂ φ

∂ n
ds→ 0

and

−
∫

∂ B(0,ε)

φ
∂ E

∂ n
ds =

1

2π

∫ 2π

0

φ(εeiθ )
1

ε
εdθ → φ(0).

We remark that (3) is the same as
∫

Ω

(udd c v− vdd cu) =

∫

∂Ω

(ud c v − vd cu)

which follows from Stokes theorem. Note that d cu= ∂ u
∂ n

ds (see also exercise 1).
Since the function u(z) = log |z| is locally integrable, it follows that given a positive measure µ of finite total mass and, say,

compact support, one can form the convolution

Vµ(z) :=−pµ(z) := (u ∗µ)(z) :=

∫

C
log |z− ζ|dµ(ζ).
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This yields a shm function Vµ on C; and since δ0 acts as the identity under convolution (why?)

∆Vµ =∆(u ∗µ) = ∆u ∗µ= 2πδ0 ∗µ= 2πµ.

Note that Vµ is harmonic on C \ suppµ. We call pµ the logarithmic potential function of µ. The notation for the superharmonic
function pµ is standard; to emphasize the difference with the subharmonic function −pµ, we have introduced the notation Vµ.
If µ is a probability measure, i.e., µ(C) = 1, then Vµ is in the class

L(C) := {u shm on C, u(z)− log |z|= 0(1), |z| →∞}. (4)

of global shm functions of at most logarithmic growth. We will see the importance of this collection of shm functions, and
its plurisubharmonic generalization, throughout this course. We next give an important continuity property of logarithmc
potentials.

Proposition 1.4. Let µ be a positive measure of finite total mass and compact support K and let

Vµ(z) :=

∫

C
log |z− ζ|dµ(ζ).

For z0 ∈ K,
lim inf

z→z0
Vµ(z) = lim inf

z→z0 , z∈K
Vµ(z).

In particular, if Vµ|K is continuous, then Vµ is continuous on C; and if Vµ ≥ M on K, then Vµ ≥ M on C.

Proof. First, if Vµ(z0) =−∞ the result is clear by usc of Vµ. If Vµ(z0)>−∞ then µ puts no mass on the point {z0} (why?); hence,
given ε > 0 we can find r > 0 with µ(B(z0, r))< ε. Now given z ∈ C \ K , take a point z′ ∈ K such that |z− z′|=minw∈K |z−w|.
Then for any w ∈ K we have

|z′ −w|
|z−w|

≤
|z′ − z|+ |z−w|

|z−w|
≤ 2

and

Vµ(z) = Vµ(z
′)−

∫

K

log
|z′ −w|
|z−w|

dµ(w)

≥ Vµ(z
′)− ε log 2−

∫

K\B(z0 ,r)

log
|z′ −w|
|z−w|

dµ(w).

Now as z→ z0 clearly z′→ z0 so that
lim inf

z→z0
Vµ(z)≥ lim inf

z′→z0 , z′∈K
Vµ(z

′)− ε log2.

The last statement is left for the exercises.

Two standard examples of functions Vµ are the following:

1. If µ= δ0, then Vµ(z) = log |z|.

2. If µ= 1
2π

dθ on |z|= 1, then Vµ(z) = log+ |z| :=max[log |z|, 0].

A useful result, which generalizes to CN for N > 1, is the comparison principle.

Proposition 1.5. Let u, v be shm and locally bounded in a bounded domain D ⊂ C. Suppose lim infz→ζ[u(z)− v(z)] ≥ 0 for all
ζ ∈ ∂ D. Then

∫

{u<v}
dd c v ≤

∫

{u<v}
dd cu. (5)

Proof. We verify the result in the case where u, v ∈ C2(D)∩ C1(D) and u = v on ∂ D. In this case, we may assume D = {u < v}.
Then d c(u− v) = ∂ (u−v)

∂ n
ds and ∂ (u−v)

∂ n
≥ 0 on ∂ D (see exercise 1 below). Stokes’ theorem gives
∫

{u<v}
dd c(u− v) =

∫

D

dd c(u− v) =

∫

∂ D

d c(u− v)≥ 0.

The general case requires some approximation.

Note this result says that harmonic functions have “minimal” Laplacian (indeed, 0!) among shm functions. In section 7,
we discuss an analogue of this in CN , N > 1 where “dd c” is replaced by the complex Monge-Ampère operator, “(dd c ·)N .” Using
Proposition 1.5 we can prove a type of domination principle for subharmonic functions.

Proposition 1.6. Let u, v be shm and locally bounded in a bounded domain D ⊂ C. Suppose lim infz→ζ[v(z)− u(z)] ≥ 0 for all
ζ ∈ ∂ D and assume that

dd cu≥ dd c v in D.

Then v ≥ u in D.
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Proof. Again, we verify the result in the case where u, v ∈ C2(D) ∩ C1(D) and v ≥ u on ∂ D. Assume not, i.e., suppose
{z ∈ D : u(z)> v(z)} 6= ;. For ε,δ > 0 small, we have

u(z) + ε|z|2 −δ < u(z) in D,

and we can choose such ε,δ such that

S := {z ∈ D : u(z) + ε|z|2 −δ > v(z)} 6= ;.
In our setting, S is open; in the general case, S still has positive Lebesgue measure by Corollary 1.2. By Proposition 1.5

∫

S

dd c(u+ ε|z|2 −δ)≤
∫

S

dd c v.

By hypothesis,
∫

S
dd c v ≤

∫

S
dd cu. On the other hand, since S has positive Lebesgue measure,

∫

S
dd c |z|2 > 0 and

∫

S

dd c(u+ ε|z|2 −δ) =
∫

S

dd cu+ ε

∫

S

dd c |z|2 >
∫

S

dd cu,

a contradiction.

Exercises.
1. Let ρ(z) = |z|2−1. Show that, on the unit circle T = {z = eiθ : θ ∈ [0, 2π]}, d cρ = 2dθ and, writing d cρ = ad x+ bd y ,

show that a =−2y and b = 2x . In particular, the coefficients < a, b >=<−2y, 2x > give a tangent vector to T at each
point. (More generally, if D = {z ∈ C : ρ(z) < 0} is a bounded domain with C1 boundary where ρ is a C1 function on
a neighborhood of D and ∇ρ 6= 0 on ∂ D, then the coefficient functions of d cρ at p ∈ ∂ D define a tangent vector to ∂ D
at p and d cρ = ∂ ρ

∂ n
ds with ∂ ρ

∂ n
≥ 0 on ∂ D).

2. Verify that if u ∈ C2(D) then dd cu=∆ud x ∧ d y in D.
3. Suppose u : D→ R is usc; i.e., for each a ∈ R, the set {z ∈ D : u(z)< a} is open. Show that

(a) For each z ∈ D, limsupζ→z u(ζ)≤ u(z) (this is equivalent to usc of u in D).
(b) For each K ⊂ D compact, M := supz∈K u(z)<∞ and there exists z0 ∈ K with u(z0) = M .

4. Use part (a) of the previous exercise and the subaveraging property to show that if u is shm in D, then for each z ∈ D,
limsupζ→z u(ζ) = u(z).

5. An exercise on convolutions on R:
(a) Let f (x) = e−x2

and g(x) = e−2x2
, Compute f ∗ g. (Hint: You may use the fact that

∫∞

−∞
e−x2

d x =
p
π.)

(b) More generally, let ft(x) =
1p
4πt

e−
x2
4t for t > 0, Prove that this family of functions acts as a one-parameter

subgroup in the sense that, for s, t > 0
ft ∗ fs = ft+s.

6. Gluing shm functions. Let u, v be shm in open sets U , V where U ⊂ V and assume that limsupζ→z u(ζ) ≤ v(z) for
z ∈ V ∩ ∂ U . Show that the function w defined to be w =max(u, v) in U and w = v in V \ U is shm in V .

7. In this exercise, you will show that a shm function u 6≡ −∞ on a domain D is locally integrable on D.

(a) Verify that it suffices to show for all z ∈ D there exists r = r(z)> 0 with
∫

B(z,r)
|u(ζ)|dm(ζ)<+∞.

(b) Let P denote the set of points z ∈ D with this property. Show P is both open and closed.
(c) Show that u=−∞ on D \ P to conclude the proof (why?).

8. Prove that if u : D→ R is shm on the domain D, then

P := {z ∈ D : u(z) =−∞}
is a Gδ−set, i.e., a countable intersection of open sets.

9. Use the fact mentioned that for a function u 6≡ c shm in a ball B(0, R), the mean value over circles,

r → Mu(r) :=
1

2π

∫ 2π

o

u(r(eiθ )dθ

is a convex increasing function of r, to show that if u is shm in C and u(z) = o(log |z|) as |z| → ∞, then u must be
constant. Thus functions in the class L(C) are of “minimal” growth.

10. Show that if u(z) = u(|z|) is a radial function which is harmonic in an annulus A= {z ∈ C : r1 < |z| < r2} where r1 > 0
and r2 ≤+∞, then u is of the form

u(z) = a+ b log |z|
for some a, b ∈ R. (Hint: Write ∆u in polar coordinates).

11. Verify the claims in the last sentence of Proposition 1.4.
12. (Optional). For those unfamiliar with regularizing kernels, we mention and leave as exercises the following general

results for u : D→ R.
(a) If u ∈ C(D), on any compact subset K ⊂ D we have u j = u ∗χ1/ j → u uniformly on K as j→∞.
(b) If u ∈ Lp

loc(D) with 1≤ p <∞, we have u j → u in Lp
loc(D).
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2 Logarithmic energy, transfinite diameter and applications.
Now let K ⊂ C be compact and let M(K) denote the convex set of probability measures on K . For µ ∈ M(K) define the
logarithmic energy

I(µ) :=

∫

K

∫

K

log
1

|z− ζ|
dµ(z)dµ(ζ) =

∫

K

pµ(z)dµ(z).

Consider the energy minimization problem: minimize I(µ) over all µ ∈M(K). It turns out that either infµ∈M(K) I(µ) =: I(µK)<
+∞ for a unique µK ∈M(K) or else I(µ) = +∞ for all µ ∈M(K).

We remark that you’ve likely seen a (real) three-dimensional version of an analogous problem in Newtonian potential
theory: thinking in terms of electrostatics, given a compact set K (conductor) in R3, we want to minimize the Newtonial
potential energy

N(µ) :=

∫

K

∫

K

1

|x− y|
dµ(x)dµ(y)

over all probability measures (positive charges of total charge one) on K . The difference between the formulas for I(µ) in
C= R2 and N(µ) in R3 is explained by the fact that whereas 1

2π
log |z| is a fundamental solution of the Laplacian∆ in two (real)

dimensions as we saw in Proposition 1.3, up to a dimensional constant, E(x) = 1
|x|

is a fundamental solution of the Laplacian ∆
in three (real) dimensions.

The existence of an energy-minimizing measure µK ∈ M(K) is standard: let M := infµ∈M(K) I(µ) and take a sequence
{µn} ∈M(K) with limn→∞ I(µn) = M . There exists a subsequence, which we still label as {µn} for simplicity, which converges
weak-* to a measure µ ∈M(K) (why?) and thus by definition, I(µ)≥ M . We claim that

lim inf
n→∞

I(µn)≥ I(µ). (6)

Given (6), we have I(µ) ≤ lim infn→∞ I(µn) = M and hence I(µ) = M . The proof of (6), which is left to the exercises, follows
from weak-* convergence of µn ×µn to µ×µ and lowersemicontinuity of z→ log 1

|z−ζ|
.

The uniqueness follows, e.g., from a convexity property of the function µ→ I(µ). We state without proof the key element
(cf., [26] Lemma I.1.8).

Proposition 2.1. For µ a signed measure with compact support and total mass 0; i.e.,
∫

C dµ = 0, I(µ) ≥ 0 with equality if and
only if µ is the zero measure.

Corollary 2.2. For a compact set K, the functional µ → I(µ) is convex on M(K). Hence if infµ∈M(K) I(µ) := M < +∞ and if
µ1,µ2 ∈M(K) satisfy I(µ1) = I(µ2) = M, then µ1 = µ2.

Proof. It suffices to show that

I(
1

2
µ1 +

1

2
µ2)≤

1

2
I(µ1) +

1

2
I(µ2) (7)

(midpoint convexity) since µ→ I(µ) is uppersemicontinuous (exercise). We introduce the temporary notation

< µ,ν >=

∫

C
pµdν =

∫

C
pνdµ.

Note that for any c ∈ R,
I(cµ) = c2 I(µ). (8)

Now
I(µ1 +µ2) = I(µ1) + I(µ2) + 2< µ1,µ2 > (9)

and
I(µ1 −µ2) = I(µ1) + I(µ2)− 2< µ1,µ2 >≥ 0 (10)

by the previous proposition. Thus
2< µ1,µ2 >≤ I(µ1) + I(µ2);

plugging this into (9) gives
I(µ1 +µ2)≤ 2[I(µ1) + I(µ2)].

Replacing µ1,µ2 by µ1/2,µ2/2 and using (8) gives (7).
For the uniqueness of the energy minimizing measure, if I(µ1) = I(µ2) = M , by (7), I( 1

2
µ1 +

1
2
µ2) ≤ M and hence, since

1
2
µ1 +

1
2
µ2 ∈M(K), we have I( 1

2
µ1 +

1
2
µ2) = M . From (9), (8) and (10) we have

I(µ1 −µ2) = 2[I(µ1) + I(µ2)]− I(µ1 +µ2) = 0.

But I(µ1 −µ2)≥ 0 from (10) and the result follows from Proposition 2.1.
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Levenberg 9

We will give a characterization of the energy-minimizing measure µK for compact sets K with infµ∈M(K) I(µ) < +∞ in
Theorem 2.6. First, we show that the energy minimization problem is related to the following discretized version: for each
n= 1,2, ...

δn(K) := max
z0 ,...,zn∈K

∏

j<k

|z j − zk|1/(
n+1

2 )

is called the n− th order diameter of K . With this notation, δ1(K) = maxz0 ,z1∈K |z0 − z1| is the “ordinary” diameter of K . Note
that

V DM(z0, ..., zn) = det[z j
i ]i, j=0,1,...,n =

∏

j<k

(z j − zk)

= det









1 z0 . . . zn
0

...
...

. . .
...

1 zn . . . zn
n









is a classical Vandermonde determinant; the basis monomials 1, z, ..., zn for the space of polynomials of degree at most n are
evaluated at the points z0, ..., zn.

If, for example, λ0,λ1,λ2 ∈ K are points which achieve δ2(K), we have

[δ2(K)]
3 = |λ0 −λ1| · |λ1 −λ2| · |λ0 −λ2| ≤ δ1(K)

3

so that δ2(K)≤ δ1(K). More generally, the sequence of numbers {δn(K)} is decreasing (exercise 7) and hence the limit

lim
n→∞

�

max
λi∈K
|V DM(λ0, ...,λn)

�1/(n+1
2 ) := δ(K) (11)

exists and is called the transfinite diameter of K . Points λ0, ...,λn ∈ K for which

|V DM(λ0, ...,λn)|= |det









1 λ0 . . . λn
0

...
...

. . .
...

1 λn . . . λn
n









|

is maximal are called Fekete points of order n. The quantity δ(K) in (11) coincides with e−I(µK ) when δ(K)> 0.

Proposition 2.3. For K ⊂ C compact with δ(K)> 0,

e−I(µK ) = δ(K).

Proof. To show
e−I(µK ) ≤ δ(K), (12)

we begin by forming the function

Fn(z0, ..., zn) :=
∑

0≤i< j≤n

log
1

|zi − z j |

on Kn+1 and we observe that for Fekete points λ0, ...,λn of order n for K ,

Fn(λ0, ...,λn) =
�

n+ 1

2

�

log
1

δn(K)
= min

z0 ,...,zn∈K
Fn(z0, ..., zn).

Thus we have
�

n+ 1

2

�

I(µK) =

∫

K

· · ·
∫

K

Fn(z0, ..., zn)dµK(z0) · · · dµK(zn)

≥
�

n+ 1

2

�

log
1

δn(K)

since µK is a probability measure. This gives (12).
For the reverse inequality, let µ be any weak-* limit of the sequence of Fekete measures

µn :=
1

n+ 1

n
∑

j=0

δλ j

(question: why does such a limit exist?). Then µ ∈M(K) (why?) and

I(µ) =

∫

K

∫

K

log
1

|z− ζ|
dµ(z)dµ(ζ)

= lim
M→∞

∫

K

∫

K

min[M , log
1

|z− ζ|
]dµ(z)dµ(ζ)
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= lim
M→∞

lim
n→∞

∫

K

∫

K

min[M , log
1

|z− ζ|
]dµn(z)dµn(ζ)

≤ lim
M→∞

lim
n→∞

� 2

(n+ 1)2

�

n+ 1

2

�

log
1

δn(K)
+

M

n+ 1

�

= log
1

δ(K)
.

Thus from (12) we have shown that

I(µ)≤ log
1

δ(K)
≤ I(µK).

But I(µK) = infν∈M(K) I(ν) and the proposition is proved.

As an example, for the unit circle T = {z : |z| = 1}, clearly the (n+ 1)−st roots of unity 1,ω := e2πi/(n+1),ω2, ...,ωn or any
rotation of these points forms a set of Fekete points of order n; and the weak-* limit of these Fekete measures is normalized
arclength dµT := 1

2π
dθ . Note that the same conclusions hold for the closed unit disk D := {z : |z| ≤ 1}. Indeed, Fekete points

for a compact set K always lie on the outer boundary of K; i.e., on the boundary of the unbounded component of C \ K (why?).
Note as a consequence of the uniqueness of the energy minimizing measure µK , we have proved that if δ(K) > 0, any

sequence of Fekete measures {µn} converges weak-* to µK (see also Proposition 4.8). Thus the support of µK is in the outer
boundary of K . It turns out that

µK =
1

2π
∆V ∗K =

1

2π
dd c V ∗K where (13)

VK(z) = sup{u(z) : u ∈ L(C), u≤ 0 on K}. (14)

and V ∗K (z) := lim supζ→z VK(ζ) ∈ L+(C). Recall that

L(C) = {u shm on C, u(z)− log |z|= 0(1), |z| →∞};

here, the subclass
L+(C) := {u ∈ L(C) : u(z)≥ log+ |z|+ C}

where C = C(u). Clearly we can replace log+ |z| by 1
2

log(1+ |z|2). We discuss this “upper envelope” in the next section; and we
will see in Section 4 that

VK(z) = sup{
1

deg(p)
log |p(z)| : ||p||K := sup

K
|p| ≤ 1}. (15)

For the unit circle T we have

VT (z) =max[log |z|, 0] and µT =
1

2π
dθ .

Note that VT = V ∗T (why?).
Given a set E ⊂ C, we say the set E is a polar set if I(µ) = +∞ for every finite Borel measure µ with compact support in E.

It turns out this is equivalent to the existence of a function u shm, u 6≡ −∞, with E ⊂ {u(z) = −∞}. You showed in exercise 8
of section 1 that the (polar) set of points where a shm function takes the value −∞ is a Gδ set; a theorem of Deny shows a type
of converse: given a polar set P which is a Gδ−set, there exists a shm function u in C with P = {z ∈ C : u(z) =−∞}.

Using the second (equivalent) definition of polar set, from the fact that u(z) = log | f (z)| is shm if f is holomorphic it
follows that any discrete set in C is polar. We can give a direct proof that any bounded countable set is polar, as follows: let
S = {a j} ⊂ D where D is a disk. Let M j :=maxz∈D log |z − a j |. Fix any point p ∈ D \ S, and choose ε j > 0 and sufficiently small
so that

∑

j ε j <+∞ and
∑

j

ε j[log |p− a j | −M j]>−∞.

Then
u(z) :=

∑

j

ε j[log |z− a j | −M j]

is shm in D (why?), u(a j) =−∞ for all j, and u 6≡ −∞ since u(p)>−∞.
A compact set K is polar precisely when I(µ) = +∞ for all µ ∈M(K). In this case, V ∗K ≡ +∞; if K is not polar, we have

V ∗K ∈ L+(C) (see Proposition 3.2). If a property P holds on a set S except perhaps for a polar subset of S, we say P holds q.e.
(quasi-everywhere) on S. We will indicate in the next section the importance of detecting polarity of a set.

Proposition 2.4. If µ is a finite Borel measure with compact support and I(µ) <∞, then µ(E) = 0 for each Borel polar set E. In
particular, every Borel polar set has Lebesgue measure zero.

Proof. If E is a Borel set with µ(E) > 0, we show E is not polar. To this end, take K ⊂ E compact with µ(K) > 0.The measure
µ̃ := µ|K is a finite Borel measure with compact support. Setting d :=diam(suppµ), we have

I(µ̃) =

∫

K

∫

K

log
d

|z− ζ|
dµ(z)dµ(ζ)−µ(K)2 log d

≤
∫

C

∫

C
log

d

|z− ζ|
dµ(z)dµ(ζ)−µ(K)2 log d
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= I(µ) +µ(C)2 log d −µ(K)2 log d <∞.

For the second statement, it thus suffices to show that for any r > 0, dµ := dm|B(0,r) satisfies I(µ) < ∞ where dm =
Lebesgue measure (why?). Now for z ∈ B(0, r),

pµ(z) =

∫

B(0,r)

log
2r

|z− ζ|
dm(ζ)−πr2 log(2r)

≤
∫ 2π

0

∫ 2r

0

(log
2r

ρ
)ρdρdθ −πr2 log(2r) (why?)

= 2πr2 −πr2 log(2r).

Hence I(µ)≤
�

2πr2 −πr2 log(2r)
�

·πr2 <∞.

Remark 1. Note that the fact that polar sets E have Lebesgue measure zero follows immediately from Corollary 1.2 and the
definition of polar as the existence of a shm function u 6≡ −∞ with E ⊂ {u(z) =−∞}.
Corollary 2.5. A countable union of Borel polar sets is polar.

We come to the characterization of the equilibrium measure µK for a nonpolar compact set K . This is one of the main
results in potential theory and is known as Frostman’s theorem.

Theorem 2.6. [Frostman] Let K ⊂ C with I(µK)<+∞. Then

1. pµK
(z)≤ I(µK) for all z ∈ C; and

2. pµK
(z) = I(µK) q.e. on K.

Proof. For each n= 1,2, ... let
Kn := {z ∈ K : pµK

(z)≤ I(µK)− 1/n} and

Ln := {z ∈ suppµK : pµK
(z)> I(µK) + 1/n}.

We will verify two items:

1. Kn is polar for each n= 1, 2, ... and

2. Ln = ; for each n= 1, 2, ...

Given these two items, the second one implies that pµK
(z) ≤ I(µK) on suppµK and hence on C by Proposition 1.4. This is

(1) of the theorem. Next, setting E := ∪∞n=1Kn, the first item and Corollary 2.5 imply that E is a polar set; moreover we have
pµK
(z) = I(µK) on K \ E.
We prove item (1) by contradiction. Thus we suppose Kn is not polar for some n so we can find µ ∈M(Kn) with I(µ)<+∞.

We have I(µK) =
∫

K
pµK

dµK so that we can find z0 ∈ supp(µK) with pµK
(z0) ≥ I(µK); by lsc of pµK

, there exists r > 0 with

pµK
> I(µK)−

1
2n

on B(z0, r). Thus Kn ∩ B(z0, r) = ;; also, we note that a := µK(B(z0, r)) > 0 since z0 ∈ supp(µK). We next
define a signed measure σ on K by setting

σ = µ on Kn; σ =−µK/a on B(z0, r).

Since I(µ), I(µK)<+∞, clearly I(|σ|)<+∞. For each t ∈ (0, a), the measure µt := µK+ tσ is positive and, indeed, µt ∈M(K)
for such t (why?). We estimate the difference I(µt)− I(µK):

I(µt)− I(µK) = I(µK + tσ)− I(µK)

= 2t

∫

K

∫

K

log
1

|z− ζ|
dµK(ζ)dσ(z) + t2 I(σ)

= 2t

∫

K

pµK
(z)dσ(z) + 0(t2)

= 2t
�

∫

Kn

pµK
(z)dµ(z)−

1

a

∫

B(z0 ,r)

pµK
(z)dµK(z) + 0(t)

�

≤ 2t
�

[I(µK)− 1/n]− [I(µK)−
1

2n
] + 0(t)

�

.

Thus I(µt)< I(µK) for t sufficiently small, contradicting the minimality of I(µK).
We prove item (2) by contradiction. Suppose Ln 6= ; for some n and take z0 ∈ Ln; hence pµK

(z0) > I(µK) + 1/n. By lsc of
pµK

, there exists r > 0 with pµK
(z) > I(µK) + 1/n on B(z0, r). Also, since z0 ∈ suppµK , m := µK(B(z0, r)) > 0. By item (1) and

Proposition 2.4, µK(Kn) = 0 for each n so that pµK
≥ I(µK) µK−a.e. on K . Thus

I(µK) =

∫

K

pµK
dµK =

∫

B(z0 ,r)

pµK
dµK +

∫

K\B(z0 ,r)

pµK
dµK

≥ (I(µK) + 1/n)m+ I(µK)(1−m)> I(µK)

which is a contradiction.
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There is an important result that will be useful in the weighted setting and which will generalize to the several complex
variable setting. We will refer to it as a global domination principle; we will use it in the next section together with Frostman’s
theorem to relate V ∗K with pµK

.

Proposition 2.7. Let u ∈ L(C) and v ∈ L+(C) and suppose u≤ v a.e.-dd c v. Then u≤ v on C.

Proof. We give the proof in case u, v are continuous and indicate modifications in the general case. Suppose the result is false;
i.e., there exists z0 ∈ C with u(z0) > v(z0). Since v ∈ L+(C), by adding a constant to u, v we may assume v(z) ≥ 1

2
log (1+ |z|2)

in C. By exercise 6 below, ∆
� 1

2
log (1+ |z|2)

�

> 0 on C. Fix δ, ε > 0 with δ < ε/2 in such a way that the set

S := {z ∈ C : u(z) +
δ

2
log (1+ |z|2)> (1+ ε)v(z)}

contains z0. In our setting, S is open; in the general case, by Corollary 1.2, S has positive Lebesgue measure. Moreover, since
δ < ε and v ≥ 1

2
log (1+ |z|2), S is bounded. By Proposition 1.5, we conclude that

∫

S

dd c[u(z) +
δ

2
log (1+ |z|2)]≤

∫

S

dd c(1+ ε)v(z).

But
∫

S
dd c δ

2
log (1+ |z|2)> 0 since S has positive Lebesgue measure, so

(1+ ε)

∫

S

dd c v > 0.

By hypothesis, for almost all points in supp(dd c v)∩ S, we have

(1+ ε)v(z)≤ u(z) +
δ

2
log (1+ |z|2)≤ v(z) +

δ

2
log (1+ |z|2),

i.e., v(z)≤ 1
4

log (1+ |z|2) since δ < ε/2. This contradicts the normalization v ≥ 1
2

log (1+ |z|2).

Remark 2. Note some hypothesis on v stronger than v ∈ L(C) is necessary, since, e.g., u(z) = log |z| and v(z) = log |z|+ c satisfy
the hypothesis but not the conclusion if c < 0. However, one can show that if v ∈ L+(C) and ν = dd c v, then I(ν)<∞; and one
can weaken the hypothesis v ∈ L+(C) to v ∈ L(C) with I(ν)<∞ (cf., [26] Theorem 3.2 in Chapter II).

As an application of Frostman’s theorem, we discuss a classical result of Brolin from complex dynamics (cf., Theorem 6.5.8
of [25]). The set-up begins with a polynomial p(z) of degree d > 1 in C. Writing pn = p ◦ · · · ◦ p for the n−th iterate of p, the
Fatou set or attracting basin of∞ is the set

F := {z ∈ C : pn(z)→∞ as n→∞}

and the Julia set J is the boundary of F . Two standard examples are p(z) = z2 (or p(z) = zd for any d > 1) in which case
F = {z : |z|> 1} and J = {z : |z|= 1}; and p(z) = z2 − 2, in which case F = {z : z 6∈ [−2,2]} and J = [−2, 2].

Note that in the case of p(z) = zd where J = {z : |z| = 1} and dµJ =
1

2π
dθ , we have suppµJ = J and I(µJ ) = 0. More

generally, for a monic polynomial p(z) = zd + · · · , the Julia set J is nonpolar; suppµJ = J ; and I(µJ ) = 0. We refer the reader to
[25], section 6.5 for verification of these facts. We show that we can recover µJ via a pre-image process.

Theorem 2.8. [Brolin] Fix w ∈ J and define the sequence of discrete probability measures {µn} on J via

µn =
1

dn

∑

pn(z j )=w

δz j
.

Then µn→ µJ weak-*.

Proof. Note that w ∈ J implies that z j ∈ J if pn(z j) = w (exercise). Let

Vµn
(z) =

∫

J

log |z− ζ|dµn(ζ).

Writing pn(z)−w =
∏dn

j=1(z− z j), we have

Vµn
(z) =

1

dn

dn
∑

j=1

log |z− z j |=
1

dn log |pn(z)−w|.

For z ∈ J , the points {pn(z)} and hence {pn(z)−w} remain bounded so we conclude that

lim sup
n→∞

Vµn
(z)≤ 0 for z ∈ J . (16)
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Now if {µn j
} is a subsequence of {µn}, since VµJ

= −pµJ
≥ I(µJ ) = 0 by Frostman’s theorem, from Fatou’s lemma and Fubini’s

theorem we have
∫

J

[limsup
j→∞

Vµn j
(z)]dµJ (z)≥ lim sup

j→∞

∫

J

Vµn j
(z)dµJ (z)

= limsup
j→∞

∫

J

VµJ
(z)dµn j

(z)≥ 0.

From (16), we conclude that
lim sup

j→∞
Vµn j
= 0 µJ − a.e. on J . (17)

Recall that suppµJ = J . We use this fact to complete the proof by contradiction: suppose µn 6→ µJ weak-*. Then there
exists a subsequence {µn j

} of {µn}, a function φ ∈ C(J), and ε > 0 with

|
∫

J

φdµn j
−
∫

J

φdµJ | ≥ ε (18)

for all j. Take a further subsequence, which we still denote by {µn j
}, which converges weak-* to a measure µ ∈M(J). An

argument similar to that used to prove (6) shows that

lim sup
j→∞

Vµn j
(z)≤ Vµ(z) for z ∈ C.

Then (17) shows that Vµ(z)≥ 0 µJ−a.e on J . Since suppµJ = J and Vµ is usc, we have Vµ(z)≥ 0 on J . Thus

I(µ) =

∫

J

[−Vµ(z)]dµ(z)≤ 0= I(µJ ).

By uniqueness of the energy minimizing measure, µ= µJ . This contradicts (18).

Let Pn denote the vector space of holomorphic polynomials of degree at most n. For a compact set K ⊂ C and a measure
ν on K , we say that the pair (K ,ν) satisfies the Bernstein-Markov inequality for holomorphic polynomials in C if, given ε > 0,
there exists a constant M̃ = M̃(ε) such that for all n= 1,2, ... and all pn ∈ Pn

||pn||K ≤ M̃(1+ ε)n||pn||L2(ν). (19)

Equivalently, for all pn ∈ Pn,
||pn||K ≤ Mn||pn||L2(ν) with lim sup

n→∞
M1/n

n = 1.

Thus there is a strong comparability between L2 and L∞ norms. We will see in section 9 that any compact set K admits a measure
ν with (K ,ν) satisfying a Bernstein-Markov inequality. For now, we observe that one can recover the transfinite diameter δ(K)
in an L2−fashion with such a measure.

Theorem 2.9. Let K be compact and let (K ,ν) satisfy a Bernstein-Markov inequality for holomorphic polynomials. Then

lim
n→∞

Z1/n2

n = δ(K)

where
Zn = Zn(K ,ν) := (20)

∫

Kn+1

|V DM(λ0, ...,λn)|2dν(λ0) · · · dν(λn).

We will see the utility of this result, and generalizations of it, later on. The quantity Zn is called the n−th free energy of
(K ,ν).

Exercises.

1. Prove (6) using weak-* convergence of µn × µn to µ× µ and lowersemicontinuity of z → log 1
|z−ζ|

. (Hint: If you have
trouble, see the start of the proof of Proposition 5.2 in section 5.)

2. Use Proposition 2.4 to verify Corollary 2.5: a countable union of Borel polar sets is polar.

3. Show that if {Kn} are compact sets in C with Kn+1 ⊂ Kn for all n, then limn→∞ I(µKn
) = I(µK) where K = ∩nKn. (Hint:

Use (6).)

4. Verify the claim in the proof of Theorem 2.8 that w ∈ J implies that z j ∈ J if pn(z j) = w.

5. Generally Fekete points of order n for a compact set K are not unique. In the case of the interval [−1, 1]⊂ R⊂ C, they
are unique. Find explicitly Fekete points z0 < z1 < z2 < z3 of order 3 for [−1, 1].

6. Compute ∆
� 1

2
log (1+ |z|2)

�

.
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7. Verify that δn+1(K)≤ δn(K) for n= 1,2, ... for any compact set K ⊂ C. Conclude that the limit in (11) exists.

8. Using the previous exercise, and observing that the function V DM(λ0, ...,λn) is a holomorphic polynomial of degree at
most n in each variable, prove Theorem 2.9. (Hint: Apply the Bernstein-Markov property repeatedly).

9. Extra Credit: Polar sets and energy.

(a) Find an example of a probability measure ν with compact support such that I(ν) < +∞ but ν puts no mass on
polar sets.

(b) Prove Proposition 2.7 under the weaker hypothesis on ν that ν puts no mass on polar sets (instead of I(ν)<+∞).

Dolomites Research Notes on Approximation ISSN 2035-6803



Levenberg 15

3 Upper envelopes, extremal subharmonic functions and applications.
In the first section, we claimed that for any family {vα} ⊂ SH(D) which is uniformly bounded above on any compact subset of
D, the function

v(z) := sup
α

vα(z)

is “nearly” shm in the sense that the usc regularization

v∗(z) := limsup
ζ→z

v(ζ)

is shm in D. This fact is fairly straightforward (exercise 2). The following simple example shows that the set

{z ∈ D : v(z)< v∗(z)}

need not be empty: let D = B(0, 1), let {vα} = {un} where un(z) =
1
n

log |z|; then, in B(0,1), clearly u(z) = supn un(z) = 0 for
0< |z|< 1 but u(0) =−∞. Here, u∗(z)≡ 0 and

{z ∈ B(0,1) : u(z)< u∗(z)}= {0}

which is admittedly “small”. In general the Brelot-Cartan Theorem says that the set {z ∈ D : v(z)< v∗(z)}, called a negligible set,
is always polar.

We remark that the converse of the Brelot-Cartan theorem is true: a polar set is negilgible. We prove this for bounded polar
sets E. For such a set, by definition, there exists u shm in a domain D containing E, u 6≡ −∞, with E ⊂ {z ∈ D : u(z) = −∞}.
On D′ ⊂⊂ D with E ⊂ D′, we can assume u < 0 (why?). Now take {vα} = {αu} for 0 < α < 1. We leave it as an exercise to see
that for v(z) := supα vα(z),

{z ∈ D′ : u(z) =−∞}= {z ∈ D′ : v(z)< v∗(z)}. (21)

Before we return to our general upper envelope constructions, we mention a beautiful and very general result of Choquet:
if {vα} is a family of real-valued functions defined on a separable metric space X which is uniformly bounded above on any
compact subset of X , then one can extract a countable subfamily {un} ⊂ {vα} with the property that

�

sup
α

vα
�∗ =

�

sup
n

un
�∗.

We note that if each vα is continuous (or even lsc; i.e., −vα is usc), then we can even have supα vα = supn un (exercise 1). Now
recall given a bounded domain D with reasonable boundary and f ∈ C(∂ D) we formed the Perron envelope

U(0; f )(z) := sup{v(z) : v ∈ SH(D) : lim sup
z→ζ

v(z)≤ f (ζ)

for all ζ ∈ ∂ D}.

Claim: U(0; f ) is harmonic in D.
To prove the claim, we show U(0; f ) is harmonic on any disk B ⊂ D. To this end, we first note that since any shm v is a
decreasing limit of smooth shm functions, we can assume that each v is continuous in D.

1. We can then recover U(0; f ) as an upper envelope of a countable family of continuous functions {un}; by replacing un
by vn :=max[u1, ..., un] we have U(0; f ) as an increasing sequence of continuous shm functions {vn}.

2. Replace each vn by its Poisson modification ṽn on B. Then, on B, U(0; f ) is the monotone, increasing limit of harmonic
functions.

3. By Harnack’s theorem (a monotone limit of harmonic functions in B either converges to a harmonic function or is
identically ±∞), U(0; f ) is harmonic in B.

As another example of this type of argument, recall for K ⊂ C compact, we defined

VK(z) = sup{u(z) : u ∈ L(C), u≤ 0 on K}.

This is again a Perron envelope, for any such u and any disk B ⊂ C \ K , the function ũ defined as u in C \ B and as Pu|∂ B ,B in B
is in the family. An appropriate modification of the above argument shows that, provided VK is locally bounded above, we have
that VK is harmonic outside of K (modulo topological issues). In this case, since VK = 0 on K and {VK < V ∗K } is negligible and
hence polar, V ∗K = 0 q.e. on K .

We can almost show that (13) holds in this setting; i.e., µK =
1

2π
∆V ∗K . From Theorem 2.6, pµK

≤ I(µK) on C so that
−[pµK

− I(µK)] ∈ L+(C). Moreover, pµK
= I(µK) q.e on K so that

V ∗K =−[pµK
− I(µK)] q.e. on K .

By the domination principle Proposition 2.7,
V ∗K ≤−[pµK

− I(µK)] on C.

Both functions V ∗K and −[pµK
− I(µK)] are harmonic outside of K . If we knew that V ∗K ∈ L+(C) using Remark 2 we could apply

the domination principle Proposition 2.7 in the other direction to conclude that

V ∗K =−[pµK
− I(µK)] on C
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and hence we would have (13). We will work towards verifying the italicized statement. Often the notation gK is used for V ∗K ,
the Green function for K: it is characterized (uniquely) as the shm function in C which is in L+(C); harmonic in C \ K; and
equals 0 q.e. on K . We say K has a classical Green function if gK = 0 on all of K .

To see when VK is locally bounded above (Proposition 3.2), we first state and prove a very useful and general result, known
as Hartogs lemma.

Lemma 3.1. Let {u j} be a family of shm functions on a domain D ⊂ C which are locally uniformly bounded above in D. Suppose
there exists M <+∞ with

limsup
j→∞

u j(z)≤ M for all z ∈ D.

Given ε > 0 and K ⊂ D compact, there exists j0 = j0(ε, K) such that for j ≥ j0,

sup
z∈K

u j(z)≤ M + ε.

Proof. Let u(z) := lim sup j→∞ u j(z) and vn(z) := sup j≥n u j(z). Then vn ↓ u. The functions v∗n are shm and decrease pointwise to
a shm function v on D. By the Brelot-Cartan theorem, vn = v∗n q.e. and since a countable union of polar sets is polar (Corollary
2.5), v = u q.e. Hence the shm functions v and u∗ are equal q.e. and therefore a.e.; by Corollary 1.2 v = u∗ on D. Since {v∗n}
form a decreasing sequence of shm functions with v∗n ≤ M , by Dini’s theorem, on any compact set K ⊂ D the sequence {v∗n}
converges uniformly to v and v ≤ M on K . Since un ≤ vn ≤ v∗n, the result follows.

We saw that for the unit circle T = {z ∈ C : |z| = 1} we have VT (z) = V ∗T (z) = max[log |z|, 0]; hence for the closed unit
disk B = B(0,1) = {z ∈ C : |z| ≤ 1} we have VB(z) = V ∗B (z) = max[log |z|, 0] (why?). More generally, if B = B(a, r) = {z ∈
C : |z − a| ≤ r} we have VB(z) = V ∗B (z) = max[log |z − a|/r, 0]. If K = B(a, r) ∪ {p} where p 6∈ B(a, r), V ∗K (z) = V ∗B (z) =
max[log |z− a|/r, 0] and {z : VK(z)< V ∗K (z)}= {p}.
Proposition 3.2. Let K ⊂ C be compact. Either V ∗K ≡+∞, which occurs if K is polar, or else we have V ∗K ∈ L+(C).

Proof. If VK is locally bounded above, on a disk B, e.g., the unit disk, VK ≤ M ; i.e., for all u ∈ L(C) with u ≤ 0 on K , we have
u−M ≤ 0 on B so that u−M ≤ VB in C and hence VK ≤ M + VB in C. Hence V ∗K ∈ L(C).

If VK is not locally bounded above, we claim that P := {z ∈ C : VK(z) < +∞} is polar; hence V ∗K ≡ +∞. Since VK = 0 on
K , this shows, in particular, that K is polar. Thus assume VK is not locally bounded above. Then there is a closed disk B and
sequence {u j} ⊂ L(C) with u j ≤ 0 on K such that M j := supB u j ≥ j for j = 1,2, ... It follows that

u j(z)−M j ≤ VB(z), z ∈ C, j = 1,2, ...

We claim that from Hartogs lemma, there exists z0 ∈ C with

δ := limsup
j→∞

exp (u j(z0)−M j)> 0.

For if not, limsup j→∞ exp (u j(z)−M j) ≤ 0 for all z ∈ C. Hartogs lemma implies, e.g., that exp (u j(z)−M j) ≤ 1/2 for z ∈ B and
all j sufficiently large. But this contradicts the definition of M j := supB u j .

Choose a subsequence {u jk} so that

δ = lim
k→∞

exp (u jk (z0)−M jk ) and M jk ≥ 2k

and define

w(z) :=
∞
∑

k=1

2−k[u jk (z)−M jk]. (22)

Check that w(z0) > −∞ (so w 6≡ −∞); w is shm in C (why?); and, indeed, w ∈ L(C). We claim that w = −∞ on P. For if
VK(z) = M <+∞, we have u jk (z)≤ M for all k and hence

∑

k

2−ku jk (z)<+∞.

Thus
w(z)≤

∑

k

2−ku jk (z)−
∑

k

1=−∞.

Hence P is polar.

Polar sets are removable sets for certain classes of functions. Recall the Riemann removable singularity theorem: if f is
holomorphic in a punctured disk B \ {p} and | f | is bounded near p, then f can be defined at p to be holomorphic in B. In
particular, the same result applies to harmonic functions, and even locally bounded above shm functions. More generally, the
“size” of the removable set can be bigger but not too big: it can be a polar set.

Proposition 3.3. Let u be shm on D \ P where D is a bounded domain and P is a polar set. Suppose u is locally bounded above
near P. Then u has a unique shm extension to D.
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Proof. We extend u to D by setting
u(z) := lim sup

ζ→z, ζ∈D\P
u(ζ).

Clearly this extension is usc in D. To see that u is shm in D, take any relatively compact subdomain D′ in D and a harmonic
function h on D

′
with u ≤ h on ∂ D′. There exists v shm in C with v = −∞ on P. For ε > 0, u− h+ εv is shm on D′ \ P and

equals −∞ on D′ ∩ P; hence it is shm on D′. By the maximum principle,

u− h+ εv ≤ sup
∂ D′
εv on D′.

Let ε→ 0 to conclude u≤ h on D′ \ P. Since P has measure zero, from Corollary 1.2, u≤ h on P.
Uniqueness also follows from Corollary 1.2: two shm functions which agree a.e. are identical.

Corollary 3.4. Let h be harmonic on D \ P where D is a bounded domain and P is a polar set. Suppose |h| is locally bounded near
P. Then h has a unique harmonic extension to D.

How “big” can polar sets be? We saw that polar sets must have Lebesgue measure zero, and indeed, a polar set must have
zero Hausdorff dimension so it can’t be too big. On the other hand, we saw that countable sets are polar; but there do exist
uncountable polar sets. Examples can be constructed from certain generalized Cantor sets. We refer the reader to [25].

There is a notion of “thinness” of a set, which is very closely related to polarity. Recall from exercise 4 of section 1, if u is
shm in D, then for each z ∈ D, limsupζ→z u(ζ) = u(z). Let S ⊂ C and z ∈ S \ {z}. We say that S is thin at z if there exists u shm
on a neighborhood of z0 with

limsup
ζ→z, ζ∈S\{z}

u(ζ)< u(z).

(For consistency, if ζ 6∈ S \ {z}, we say that S is thin at ζ). It can be shown that an Fσ polar set S is thin at each point, and,
conversely, a set S which is thin at every point of itself must be polar. We refer the reader to section 3.8 of [25] for details.

Exercises.

1. Let {vα} be a family of real-valued lsc functions defined on a separable metric space X which is uniformly bounded
above on any compact subset of X . Show that v(x) := supα vα(x) is lsc and that one can extract a countable subfamily
{un} ⊂ {vα} with the property that

sup
α

vα = sup
n

un.

(Hint: Look at the set {(x , t) ∈ X ×R : v(x)> t} and use the Lindelöf property of X ).

2. Let {vα} ⊂ SH(D) be uniformly bounded above on any compact subset of D and define v(z) := supα vα(z). Show that
v∗(z) := lim supζ→z v(ζ) is shm in D.

3. Verify equation (21).

4. Given a bounded domain D, and a point z0 ∈ D, define

G(z; z0) := sup{u(z) : u ∈ SH(D), u≤ 0,

u(z)− log |z− z0| bounded as z→ z0}

the Green function for D with pole at z0. Show that G(z; z0) is harmonic in D \ {z0}.

5. Find a formula for G(z; z0) if D = B(0, 1) and |z0| < 1. (Hint: First do the case z0 = 0 and for z0 6= 0 find a holomorphic
self-map of B(0,1) taking z0 to 0).

6. Given a bounded domain D and a subset E ⊂ D, define

ω(z, E, D) := sup{u(z) : u ∈ SH(D), u≤ 0, u|E ≤−1},

the relative extremal function for E relative to D. Show that if ω∗(z, E, D) 6≡ 0 then ω∗(z, E, D) is harmonic in D \ E.

7. Find a formula for ω(z, E, D) if D = B(0, R) and E = B(0, r), for r < R.

8. Prove the two-constants theorem: for E ⊂ D, if u is shm in D satisfies u≤ M in D and u≤ m< M on E, then for z ∈ D,

u(z)≤ M(1+ω∗(z, E, D))−mω∗(z, E, D).

(Remark: If you apply this result to u= log | f | where f is holomorphic in D, | f | ≤ M ′ on D and | f | ≤ m′ on E you get a
generalization of the “three-circles” theorem from complex analysis.)

9. Verify the “why?” in the proof of Proposition 3.2; i.e., prove the shm of w in equation 22.

10. Prove Corollary 3.4.
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4 Polynomial approximation and interpolation in C.
There is a close relation between the smoothness of a function f and the speed at which f may be approximated by polynomials.
To state results of this type we introduce, for any continuous complex-valued function f on any compact set K in the plane C,
the approximation numbers

dn = dn( f , K)≡ inf{|| f − pn||K : pn ∈ Pn},

where recall Pn is the vector space of complex polynomials in z of degree at most n. The Weierstrass approximation theorem
states that limn→∞ dn = 0 for any continuous function f on [−1,1], and it is natural to ask for additional conditions on f which
guarantee that dn converges rapidly to zero. A beautiful result of this type is the classical theorem of Bernstein, which states
that f extends to a holomorphic function on an open neighborhood of [−1, 1] in C if and only if dn satisfies an exponential
decay estimate

dn ≤ Cρn for some constants C > 0 and ρ ∈ (0,1).

In fact, a sharp version of the Bernstein theorem relates the constant ρ to the size of the open neighborhood of [−1,1] to which
f can be extended. Walsh [27] later gave an important extension of the Bernstein theorem in which the interval [−1,1] is
replaced by certain compact subsets of C. The theorems of Bernstein and Walsh serve as a link between the classical ideas of
approximation theory and some higher-dimensional problems concerning holomorphic functions of several complex variables.

An elementary approach to the theorems of Bernstein and Walsh is to regard them as statements about the error in trunca-
ting geometrically convergent series expansions. As the simplest example, consider first the closed unit disk ∆= {z : |z| ≤ 1} in
C, and suppose that f is holomorphic on a neighborhood of∆. To be specific, we assume that f is holomorphic on the open disk
{z : |z|< R}, where R> 1, and we ask to what extent the size of the radius R determines the rate of decay of the approximation
numbers dn( f ,∆). To study this, we recall that the Taylor expansion

∑

akzk for f about the origin converges absolutely and
uniformly on compact subsets of {z : |z| < R} to f . Applying the Cauchy estimates to f on {z : |z| < r}, where 1 < r < R, we
obtain |an| ≤ M/rn with M = sup{| f (z)| : |z| ≤ r}. Letting pn(z) =

∑n
k=0 akzk be the n-th Taylor polynomial for f , it follows

that dn( f ,∆)≤ || f − pn||∆ ≤
M

rn(r − 1)
. This implies that lim supn→∞ dn( f ,∆)1/n ≤ 1/r, and we may now let r ↑ R to conclude

that
limsup

n→∞
dn( f ,∆)1/n ≤ 1/R.

This proves the following equivalence in one direction.

Theorem 4.1. Let f be continuous on ∆= {z ∈ C : |z| ≤ 1}, and R> 1. Then

lim sup
n→∞

dn( f ,∆)1/n ≤ 1/R (23)

if and only if f is the restriction to ∆ of a function holomorphic in {z ∈ C : |z|< R}.

Proof. We have already proved “if”. To prove “only if” we will use the fact that any polynomial p(z) satisfies the Bernstein-Walsh
inequality

|p(z)| ≤ ||p||∆ ρ
deg p, |z| ≤ ρ; (24)

this estimate follows from applying Lemma 1 below, with g∆(z) ≡ log |z|, so for the moment we assume (24) and complete the
proof of the theorem. Let f be a continuous function on∆ such that (23) holds; we will show that if pn is a polynomial of degree
≤ n satisfying dn = || f − pn||∆, then the series p0 +

∑∞
1 (pn − pn−1) converges uniformly on compact subsets of {z : |z|< R} to a

holomorphic function F which agrees with f on ∆. To do this, we choose R′ with 1< R′ < R; by hypothesis the polynomials pn
satisfy

|| f − pn||∆ ≤
M

R′n
, n= 0,1, 2, ..., (25)

for some M > 0. We now let 1< ρ < R′, and apply (24) to the polynomial pn − pn−1 to obtain

sup
|z|≤ρ
|pn(z)− pn−1(z)| ≤ ρn||pn − pn−1||∆ ≤ ρ

n(||pn − f ||∆ + || f − pn−1||∆)

≤ ρn M(1+ R′)
R′n

.

Since ρ and R′ were arbitrary numbers satisfying 1 < ρ < R′ < R, we conclude that p0 +
∑∞

1 (pn − pn−1) is locally uniformly
Cauchy on {z : |z| < R}, and hence converges locally uniformly on {z : |z| < R} to a holomorphic function F ; from (25) we see
that F ≡ f on ∆, so the theorem is proved.

For more general compact sets K ⊂ C, we will see the importance of the function VK from (14). We begin with a lemma.

Lemma 4.2. (Bernstein-Walsh property) Let K be a compact subset of C such that C \ K is connected. Suppose that C \ K has a
classical Green function gK ; i.e., there is a continuous function gK : C→ [0,+∞) which is identically equal to zero on K, harmonic
on C \ K, and has a logarithmic singularity at infinity in the sense that gK(z)− log |z| is harmonic at infinity. Then

gK(z)≡max

¨

0, sup
p

�

1

deg p
log |p(z)|

�

«

, (26)
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where the supremum is taken over all non-constant polynomials p such that ||p||K ≤ 1. In particular, gK = VK and, if R> 1 and

DR ≡ {z : VK(z)< log R}, (27)

then
|p(z)| ≤ ||p||KRdeg p, z ∈ DR. (28)

The topological condition that C \ K is connected is equivalent to K being polynomially convex: this means that K = bK
where

bK ≡ {z ∈ C : |p(z)| ≤ ||p||K , p polynomial}

is the polynomial hull of K (see the exercises). Note that using (15), i.e., the right-hand-side of (26), we have

VK = V
bK .

A compact set with VK continuous, equivalently, VK = V ∗K , is called regular. Any compact set K can be approximated from
the outside by regular compacta; i.e., one can find {K j} regular with K j+1 ⊂ K j and ∩ j K j = K . We can take, e.g., K j = {z ∈
C : dist(z, K) ≤ 1/ j}. The fact that each K j is regular can be seen by recalling from section 3 that for a closed unit disk
B = B(a, r) = {z ∈ C : |z − a| ≤ r} we have VB(z) = V ∗B (z) = max[log |z − a|/r, 0]. Now each z ∈ K j belongs to a closed ball
B̃ := B(a, 1/ j) ⊂ K j and since clearly VK j

(z) ≤ VB̃(z) = V ∗
B̃
(z) = 0, we have V ∗K j

= 0 on K j so that V ∗K j
≤ VK j

(why?) and hence
equality holds.

It is easy to prove a weak form of (26). In fact, if p is any nonconstant polynomial such that ||p||K ≤ 1, then the function
V ≡ 1

deg p
log |p| − gK is subharmonic on C \ K , bounded at ∞, and continuously assumes nonpositive values on ∂ K . By the

maximum principle we have V ≤ 0 on C∪{∞}−K , which proves that gK(z) is greater than or equal to the right side of (26). To
show that gK(z) is actually equal to the right side of (26), we will construct a sequence of monic polynomials {pn(z) = zn + · · · }
with deg pn = n such that

lim
n→∞

1

n
log
� |pn(z)|
||pn||K

�

= gK(z)

locally uniformly on C ∪ {∞} − K (cf., [27], section 4.4); for example, from (2.3) a sequence of Fekete polynomials pn(z) =
∏n

j=1(z − zn j) where zn1, ..., znn is a set of Fekete points of order n− 1 for K will do since the corresponding sequence of Fekete
measures {µn} converges weak-* to µK . Note as a consequence, we have proved the following.

Corollary 4.3. Let K be a regular compact set in C. Then the functions

V (n)K (z) :=max

¨

0, sup
p

�

1

deg p
log |p(z), p ∈ Pn|

�

«

converge uniformly to VK on C.

We remark that for a general compact set K ⊂ C, if one minimizes the supremum norm on K of monic polynomials of
degree n; i.e., one takes

τn(K) := inf{||pn||K : pn(z) = zn + · · · },

then
lim
n→∞

τn(K)
1/n = inf

n≥1
τn(K)

1/n = δ(K). (29)

Thus the Chebyshev constant limn→∞ τn(K)1/n of K coincides with the transfinite diameter. A monic polynomial tn with ||tn||K =
τn(K) is called a Chebyshev polynomial for K; such a polynomial exists (and is unique if K has at least n points). We omit
the proof but we can easily give one inequality: taking a Fekete polynomial pn(z) =

∏n
j=1(z − zn j), by definition we have

||tn||K ≤ ||pn||K ; but then for any z ∈ K , the (n+1)−tuple z, zn1, ..., znn is a candidate for a set of Fekete points of order n+1 for
K . Thus

|pn(z)| ·δn(K)(
n
2) =

n
∏

j=1

|z− zn j |
∏

j<k

|zn j − znk| ≤ δn+1(K)(
n+1

2 )

and since δn+1(K)≤ δn(K) (exercise 7 in section 2), we have

||tn||K ≤ ||pn||K ≤
δn(K)(

n+1
2 )

δn(K)(
n
2)
= δn(K)

n

giving
lim sup

n→∞
τn(K)

1/n ≤ δ(K).

Note we have also proved that limn→∞ ||pn||
1/n
K ≤ δ(K) for the Fekete polynomials pn.

Theorem 4.4. (Walsh) Let K be a compact subset of the plane such that C\K is connected and has a Green’s function gK . Let R> 1,
and define DR by (27). Let f be continuous on K. Then

limsup
n→∞

dn( f , K)1/n ≤ 1/R

if and only if f is the restriction to K of a function holomorphic in DR.
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To prove “only if” in this theorem we repeat the proof after the statement of Theorem 23, using the Bernstein-Walsh
inequality (28). The proof of the “if” direction we are about to outline is one of the simplest to give, yet the most difficult
to generalize; it uses polynomial interpolation to construct good approximators. The key ingredient we need is the Hermite
remainder formula for interpolation of a holomorphic function of one variable. Let z1, ...zn be n distinct points in the plane and
let f be a function which is defined at these points. The polynomials l j(z) =

∏

k 6= j(z − zk)/
∏

k 6= j(z j − zk), j = 1, ..., n, are
polynomials of degree n− 1 with l j(zk) = δ j,k, called the fundamental Lagrange interpolating polynomials, or FLIP’s, associated
to z1, ..., zn. We remark that we can also write

l j(z) =
V DM(z1, ..., z j−1, z, z j+1, ..., zn)

V DM(z1, ..., zn)
(why?)

and this form of a FLIP will generalize to CN , N > 1. Then the polynomial p(z) =
∑n

j=1 f (z j)l j(z) is the unique polynomial of
degree n−1 satisfying p(z j) = f (z j), j = 1, ..., n; we call it the Lagrange interpolating polynomial, or LIP, associated to f , z1, ..., zn.
Suppose now that Γ is a rectifiable Jordan curve such that the points z1, ..., zn are inside Γ, and f is holomorphic inside and on
Γ. We can estimate the error in our approximation of f by p at points inside Γ using the following formula.

Lemma 4.5. (Hermite Remainder Formula) For any z inside Γ,

f (z)− p(z) =
1

2πi

∫

Γ

ω(z)
ω(t)

f (t)
(t − z)

d t,

where ω(z) =
∏n

k=1(z− zk).

Proof. The function

ep(z)≡
1

2πi

∫

Γ

�ω(t)−ω(z)
t − z

� f (t)
ω(t)

d t

is clearly a polynomial of degree ≤ n− 1. Using the Cauchy integral formula for f , we see that

f (z)− ep(z) =
1

2πi

∫

Γ

ω(z)
ω(t)

f (t)
(t − z)

d t (30)

for z inside Γ. In particular, for each k we have f (zk)− ep(zk) = 0, and hence ep = p. Now the lemma follows from (30).

The proof of the “if” direction in Theorem 4.4 can now be completed using Lagrange interpolating polynomials for f
at Fekete points of K and the Hermite remainder formula (exercise 4). We next give a fundamental result of Walsh. Let
{zn j}, j = 0, ..., n; n = 1,2, ... be an array of points. For each f defined in a neighborhood of this array, we can form the
sequence of LIP’s {pn} associated to f . We write pn = Ln f to denote the degree and the dependence on f ; i.e., Ln f is the LIP of
degree n associated to f , zn0, ..., znn. Let ωn(z) :=

∏n
j=0(z− zn j).

Theorem 4.6. Let K ⊂ C be compact and regular with C \ K connected. Let {zn j} be an array of points in K. Then for any f which
is holomorphic in a neighborhood of K, we have Ln f ⇒ f on K if and only if

lim
n→∞
|ωn(z)|

1
n+1 = δ(K) · eVK (z) (31)

uniformly on compact subsets of C \ K.

Condition (31) is equivalent to
lim
n→∞
||ωn||

1/n+1
K = δ(K).

We will call the array {zn j} “good” – meaning good for polynomial interpolation of holomorphic functions – if condition (31)
holds. To construct arrays satisfying (31), define

Λn ≡ sup
z∈K

n
∑

j=0

|ln j(z)|

the n-th Lebesgue constant for the array. This is the norm of the linear operator

Ln : C(K)→ Pn ⊂ C(K)

defined by Ln( f ) := Ln f where we equip C(K) with the supremum norm (exercise). We observe that, from Theorem 4.4, if the
array satisfies

lim
n→∞
Λ1/n

n = 1, (32)

then (31) holds. To see this, we take f holomorphic on a neighborhood of K , and we show that Ld f ⇒ f on K . To this end, we
note that f is holomorphic in DR for some R> 1 so by Theorem 4.4 we can find a sequence of polynomials {pn} with degpn ≤ n
and || f − pn||K = 0(1/Rn). Since Lnpn = pn (why?), we have

|| f − Ln f ||K ≤ || f − pn||K + ||pn − Ln f ||K

= || f − pn||K + ||Ln(pn − f )||K ≤ (1+Λn)|| f − pn||K
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and the result follows.
Next, the condition (32) implies that the array is asymptotically Fekete in the sense that

lim
n→∞
|V DM(zn0, ..., znn)

�1/(n+1
2 ) := δ(K). (33)

(cf., [10]). Moreover, on pp. 462-463 in [10], it was observed that for an array {zn j} ⊂ K with

|V DM(zn0, ..., znn)|= cnVn(K)

where
0< cn < 1, lim sup

n→∞
c1/n

n < 1, and lim
n→∞

c1/ln
n = 1

(e.g., cn = vn for 0< v < 1), property (33) holds but (32) does not. More precisely, we have the following.

Proposition 4.7. Let {zn j} j=0,...,n; n=1,2,... ⊂ K be an array of points. Suppose that

lim
n→∞

� Vn(K)
|V DM(zn0, ..., znn)|

�1/n = 1.

Then (32) holds.

Proof. The result follows trivially from the observation that if

Vn(K)
|V DM(zn0, ..., znn)|

≤ a(n),

then Λn ≤ (n+ 1) · a(n). This observation is a consequence of the fact that each FLIP can be written as

ln j(z)≡
V DM(zn0, ..., z, ..., znn)

V DM(zn0, ..., znn)

so that

|ln j(z)| ≤ a(n)
|V DM(zn0, ..., z, ..., znn)|

Vn(K)
.

Since |V DM(zn0, ..., z, ..., znn)| ≤ Vn(K) for each z ∈ K , we have ||ln j ||K ≤ a(n).

Indeed, both the conditions (32) and (33) imply that the sequence of discrete measures

µn :=
1

n+ 1

n
∑

j=0

δzn j

converge weak-* to µK .

Proposition 4.8. Let K ⊂ C be compact with δ(K)> 0. For any array {zn j} ⊂ K satisfying (33), µn→ µK weak-*.

We will prove a more general version of this result in section 5 (Proposition 5.2). To summarize, we have the following
(see [10] for more details).

Proposition 4.9. Let K ⊂ C be compact, regular, and polynomially convex. Consider the following four properties which an array
{zn j} j=0,...,n; n=1,2,... ⊂ K may or may not possess:

1. limn→∞Λ1/n
n = 1;

2. limn→∞ |V DM(zn0, ..., znn)|
1

(n+1
2 ) = δ(K);

3. limn→∞
1

n+1

∑n
j=0 δzn j

= µK weak-*;

4. Ln f ⇒ f on K for each f holomorphic on a neighborhood of K.

Then (1) =⇒ (2) =⇒ (3) =⇒ (4) and there are counterexamples to each of the reverse implications.

We end this section with a construction, due to Edrei and Leja, of a sequence of points {z j} in a compact set K with the
property that the array {zn j}= {z j} satisfies (33) and hence, if K is regular with C\K connected, (31) holds. Let z0 be any point
in K , and, having chosen z1, ..., zn−1 ∈ K , we choose zn ∈ K such that

max
z∈K

n−1
∏

j=0

|z− z j |=
n−1
∏

j=0

|zn − z j |. (34)

The proof that (33) holds is outlined in exercise 8.

Exercises.

1. Prove that for K ⊂ C compact, bK = K if and only if C \ K is connected.
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2. For a compact set K ⊂ C:

(a) Determine bK if K = {z : |z|= 1}.
(b) Determine bK if K = {z : a ≤ |z| ≤ b} where 0< a < b.
(c) Show that if K = bK then C \ K is connected.
(d) Note that if C \ K is connected, then Runge’s theorem states that any f analytic on a neighborhood of K can be

uniformly approximated on K by polynomials. (Theorem 4.4 is a quantitative version of this). Use this to prove
the converse to (c): if C \ K is connected, then K = bK . (Hint: If z0 ∈ C \ K , then K ∪ {z0} also has connected
complement. Take a sequence zn → z0 and consider fn(z) =

1
z−zn

which is holomorphic on a neighborhood of
K ∪ {z0}. Now use Runge to find a polynomial p with |p(z0)|>maxζ∈K |p(ζ)|).

3. Suppose that C \ K is connected and has a Green function, and assume that (C∪ {∞}) \ K is simply connected. Prove
that for z 6∈ K , gK(z) = log |φ(z)| where φ is a conformal map of (C∪ {∞}) \ K onto {z : |z| > 1} with φ(∞) =∞. Use
this result to find g[−1,1].

4. Use the Hermite remainder formula to prove the “if” direction of Theorem 4.4.

5. Prove that the condition
lim
n→∞
|ωn(z)|

1
n+1 = δ(K) · eVK (z)

uniformly on compact subsets of C \ K is equivalent to

lim
n→∞
||ωn||

1
n+1
K = δ(K).

6. Use the Hermite remainder formula to prove the following: given any array {zn j} in the closed unit disk D = {z : |z| ≤ 1},
if f is analytic in DR = {z : |z|< R} where R> 3, then {Ln f } converge uniformly to f on D.

7. Use the previous exercise to prove the following: given any bounded array {zn j} in C, if f is an entire function, then the
sequence of LIP’s {Ln f } converges uniformly on compact subsets of C to f .

8. Verify that a Leja sequence for K defined in (34) satisfies (33) using the following outline:

(a) Show for any monic polynomial pn(z) = zn + · · · , ||pn||K ≥ δ(K)n (you may assume (29)).
(b) Verify that, for the Leja sequence {z j} j=0,1,...,

Vn+1(K)≥ |V DM(z0, ..., zn)| ≥ ||ωn||K · ||ωn−1||K · · · ||ω0||K

where ω j(z) =
∏ j

i=0(z− zi).
(c) Combine parts (a) and (b).

9. EXTRA extra credit: Prove that if K ⊂ C is not polar, then there exists a regular compact subset K ′ ⊂ K . This is a deep
theorem of Ancona [1].
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5 Weighted potential theory in C.
Let K ⊂ C be closed and let w be an admissible weight function on K: w is a nonnegative, uppersemicontinuous function with
{z ∈ K : w(z)> 0} nonpolar; if K is unbounded, we require that w satisfies the growth property |z|w(z)→ 0 as |z| →∞, z ∈ K .
We write Q :=− log w and denote the collection of lowersemicontinuous Q of this form as A(K). Associated to K ,Q is a weighted
energy minimization problem: for a probability measure τ on K , consider the weighted energy

Iw(τ) :=

∫

K

∫

K

log
1

|z− t|w(z)w(t)
dτ(t)dτ(z) = I(τ) + 2

∫

K

Qdτ

and find infτ Iw(τ) where the infimum is taken over all probability measures τ on K . This is often referred to as a logarithmic
energy minimization in the presence of an external field Q. The associated discrete problem leads to the weighted transfinite
diameter of K with respect to w:

δw(K) := lim
n→∞

�

max
λi∈K
|V DM(λ0, ...,λn)|w(λ0)

n · · ·w(λn)
n�1/(n+1

2 ). (35)

Here V DM(ζ1, ...,ζn) = det[ζ j−1
i ]i, j=1,...,n =

∏

j<k(ζ j − ζk) is the classical Vandermonde determinant. The proof that the limit
exists is similar to the unweighted case and is left as exercise 1. Points λ0, ...,λn ∈ K for which

|V DM(λ0, ...,λn)|w(λ0)
n · · ·w(λn)

n

= |det









1 λ0 . . . λn
0

...
...

. . .
...

1 λn . . . λn
n









| ·w(λ0)
n · · ·w(λn)

n

is maximal are called weighted Fekete points of order n. For future use, we write

δw
n (K) :=

�

max
λi∈K
|V DM(λ0, ...,λn)|w(λ0)

n · · ·w(λn)
n�1/(n+1

2 ). (36)

We have
inf
τ

Iw(τ) =− logδw(K). (37)

We also define the weighted Green function

V ∗K ,Q(z) := limsup
ζ→z

VK ,Q(ζ)

where
VK ,Q(z) := sup{u(z) : u ∈ L(C), u≤Q on K}.

The case w ≡ 1 on K; i.e., Q ≡ 0, is the “unweighted” case and we simply write VK . We have V ∗K ,Q ∈ L+(C) and the measure

µK ,Q :=
1

2π
∆V ∗K ,Q =

1

2π
dd c V ∗K ,Q,

which has compact support, is the weighted equilibrium measure: indeed, µK ,Q is the unique probability measure on K satisfying

inf
τ

Iw(τ) = Iw(µK ,Q).

We remark that there exists η > 0 such that the support Sw of µK ,Q is contained in {z ∈ K : w(z) ≥ η} (Remark 1.4, p. 27 of
[26]). Note if Q ≡ 0 we write µK = µK ,0.

For K ⊂ C compact, we say K is locally regular if for each z ∈ K the unweighted Green function for the sets K∩B(z, r), r > 0
are continuous. Here B(z, r) denotes the Euclidean disk with center z and radius r. In this one-variable setting, local regularity
of K is equivalent to (global) regularity; i.e., VK = V ∗K is continuous. If K is regular and Q is continuous, then VK ,Q is continuous.
We have the elementary fact that for such K and Q,

VK ,Q(z) = V ∗K ,Q(z)≤Q(z) on K . (38)

In general, it is known that
supp(µK ,Q)⊂ {z ∈ K : V ∗K ,Q(z)≥Q(z)} (39)

and that V ∗K ,Q = Q on supp(µK ,Q) except perhaps for a polar set (cf., [26]). To prove (39), we use a Perron family argument as
in the previous section. Let Sw := supp(µK ,Q) and S∗w := {z ∈ K : V ∗K ,Q(z) ≥ Q(z)}. Fix z0 ∈ K \ S∗w . Since V ∗K ,Q is usc and Q is lsc,
we can find a ball B(z0, r) with

sup
z∈B(z0 ,r)

V ∗K ,Q(z)< inf
z∈B(z0 ,r)∩K

Q(z).

We now form u ∈ L(C) by setting u= V ∗K ,Q on C\B(z0, r) and on B(z0, r), we replace V ∗K ,Q by Pf ,B(z0 ,r) with f = V ∗K ,Q|∂ B(z0 ,r). Since
clearly u≤Q on K , we have u≤ V ∗K ,Q and hence u= V ∗K ,Q in C. Thus ∆V ∗K ,Q =∆u= 0 on B(z0, r); hence z0 6∈ Sw .

For an unbounded set K , the condition that |z|w(z)→ 0 as |z| →∞, z ∈ K , translates into

Q(z)− log |z| →+∞ as |z| →∞, z ∈ K .

Thus, {z ∈ K : VK ,Q(z) =Q(z)} is a bounded set; hence supp(µK ,Q) is compact.
A characterization of the logarithmic potential function pµK ,Q

akin to the Frostman theorem reads as follows:
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Proposition 5.1. If µ ∈M(K) has compact support and I(µ) < +∞, and if pµ(z) +Q(z) is equal to a constant F q.e. on supp(µ)
and is greater than or equal to F on K, then V ∗K ,Q =−pµ + F and hence µ= µK ,Q.

Proof. We give the proof when VK ,Q is continuous. In this case, by (38) V ∗K ,Q ≤ Q on K . Since −pµ + F = Q q.e. on supp(µ), by
Proposition 2.7 (and Remark 2), we have −pµ + F ≥ V ∗K ,Q on C. But −pµ + F ∈ L(C) and by hypothesis, −pµ + F ≤ Q on K , so
−pµ + F ≤ VK ,Q ≤ V ∗K ,Q.

The weighted theory introduces new phenomena from the unweighted case. As an elementary example, µK puts no mass
on the interior of K (indeed, the support of µK is the outer boundary of K); but this is not necessarily true in the weighted
setting. As a simple but illustrative example, taking K to be the closed unit disk {z : |z| ≤ 1} and Q(z) = |z|2, using Proposition
5.1 one can see that VK ,Q =Q on the disk {z : |z| ≤ 1/

p
2} and VK ,Q(z) = log |z|+ 1/2− log(1/

p
2) outside this disk (exercise 3).

Indeed, taking K = C and the same weight function Q(z) = |z|2, one obtains the same weighted extremal function VK ,Q. This last
result is a special case of the following: let Q(z) = Q(|z|) = Q(r) be a radially symmetric weight function on C which is convex
on r > 0. Let r0 be the smallest number for which Q′(r) > 0 for all r > r0 and let R0 be the smallest solution of R0Q′(R0) = 1.
Then Sw = {z : r0 ≤ |z| ≤ R0} and dµK ,Q(r) =

1
2π

�

rQ′(r)
�′drdθ . This is part of Theorem IV.6.1 of [26].

We will prove the following fact, which says that for any doubly indexed array of points {z(n j )
k }k=1,...,n j ; j=1,2,... in E which is

asymptotically Fekete with respect to the weight w, the limiting measures

dµn j
:=

1

n j

n j
∑

k=1

δ
z
(n j )
k

(40)

have the same weak-* limit, the weighted equilibrium measure dµK ,Q.

Proposition 5.2. Let K ⊂ C be compact and let w be an admissible weight on K. If, for a subsequence of positive integers {n j} with

n j ↑ ∞, the points z
(n j )
1 , ..., z

(n j )
n j ∈ K are chosen so that

lim
j→∞

�

|V DM(z
(n j )
1 , ..., z

(n j )
n j )|

2w(z
(n j )
1 )2n j · · ·w(z(n j )

n j )
2n j
�1/n2

j = δw(K),

then dµn j
→ dµK ,Q weak-* where dµn j

is defined in (40).

Proof. Take a subsequence of the measures {µn j
} which converges weak-* to a probability measure σ on K . We use the same

notation for the subsequence and the original sequence. We show that Iw(σ) = − logδw(K); by uniqueness of the weighted
energy minimizing measure (37) we will then have σ = µK ,Q. First of all, choose continuous admissible weight functions {wm}
with wm ↓ w (recall w is usc!) and wm ≥ αm > 0 on K and for a real number M let

hM ,m(z, t) :=min[M , log
1

|z− t|wm(z)wm(t)
]≤ log

1

|z− t|wm(z)wm(t)

and

hM (z, t) :=min[M , log
1

|z− t|w(z)w(t)
]≤ log

1

|z− t|w(z)w(t)
.

Then hM ,m ≤ hM . By the Stone-Weierstrass theorem, every continuous function on K × K can be uniformly approximated by
finite sums of the form

∑

j f j(z)g j(t) where f j , g j are continuous on K; hence µn j
×µn j

→ σ×σ and we have

Iw(σ) = lim
M→∞

lim
m→∞

∫

K

∫

K

hM ,m(z, t)dσ(z)dσ(t)

= lim
M→∞

lim
m→∞

lim
j→∞

∫

K

∫

K

hM ,m(z, t)dµn j
(z)dµn j

(t)

≤ lim
M→∞

lim sup
j→∞

∫

K

∫

K

hM (z, t)dµn j
(z)dµn j

(t)

since hM ,m ≤ hM . Now

hM (z
(n j )
k , z

(n j )
l )≤ log

1

|z(n j )
k − z

(n j )
l |w(z(n j )

k )w(z
(n j )
l )

if k 6= l and hence
∫

K

∫

K

hM (z, t)dµn j
(z)dµn j

(t)≤

1

n j
M + (

1

n2
j − n j

)
�

∑

k 6=l

log
1

|z(n j )
k − z

(n j )
l |w(z(n j )

k )w(z
(n j )
l )

�

.
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By assumption, given ε > 0,

(
1

n2
j − n j

)
�

∑

k 6=l

log
1

|z(n j )
k − z

(n j )
l |w(z(n j )

k )w(z
(n j )
l )

�

≤− log[δw(K)− ε]

for j ≥ j(ε); in particular, w(z
(n j )
k )> 0 for such j and hence

Iw(σ)≤ lim
M→∞

lim sup
j→∞

1

n j
M − log[δw(K)− ε] =− log[δw(K)− ε]

for all ε > 0; i.e., Iw(σ) =− logδw(K).

A weighted polynomial on K is a function of the form w(z)npn(z) where pn is a holomorphic polynomial of degree at most
n. As in the unweighted case, the weighted extremal function VK ,Q can be obtained by using only polynomials; i.e.,

VK ,Q(z) = sup{
1

deg(p)
log |p(z)| : p polynomial, ||wdeg(p)p||K ≤ 1}.

Let µ be a measure with support in K such that (K , w,µ) satisfies a Bernstein-Markov inequality for weighted polynomials: given
ε > 0, there exists a constant M = M(ε) such that for all weighted polynomials wnpn

||wnpn||K ≤ M(1+ ε)n||wnpn||L2(µ). (41)

Equivalently, for all pn ∈ Pn,
||wnpn||K ≤ Mn||wnpn||L2(µ) with limsup

n→∞
M1/n

n = 1.

In this setting, we will restrict our attention to compact sets K . We have a weighted version of Theorem 2.9.

Theorem 5.3. Let K be compact and let (K , w,µ) satisfy a Bernstein-Markov inequality for weighted polynomials. Then

lim
n→∞

Z1/n2

n = δw(K)

where, analogous to (20),
Zn = Zn(K , w,µ) :=

∫

Kn+1

|V DM(λ0, ...,λn)|2w(λ0)
2n · · ·w(λn)

2ndµ(λ0) · · · dµ(λn).

Note that the proofs of many of the results in the weighted situation are similar to their analogues in the unweighted case.
We will see that in the case of CN , N > 1, the weighted theory is essential to prove results even in the unweighted case.

As an application of weighted potential theory, we consider the theory of incomplete polynomials. For simplicity, we work
on the real interval K = [0, 1]. Given 0< θ < 1, a θ−incomplete polynomial is a polynomial of the form

pN (x) =
N
∑

k=sN

ak x k

where sN/N → θ as N →∞. Thus such a polynomial is “missing” a fraction θ of its lowest degree terms. Taking N = n
1−θ

, we

see that these incomplete polynomials are closely related to weighted polynomials w(x)npn(x) where w(x) = x
θ

1−θ . One can
prove that Sw = [θ 2, 1]. It turns out that a continuous function f on [0,1] is the uniform limit of incomplete polynomials if and
only if f vanishes on [0,θ 2] if and only if f is the uniform limit of weighted polynomials w(x)npn(x). This is a special case of
the general weighted approximation problem: given K ⊂ C closed and an admissible weight w on K , which f ∈ C(K) can be
uniformly approximated on K by a sequence of weighted polynomials {wnpn}? For details, see Chapter VI, section 1 of [26].

Exercises.

1. Following the “unweighted” proof, verify that the limit

lim
n→∞

δw
n (K) = δ

w(K)

exists for a nonpolar set K and an admissible weight function w on K . Here δw
n (K) is defined in (36).

2. Using the previous exercise, and observing that the function V DM(λ0, ...,λn)w(λ0)n · · ·w(λn)n is a weighted polynomial
of degree at most n in each variable, prove Theorem 5.3.

3. Use Proposition 5.1 to verify for K the closed unit disk {z : |z| ≤ 1} and Q(z) = |z|2, that VK ,Q = Q on the disk
{z : |z| ≤ 1/

p
2} and VK ,Q(z) = log |z|+ 1/2− log(1/

p
2) outside this disk.

4. Prove the following weighted version of Corollary 4.3: let K be a regular compact set, let w = e−Q be continuous, and
for n= 1,2, ..., define

ΦK ,Q,n(z) := sup{|p(z)| : ||wdeg p p||K ≤ 1, p ∈ Pn}.
Then

1

n
logΦK ,Q,n→ VK ,Q

locally uniformly on C.
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6 Plurisubharmonic functions in CN , N > 1 and the complex Monge-Ampère operator.
Let D be a domain in CN . A complex-valued function f : D→ C is called holomorphic and we write f ∈O(D) if f is holomorphic
in each variable z1, ..., zN separately. Apriori, if one assumes that f ∈ C1(D), holomorphicity is equivalent to f satisfying the
system of partial differential equations

∂ f

∂ z j
= 0, j = 1, ..., N (42)

where, for z j = x j + i y j ,
∂ f

∂ z j
=

1

2
(
∂ f

∂ x j
+ i
∂ f

∂ y j
).

It turns out that the hypothesis that f ∈ C1(D) is superfluous. A holomorphic mapping F : D′ → D where D′ is a domain in
Cm is a mapping F = ( f1, ..., fN ) where each fi : D′ → C is holomorphic. Our main interest is in the class of plurisubharmonic
(psh) functions: a real-valued function u : D→ [−∞,+∞) defined on a domain D ⊂ CN is plurisubharmonic in D and we write
u ∈ PSH(D) if the following two conditions are satisfied:

1. u is uppersemicontinuous on D and

2. u|D∩l is subharmonic (shm) on components of D ∩ l for each complex line (one-dimensional (complex) affine space) l.

Remark 3. It is unknown if (2) implies (1); i.e., it is unknown whether condition (1) is superfluous.
From this definition, and the properties of shm functions on domains in C, many analogous properties follow readily for

psh functions. Analogous to the univariate case, smoothing a psh function u by convolving with a radial regularizing kernel
χ(z1, ..., zN ) = χ(|z1|, ..., |zN |) gives a plurisubharmonic function (on a smaller domain), so that given u psh in a domain D,
we can find a decreasing sequence {u j} of smooth psh functions, u j = u ∗ χ1/ j defined on {z ∈ D : dist(z,∂ D) > 1/ j} with
lim j u j = u in D. This allows us, as in the subharmonic case, to verify properties for smooth psh functions and then pass to the
limit. The class of psh functions on a domain D, denoted PSH(D), forms a convex cone; i.e., if u, v ∈ PSH(D) and α,β ≥ 0,
then αu+β v ∈ PSH(D). The limit function u(z) := limn→∞ un(z) of a decreasing sequence {un} ⊂ PSH(D) is psh in D (we may
have u ≡ −∞); while for any family {vα} ⊂ PSH(D) (resp., sequence {vn} ⊂ PSH(D)) which is uniformly bounded above on
any compact subset of D, the functions

v(z) := sup
α

vα(z) and w(z) := lim sup
n→∞

vn(z)

are “nearly” psh: the usc regularizations

v∗(z) := lim sup
ζ→z

v(ζ) and w∗(z) := limsup
ζ→z

w(ζ)

are psh in D. Finally, if φ is a real-valued, convex increasing function of a real variable, and u is psh in D, then so is φ ◦ u.
Analogous to the univariate case, a set of the form

N := {z ∈ D : v(z) := sup
α

vα(z)< v∗(z)} (43)

where {vα} ⊂ PSH(D) is called a plurinegligible set; and E ⊂ CN is pluripolar if there exists u psh, u 6≡ −∞with E ⊂ {u(z) =−∞}
(we will be more precise about this notion in section 7). The proof that any polar set is negligible in section 3 using (21) carries
over to show any pluripolar set is plurinegligible; the converse is true but is a very deep result of Bedford and Taylor [4].

If u ∈ C2(D), then u is psh if and only if for each z ∈ D and vector a ∈ CN , the Laplacian of t 7→ u(z+ ta) is nonnegative at
t = 0; i.e., the complex Hessian [ ∂ 2u

∂ z j∂ zk
(z)] of u is positive semidefinite on D:

N
∑

j,k=1

∂ 2u

∂ z j∂ zk
(z)a j ak ≥ 0

Exercise 1 will verify this. In particular, the trace of the complex Hessian is nonnegative so that u is R2N−subharmonic. If the
complex Hessian is positive definite on D, we say that u is strictly psh there.

Proposition 6.1. A function u : D → [−∞,+∞) is psh if and only if for all holomorphic mappings F : D′ → D where D′ ⊂ Cm

either u ◦ F is shm in D′ (in the R2m sense) or u ◦ F ≡−∞.

Proof. If u ∈ PSH(D) ∩ C2(D), the holomorphicity of F = ( f1, ..., fN ) and the chain rule (use (42) for each f j) show that the
complex Hessian of u◦F is positive semidefinite in D′; i.e., u◦F ∈ PSH(D′) (and hence shm in D′ in the R2m sense). For arbitrary
u ∈ PSH(D), take a decreasing sequence {u j} of smooth psh functions, u j = u ∗χ1/ j defined on {z ∈ D : dist(z,∂ D)> 1/ j} with
lim j u j = u in D and apply the previous result to {u j}; then, since a decreasing sequence of psh functions is psh or identically
minus infinity, the result follows.

The converse is trivial since one can take the holomorphic maps t → a+ t b for a ∈ D, b ∈ Cn, and t ∈ C with |t| sufficiently
small.
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Indeed, it turns out that u : D → [−∞,+∞) is psh if and only if u ◦ A is R2N−subharmonic in A−1(D) for every complex
linear isomorphism A : CN → CN .

The canonical examples of psh functions are those of the form u = log | f | where f ∈ O(D). In particular, if p(z) :=
p(z1, ..., zN ) is a holomorphic polynomial of degree d ≥ 1, then

u(z) :=
1

d
log |p(z)|

is a psh function in all of CN with the property that

u(z)≤ log |z|+ 0(1) as |z| →∞.

The class
L = L(CN ) := {u psh in CN : u(z)− log |z|= 0(1), |z| →∞}

of psh functions of logarithmic growth, the multivariate analogue of (4), plays an important role in pluripotential theory.
However, unlike logarithmic potential theory in the plane, in which case subharmonic functions are those locally integrable

functions u with Laplacian ∆u ≥ 0 in the sense of distributions, the differential operator of paramount importance in CN if
N > 1 is a non-linear operator, the so-called complex Monge-Ampère operator. We proceed with an introduction to this topic.

If u ∈ C1(D), we write the 1−form

du=
N
∑

j=1

∂ u

∂ z j
dz j +

N
∑

j=1

∂ u

∂ z j
dz j =: ∂ u+ ∂ u

as the sum of a form ∂ u of bidegree (1, 0) and a form ∂ u of bidegree (0,1) where, recall,

∂ u

∂ z j
=

1

2
(
∂ u

∂ x j
− i

∂ u

∂ y j
);
∂ u

∂ z j
=

1

2
(
∂ u

∂ x j
+ i

∂ u

∂ y j
);

and we have
dz j = d x j + id y j; dz j = d x j − id y j .

For a complex-valued f ∈ C1(D), one easily checks that f is holomorphic in D if and only if ∂ f = 0 in D (see also exercise 16
at the end of this section). We also define

d cu := i(∂ u− ∂ u).

Note that if u ∈ C2(D),

dd cu= 2i∂ ∂ u= 2i
N
∑

j,k=1

∂ 2u

∂ z j∂ zk

dz j ∧ dzk

so that the coefficients of the 2−form dd cu form the N × N complex Hessian matrix

H(u) := [
∂ 2u

∂ z j∂ zk

]Nj,k=1,

of u. We saw that if u ∈ C2(D), then u ∈ PSH(D) if and only if H(u) is positive semi-definite at each point of D; i.e., dd cu is
a positive form of bidegree (1,1); more generally it turns out that if u is only usc and locally integrable on D, then u ∈ PSH(D)
if and only if dd cu is a positive current. For a brief overview of differential forms in CN and currents – differential forms with
distribution coefficients – see Appendix A. We remark that if u ∈ C2(D)∩ PSH(D), then

1. the trace of H(u) is nonnegative – this is (one-fourth) the R2N Laplacian so that a psh function u is R2N−subharmonic;
and

2. the determinant of H(u) is a nonnegative function on u.

Elementary linear algebra shows that

(dd cu)N := dd cu∧ · · · ∧ dd cu= cN det H(u)dV

where dV = ( 1
2i
)N dz1 ∧ dz1 ∧ · · · ∧ dzN ∧ dzN is the volume form on CN and cN is a dimensional constant.

For u ∈ C2(D), we thus obtain an absolutely continuous measure, (dd cu)N , the complex Monge-Ampère measure associated
to u. To elaborate in C2 with variables (z, w), for a C1 function u,

∂ u :=
∂ u

∂ z
dz +

∂ u

∂ w
dw, ∂ u :=

∂ u

∂ z
dz+

∂ u

∂ w
dw.

For a C2 function u,

dd cu= 2i
� ∂ 2u

∂ z∂ z
dz ∧ dz+

∂ 2u

∂ w∂ w
dw ∧ dw+

∂ 2u

∂ z∂ w
dz ∧ dw+

∂ 2u

∂ z∂ w
dz ∧ dw

�
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and

(dd cu)2 = 16
� ∂ 2u

∂ z∂ z

∂ 2u

∂ w∂ w
−
∂ 2u

∂ z∂ w

∂ 2u

∂ w∂ z
� i

2
dz ∧ dz ∧

i

2
dw ∧ dw

is indeed a positive constant times the determinant of the complex Hessian of u times the volume form on C2. Thus if u is also
psh, (dd cu)2 is a positive measure which is absolutely continuous with respect to Lebesgue measure. Note that for real-valued
u,

∂ 2u

∂ z∂ w
=
∂ 2u

∂ w∂ z
.

As an elementary example, take u(z, w) = |z|2 + |w|2 = zz+ww. Then

dd cu= 2idz ∧ dz+ 2idw ∧ dw

and

(dd cu)2 = 16 ·
i

2
dz ∧ dz ∧

i

2
dw ∧ dw.

Bedford and Taylor, and, independently, Sadullaev, have shown how to associate a positive measure (not necessarily absolu-
tely continuous) to any locally bounded plurisubharmonic function u in such a way that, among other things, this Monge-Ampère
measure associated to u, denoted (dd cu)N , is continuous under decreasing limits – if {u j} form a decreasing sequence of locally
bounded psh functions with u j ↓ u then

(dd cu j)
N → (dd cu)N

weakly as measures. In particular, since, as with subharmonic functions, given a general psh function u on a domain D, the
standard smoothings u j := u ∗ χ1/ j decrease to u, this gives us a way of (in principle) computing (dd cu)N . For a general
psh function, dd cu is a positive (1,1)−current; i.e., a (1, 1)−form with distribution coefficients. Hence the wedge product
dd cu∧ dd cu does not, apriori, make sense as we would be multiplying distributions or measures. Bedford and Taylor [3] gave
an inductive way to define (dd cu)k, k = 1, ..., N , for u ∈ L∞loc(D)∩ PSH(D). We give their definition of (dd cu)2 in C2 for u psh
and locally bounded in D.

We first recall that a psh function u in D is an usc function u in D which is subharmonic on components of D∩ l for complex
affine lines l. In particular, u is a locally integrable function in D such that dd cu is a positive (1,1) current. The derivatives
are to be interpreted in the distribution sense and are actually measures; i.e., they act on compactly supported continuous
functions. Here, a (1,1) current T on a domain D in C2 is positive if T applied to iβ ∧ β is a positive distribution for all (1, 0)
forms β = adz+ bdw with a, b ∈ C∞0 (D) (smooth functions having compact support in D). Writing the action of a current T on
a form ψ as < T,ψ>, this means that

< T,φ(iβ ∧ β)>≥ 0 for all φ ∈ C∞0 (D) with φ ≥ 0.

As an example, take u(z, w) = log |z|. Then the (1,1) current

T = dd cu= iπδ0(z)dz ∧ dz

is a current of integration on the complex line E = {(z, w) : z = 0}. Here we have written dd cu as a (1, 1) form where the
coefficient δ0(z) is a distribution, the point mass at z = 0 in the complex z−plane. More generally, if f is holomorphic and
u = log | f |, then, locally, dd cu is the current of integration on the complex hypersurface { f = 0}. For a discussion of currents
and the general definition of positivity, we refer the reader to Klimek [K], section 3.3.

Following [3], we now define (dd cu)2 for a psh u in D if u ∈ L∞loc(D) using the fact that dd cu is a positive (1,1) current
with measure coefficients. First note that if u were of class C2, given φ ∈ C∞0 (D), we have

∫

D

φ(dd cu)2 =−
∫

D

dφ ∧ d cu∧ dd cu (exercise 15) (44)

=

∫

D

du∧ d cφ ∧ dd cu=

∫

D

udd cφ ∧ dd cu

since all boundary integrals vanish. The applications of Stokes’ theorem are justified if u is smooth; for arbitrary u ∈ PSH(D)∩
L∞loc(D), these formal calculations serve as motivation to define (dd cu)2 as a positive measure (precisely, a positive current of
bidegree (2, 2) and hence a positive measure) via

< (dd cu)2,φ >:=

∫

D

udd cφ ∧ dd cu.

This defines (dd cu)2 as a (2, 2) current (acting on (0,0) forms; i.e., test functions) since udd cu has measure coefficients. We
refer the reader to [3] or [20] (p. 113) for the verification of the positivity of (dd cu)2.

In some sense, the complex Monge-Ampère measure associated to a locally bounded psh function is a “minimal” Laplacian.
Bellman’s principle states that if B is a positive semidefinite Hermitian N × N matrix, then

(det B)1/N =
1

N
inf

A
trace(AB)
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where the infimum is taken over all positive definite Hermitian N × N matrices A with det A = 1. Hence, given such a matrix
A= [a jk], let

∆A :=
1

N

N
∑

j,k=1

a jk

∂ 2

∂ z j∂ zk
.

Then (dd cu)N = infA[∆Au]N if u ∈ C2(D).

Exercises.

1. Verify that for u ∈ C2(D), z ∈ D, and a ∈ CN the Laplacian of t 7→ u(z + ta) (for t ∈ C with z + ta ∈ D) is equal to a
positive multiple of

N
∑

j,k=1

∂ 2u

∂ z j∂ zk
(z)a j ak.

2. Prove that if u is psh in a domain D ⊂ CN , then u is shm as a function on a domain in R2N ; i.e., u is usc in D and ∆u≥ 0
in the sense of distributions.

3. If N > 1, find a function u which is shm in CN = R2N but which is not psh in CN . Can you find such a u which is
harmonic in CN = R2N ?

4. Find a harmonic function h in R2 and a real linear isomorphism T : R2→ R2 such that h ◦ T is not subharmonic in R2.

5. Verify that if φ is a real-valued, convex increasing function of a real variable, and u ∈ C2(D) is psh in D, then φ ◦ u is
psh in D. (Note, in particular, that eu is psh in D).

6. Gluing psh functions. Let u, v be psh in open sets U , V where U ⊂ V and assume that lim supζ→z u(ζ) ≤ v(z) for
z ∈ V ∩ ∂ U . Show that the function w defined to be w =max(u, v) in U and w = v in V \ U is psh in V .

7. Let E = E1 × E2 ⊂ C×C= C2. Show that E is pluripolar in C2 if and only if at least one of E1, E2 is polar in C.

8. Is {(z1, z2) ∈ C2 : Imz1 = Imz2 = 0} pluripolar? Why or why not?

9. Is {(z1, z2) ∈ C2 : z2 = 0} pluripolar? Why or why not?

10. Extra Credit. A psh function u(z1, ..., zn) is, in particular, shm in each complex variable z j when all of the others are fixed.
Is the converse true?

11. Let D ⊂ CN = R2N be a bounded, smoothly bounded domain and let ρ be a smooth defining function for D: ρ is defined
and smooth on a neighborhood of D; D = {z : ρ(z)< 0}; and ∇ρ 6= 0 on ∂ D.

(a) Show that ∇ρ 6= 0 on ∂ D is equivalent to dρ 6= 0 on ∂ D and the tangent space Tp(∂ D) at any point p ∈ ∂ D is
given by {v ∈ CN : dρ(v) = 0}.

(b) Show that the coefficient functions of d cρ at p ∈ ∂ D define a tangent vector to ∂ D at p.
(c) As an example, take ρ(z) = |z1|2 + · · ·+ |zN |2 − 1. Then D is the unit ball. Compute Tp(∂ D) for p = (1,0, ..., 0)

and the coefficient functions of d cρ at this point.

12. An illustrative example. In C2, let u(z, w) = 1
2

log(|z|2 + |w|2). This psh function is smooth away from (0, 0). Prove that

(dd cu)2 = 0 on C2 \ {0}.

(Note u is not locally bounded near (0,0) but it turns out that one can define (dd c v)2 for psh v with compact singularities
and here (dd cu)2 = (2π)2δ(0,0).)

13. In C2, let v(z, w) = 1
2

log(|z|2 + |w|4). This psh function is smooth away from (0, 0). Prove that (dd c v)2 = 0 on C2 \ {0}.
(Here, it turns out that (dd c v)2 = 2(2π)2δ(0,0).)

14. In C2, let u(z, w) = |z|2 + |w|2. Compute (dd cu)2.

15. In (44), verify the equality

−
∫

D

dφ ∧ d cu∧ dd cu=

∫

D

du∧ d cφ ∧ dd cu.

16. For a complex-valued f ∈ C1(D), write f = u+ iv where u, v are real-valued. Show that f is holomorphic in D if and
only if d cu= dv in D.

Dolomites Research Notes on Approximation ISSN 2035-6803



Levenberg 30

7 Upper envelopes, extremal plurisubharmonic functions and applications.
There is a special subclass of psh functions which play the role of harmonic functions in classical potential theory, the so-called
maximal psh functions. We call u ∈ PSH(D) maximal if, for any relative compact subdomain D′ and any v ∈ PSH(D′) which
is usc on D

′
, if u ≥ v on ∂ D′, then u ≥ v in D′. If u is harmonic (in the R2N sense; i.e., ∆u ≥ 0), and u is psh, then u is

clearly maximal. In this case, (exercise 2) u is pluriharmonic; i.e., dd cu = 0 in D, which is equivalent to u|D∩l is harmonic on
components of D∩ l for each complex line l. Pluriharmonic functions are very special; locally, such a function is the real part of a
holomorphic function. The converse statement, that the real and imaginary parts of a holomorphic function are pluriharmonic,
follows from exercise 16 of section 6.

However, maximal psh functions need not even be continuous; indeed, if u is a psh function depending on fewer than N of
the variables z1, ..., zN , then u is maximal (why?). In the case where u ∈ L∞loc(D)∩ PSH(D), it is known that u is maximal in D
if and only if (dd cu)N = 0 in D. Thus solutions of a Dirichlet problem for the complex Monge-Ampère operator are maximal. We
can easily verify the maximality criterion for smooth psh functions.

Proposition 7.1. Let u ∈ C2(D) be psh. If u is maximal in D then det H(u)≡ 0 in D; i.e., (dd cu)N = 0 in D.

Proof. Suppose u is maximal in D but det H(u) 6≡ 0 in D. We can find a point z0 ∈ D such that for each a ∈ CN \ {0}

N
∑

j,k=1

∂ 2u

∂ z j∂ zk
(z0)a j ak > 0.

This strict inequality persists for all z ∈ B(z0, r) for small r > 0 (why?). By compactness of B(z0, r) we can find c > 0 with

N
∑

j,k=1

∂ 2u

∂ z j∂ zk
(z)a j ak ≥ c

n
∑

j=1

|a j |2 (45)

for z ∈ B(z0, r) and for each a ∈ CN \ {0}. From (45), the function v(z) defined to be v(z) = u(z) on D \ B(z0, r) and
v(z) = u(z) + c(r2 − |z − z0|2) on B(z0, r) is psh in D. Moreover, v agrees with u on ∂ B(z0, r); and we have v(z0) > u(z0),
contradicting maximality of u.

The converse is also true. Note this generalizes the univariate situation where det H(u)≡ 0 simply says that ∆u= 0.
We now outline the procedure of solving the Dirichlet problem for the complex Monge-Ampère operator in the unit ball B

in CN . Let f be a continuous, real-valued function on ∂ B. We seek a psh function u in B, u ∈ C(B), with u = f on ∂ B and
(dd cu)N = 0 in B. Bedford and Taylor proved existence and uniqueness of the solution u (in the slightly more general setting
where B is a so-called strictly pseudoconvex domain). We caution the reader that no matter how smooth f is, the solution u is
generally not in C2(B) (although u ∈ C1,1(B) if f ∈ C2(∂ B); see (4) below). To construct u, one forms the Perron-Bremmermann
envelope

U(0; f )(z) := u(z)

:= sup{v(z) : v ∈ PSH(B) : limsup
z→ζ

v(z)≤ f (ζ) for all ζ ∈ ∂ B}.

The proof that u works consists of the following steps:

1. u ∈ C(B) and u= f on ∂ B:
Proof of (1): We first show u= u∗ in B. Take h harmonic (in the R2N−sense) in B with h= f on ∂ B; clearly u≤ h in B
since each competitor v is shm and satisfies v ≤ h. It is classical that h is continuous on B hence u∗ ≤ h in B so that, in
particular, since u∗ is psh and satisfies limsupz→ζ u∗(z)≤ f (ζ) for all ζ ∈ ∂ B, u∗ ≤ u in B and equality holds.

Now we show u∗ = f on ∂ B. Fix z0 ∈ ∂ B and ε > 0 and define, where < z, z′ >:=
∑

j=1N z jz
′
j ,

v(z) := c
�

Re< z, z0 >−1
�

+ f (z0)− ε ∈ C(B)

where c > 0 is chosen to insure v ≤ f on ∂ B. Note that v is a competitor for u and, by construction, v(z0) = f (z0)− ε;
thus

lim inf
z→z0

u(z)≥ f (z0),

yielding the result. Here, the function b(z) := Re < z, z0 > −1 is a psh barrier for ∂ B at z0: b ∈ PSH(B) ∩ C(B) with
b(z0) = 0> b(z) for z ∈ B.

2. u is maximal in B;
Proof of (2): If G ⊂⊂ B, v is usc on G, psh on G and v ≤ u on ∂ G, then by the gluing lemma for psh functions, the
function V defined as V = max(u, v) in G and V = u in B \ G is psh and is a competitor for u; thus, in particular, v ≤ u
in G.

3. u ∈ C(B);
This is a theorem of J. B. Walsh (cf., Theorem 3.1.4 [20]); it uses the notion of psh barriers but is fairly straighforward;
we omit the proof.
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4. If f ∈ C2(∂ B), then u ∈ C1,1(B):
This is very clever; it uses automorphisms of B to show, e.g., that given ε > 0, there exists C > 0 such u satisfies an
estimate of the form

u(z+ h)− 2u(z) + u(z− h)≤ C |h|2

for |z| ≤ 1− ε and |h| ≤ ε/2.

5. (dd cu)N = 0 on B:
This is first proved under the assumption that u ∈ C1,1(B) which follows if f ∈ C1,1(∂ B). The general case follows by
approximating f ∈ C(∂ B) by a decreasing sequence f j ∈ C2(∂ B), giving rise to a corresponding sequence {u j} which
decrease and converge uniformly to u; since (dd cu j)N = 0 and the complex Monge-Ampère operator is continuous under
decreasing limits, we have (dd cu)N = 0.

A nice exposition of the details of steps (3)-(5) can be found in chapter 4 of [20]. We remark that it is already easy to see
from (1)-(3) that a general maximal psh function is locally a decreasing limit of continuous maximal functions:

Proposition 7.2. Let u be psh and maximal in a domain D ⊂ CN . For any ball B with B ⊂ D, there exist {u j} continuous in B and
psh and maximal in B with u j ↓ u in B.

Proof. By smoothing, we can find {v j} psh and smooth in a neighborhood G of B with G ⊂ D and v j ↓ u in G. Now define u j on
G by u j = U(0; v j |∂ B) in B and u j = v j in G \ B.

Here is an interesting example, due to Gamelin, of f ∈ C∞(∂ B) – indeed, here we will have f ∈ Cω(∂ B)! – with u 6∈ C2(B).
Take, for N = 2,

f (z, w) = (|z|2 − 1/2)2 = (|w|2 − 1/2)2.

Then
u(z, w) =

�

max[0, |z|2 − 1/2, |w|2 − 1/2]
�2

satisfies (dd cu)2 = 0 in B and u= f on ∂ B, but u 6∈ C2(B).
Returning to our discussion of maximal psh functions, for a function u ∈ PSH(D)∩C2(D), it is easy to see why (dd cu)N = 0

implies that u is maximal: at each point z0 ∈ D, H(u) has a zero eigenvalue; assuming, as we do for simplicity, that (dd cu)N−1 6=
0, we can find an analytic disk through z0 on which u is harmonic. That is, there exists a holomorphic mapping f from the unit
disk in C into D with u(0) = z0 such that u◦ f is harmonic on D. Any psh function v is subharmonic on this disk; if u dominates
v on the boundary of the disk, then u dominates v in the disk. Moreover, we have the following elementary result, generalizing
Proposition 1.5 (the comparison principle): Let u, v ∈ PSH(D)∩ C2(D); suppose u|∂ D = v|∂ D and u≥ v in D. Then

∫

D

(dd cu)N ≤
∫

D

(dd c v)N . (46)

We verify this for N = 2. We have
∫

D

[(dd c v)2 − (dd cu)2] =

∫

D

(dd c v− dd cu)∧ (dd c v+ dd cu)

=

∫

∂ D

d c(v− u)∧ (dd c v + dd cu).

This last integral is nonnegative because dd c v+dd cu is a positive (1, 1)−form and v−u= aρ where ρ is a defining function for D
(see exercise 11 from section 6) and a ≥ 0. Hence, on ∂ D, d c(v−u) = ad cρ and one can show that ad cρ∧(dd c v+dd cu) = f dσ
where dσ is surface area on ∂ G and f ≥ 0. Equation (46) shows why maximal psh functions have “minimal” Monge-Ampère
mass.

Given these results on the Dirichlet problem and maximal psh functions, many important notions and results in pluripoten-
tial theory can be proved in ways analogous to those in classical logarithmic potential theory. We now describe some extremal
psh functions modeled on their one-variable counterparts.

Recall the class of plurisubharmonic functions u in CN of logarithmic growth, i.e., such that u(z) ≤ log |z|+ C , |z| → ∞
where C = C(u), is called the class L = L(CN ). The functions 1

deg p
log |p(z)| for a polynomial p clearly belong to L. For any

Borel set E, set
VE(z) := sup{u(z) : u ∈ L, u≤ 0 on E} (47)

and we call V ∗E (z) the L-extremal function of E. We generally restrict our attention to compact sets K ⊂ CN . The function VK
is lower semicontinuous, but it need not be upper semicontinuous. The proof of Proposition 3.2 carries over to show that the
upper semicontinuous regularization

V ∗K (z) = lim sup
ζ→z

VK(ζ)

of VK is either identically +∞ or else V ∗K is plurisubharmonic. The first case occurs if the set K is too “small”; precisely if K is
pluripolar. In the second case, as in the univariate situation, we have V ∗K ∈ L+(CN ) where

L+(CN ) := {u ∈ L(CN ) : u(z)≥ log+ |z|+ C}
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where C = C(u). We say that K is L-regular if VK = V ∗K , that is, if VK is continuous. For example, if CN \K is regular with respect
to R2N -potential theory, then K is L-regular.

A simple example is a closed Euclidean ball K = {z ∈ CN : |z − a| ≤ R}; in this case, VK(z) = V ∗K (z) =max[0, log |z − a|/R].
Let’s verify this for a = 0 and R = 1; i.e., for the closed unit ball K = {z ∈ CN : |z| ≤ 1}, we show VK(z) = V ∗K (z) = log+ |z|.
Clearly VK(z) ≥ log+ |z| since log+ |z| ∈ L and is 0 on K . For the reverse inequality, take any u ∈ L with u ≤ 0 on K . For w ∈ CN

with |w|> 1, the univariate function

v(ζ) := u(w/ζ)− log+
|w|
|ζ|

is shm on the punctured disk {ζ ∈ C : 0 < |ζ| < |w|}. Since u ∈ L, v is bounded above as |ζ| → 0. Thus by Proposition 3.3, v
extends to a shm function ṽ on the disk D := {ζ ∈ C : |ζ|< |w|}. Since v = ṽ ≤ 0 on ∂ D, by the maximum principle (Proposition
1.1), v = ṽ ≤ 0 on D. In particular, v(1) = ṽ(1) = u(w)− log+ |w| ≤ 0, finishing the proof.

For a product set K = K1 × · · · × KN of planar compact sets K j ⊂ C, VK(z1, . . . , zN ) = max j=1,...,N VK j
(z j). In particular, for a

polydisk
P := {(z1, . . . , zN ) : |z j − a j | ≤ r j , j = 1, . . . , N},

VK(z1, . . . , zN ) =max j=1,...,N[0, log |z j − a j |/r j]. Any compact set K can be approximated from above by the decreasing sequence
of L-regular sets Kn := {z : dist(z, K)≤ 1/n}. The fact that each Kn is L−regular can be seen as in section 4 by utilizing the fact
observed above that a closed Euclidean ball has this property.

As a generalization of the one-variable Green function gK , we may define

ṼK(z) :=max

¨

0, sup
p

�

1

deg p
log |p(z)|

�

«

(48)

where the supremum is taken over all non-constant polynomials p with ||p||K ≤ 1. We define the polynomial hull of K as

bK ≡ {z ∈ CN : |p(z)| ≤ ||p||K , p polynomial}.

Clearly ṼK = Ṽ
bK and if K = bK we say K is polynomially convex. It turns out bK can just as well be constructed as a “hull” with

respect to continuous psh functions; i.e., for D a neighborhood of bK (e.g., a sufficiently large ball or all of CN ,

bK = bKPSH(D) := {z : u(z)≤ sup
ζ∈K

u(ζ) for all u ∈ PSH(D)∩ C(D)}.

It is known that for compact sets K , the upper envelope

VK(z) := sup{u(z) : u ∈ L, u≤ 0 on K}

as defined in (47) coincides with that in (48). We sketch a proof of this. An important feature of the proof is the correspondence
between psh functions in L(CN ) and “homogeneous” psh functions in CN+1. We remind the reader of the standard correspon-
dence between polynomials pd of degree d in N variables and homogeneous polynomials Hd of degree d in N + 1 variables
via

pd(z1, . . . , zN ) 7→ Hd(w0, . . . , wN ) := wd
0 pd(w1/w0, . . . , wN/w0).

Clearly ṼK(z) ≤ VK(z) and to prove the reverse inequality, by approximating K from above we may assume K is L-regular.
We consider h(z, w) defined for (z, w) ∈ CN+1 = CN ×C as follows:

h(z, w) := |w|exp VK(z/w) if w 6= 0;

h(z, w) := limsup
(z′ ,w′)→(z,0)

h(z′, w′) if w = 0.

This is a nonnegative homogeneous psh function in CN+1; i.e., we have h(tz, tw) = |t|h(z, w) for t ∈ C. We say that the function
log h is logarithmically homogeneous: log h(tz, tw) = log |t|+ log h(z, w). Fix a point (z0, w0) 6= (0,0) with z0/w0 6∈ K and fix
0 < ε < 1. Using the fact that the polynomial hull coincides with the hull with respect to continuous psh functions, it follows
that the compact set

E := {(z, w) ∈ CN+1 : h(z, w)≤ (1− ε)h(z0, w0)}

is polynomially convex. Moreover, E is circled: (z, w) ∈ E implies (ei tz, ei t w) ∈ E for all real t.

Claim. Given a compact, circled set E ⊂ CN and a polynomial pd = hd + hd−1 + · · · + h0 of degree d written as a sum of
homogeneous polynomials, we have ||h j ||E ≤ ||pd ||E , j = 0, . . . , d.

From the Claim, whose proof is left as exercise 8, the polynomial hull of our circled set E is the same as the hull obtained
using only homogeneous polynomials. Since E = bE and (z0, w0) 6∈ E, we can find a homogeneous polynomial hs of degree s with
|hs(z0, w0)|> ||hs||E . Define

ps(z, w) :=
hs(z, w)
||hs||E

· [(1− ε)h(z0, w0)]
s.

Then |ps(z, w)|1/s ≤ |h(z, w)| for (z, w) ∈ ∂ E and by homogeneity of |ps|1/s and h we have |ps|1/s ≤ h in all of CN+1. At (z0, w0),
we have

|ps(z0, w0)|1/s > (1− ε)h(z0, w0);
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since ε > 0 was arbitrary, as was the point (z0, w0) (provided z0/w0 6∈ K), we get that

h(z, w) = sup
s
{|ps(z, w)|1/s : ps homogeneous of degree s, |ps|1/s ≤ |h|}.

At w = 1, we obtain
exp VK(z) = h(z, 1)

= sup
s
{|Qs(z)|1/s : Qs of degree s, |Qs|1/s ≤ exp VK}

which proves the result (note VK ≤ 0 on K).
From now on, we write VK for the (unregularized) L−extremal function of a compact set K and we verify that:

Claim: If K is a nonpluripolar compact set, then V ∗K is maximal in CN \ K; i.e., (dd c V ∗K )
N = 0 in CN \ K . Hence

µK :=
1

(2π)N
(dd c V ∗K )

N (49)

is a positive measure on K (indeed, µK ∈M(K)) and is called the extremal measure for K .

To prove the Claim, we begin with
VK(z) = sup{u(z) : u ∈ L : u≤ 0 on K}.

From the the existence on a ball B of a psh function u ∈ C(B) with u = f on ∂ B and (dd cu)N = 0 in B together with exercise 6
in section 6 (the gluing lemma for psh functions), we see that the class of u ∈ L with u≤ 0 on K is a Perron-Bremermann family
(see step (2) below). Thus:

1. From Choquet’s lemma, we can recover VK as an upper envelope of a countable family {un}; by replacing un by vn :=
max[u1, ..., un] we have VK as an increasing sequence of psh functions {vn}.

2. Fix a ball B ⊂ CN \K and replace each vn by its Perron-Bremermann modification ṽn on B; i.e., ṽn = vn on CN \B and on
B, ṽn is maximal with boundary values vn. Then, on B, VK is the monotone, increasing limit of maximal psh functions;
i.e., we have (dd c ṽn)N = 0 on B.

3. By continuity of the complex Monge-Ampère operator under increasing limits for locally bounded psh functions (cf.,
[4]), (dd c V ∗K )

N = 0 in B.

The precise definition of pluripolar is a local one: E is pluripolar if for each z ∈ E there exists a neighborhood U of z and
a psh function u in U with E ∩ U ⊂ {z ∈ U : u(z) = −∞}. For example, any analytic subvariety V of CN is pluripolar as locally
V = { f1 = · · · = fm = 0} for holomorphic f j; whence u = log [| f1|2 + · · ·+ | fm|2] works. The first problem of Lelong was to
determine whether (locally) pluripolar sets, as defined above, were globally pluripolar; i.e., if E is pluripolar, can one find u psh
on a neighborhood of E with E ⊂ {u=−∞}? Indeed, one can; u can be taken to be psh on all of CN ; and we can even find such
a u ∈ L. We remark that:

1. Nonpluripolar sets can be small: Take a nonpolar Cantor set E ⊂ R ⊂ C of Hausdorff dimension 0 (see [25] for a
construction). Then E × · · · × E is nonpluripolar in CN (in general, E1 × · · · × E j ⊂ Cm1 × · · · ×Cm j is nonpluripolar in
Cm1+···+m j if and only if Ek ⊂ Cmk is nonpluripolar for k = 1, ..., j) and has Hausdorff dimension 0.

2. Pluripolar sets can be big: A complex hypersurface S = {z : f (z) = 0} for a holomorphic function f is a pluripolar set
(take u = log | f |) which has Hausdorff dimension 2N − 2. Recall that a psh function is, in particular, subharmonic (in
the R2N sense); hence a pluripolar set is Newtonian polar. For such sets is known that the Hausdorff dimension cannot
exceed 2N − 2.

3. Size doesn’t matter: In C2, the totally real plane R2 = {(z1, z2) : Imz1 = Imz2 = 0} is nonpluripolar (why?) but the
complex plane C = {(z1, 0) : z1 ∈ C} is pluripolar (take u = log |z1|). Also, there exist C∞ arcs in CN which are not
pluripolar; while such a real-analytic arc must be pluripolar (why?).

One can easily construct examples of nonpluripolar sets E ⊂ CN which intersect every affine complex line in finitely many
points (hence these intersections are polar in these lines). Indeed, take

E := {(z1, z2) ∈ C2 : Im(z1 + z2
2) = Re(z1 + z2 + z2

2) = 0}.

Then for any complex line L := {(z1, z2) : a1z1 + a2z2 = b}, a1, a2, b ∈ C, E ∩ L is the intersection of two real quadrics and
hence consists of at most four points. However, E is a totally real, two-(real)-dimensional submanifold of C2 and hence – as
is the case with R2 = R2 + i0 ⊂ C2 in 3. – is not pluripolar. Thus pluripolarity cannot be detected by “slicing” with complex
lines. In this example, E intersects the one-(complex)-dimensional analytic variety A := {(z1, z2) : z1+ z2

2 = 0} in a nonpolar set.
Nevertheless, one can construct a nonpluripolar set E in CN , N > 1, which intersects every one-dimensional complex analytic
subvariety in a polar set [19].

The second problem of Lelong was to decide whether plurinegligible sets (recall (43)) were pluripolar: The positive solution
of these problems comes fairly quickly utilizing results of Bedford and Taylor on the relative capacity C(E, D) of a subset E of a
bounded domain D in CN . Define, for E a Borel subset of D,

C(E, D) := sup{
∫

E

(dd cu)N : u psh in D, 0≤ u≤ 1 in D}.
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For E a subset of D, define
ω(z, E, D) := sup{u(z) : u psh in D, u≤ 0 in D, u|E ≤−1}.

The usc regularization ω∗(z, E, D) is called the relative extremal function of E relative to D (recall exercise 6 of section 3 for the
univariate version of this). Indeed, if D is, e.g., a ball, and K ⊂ D is compact, it turns out that

C(K , D) =

∫

K

(dd cω∗(z, K , D))N =

∫

D

(dd cω∗(z, K , D))N . (50)

As an example, take K = {z ∈ CN : |z| ≤ r} and D = {z ∈ CN : |z|< R} with R> r. One can check that

ω(z, K , D) =
log+ |z|

r
− log R

r

log R
r

=
1

log(R/r)
[log+

|z|
r
− log

R

r
].

Thus

(dd cω(z, K , D))N =
1

(log(R/r))N
· (dd c log+

|z|
r
)N .

The function log+ |z|
r

we recognize as the L−extremal function VK of K . Recalling from (49) that µK := 1
(2π)N

(dd c V ∗K )
N is a

probability measure, using (50) we see that

C(K , D) = (
2π

log(R/r)
)N .

Proposition 7.3. Either ω∗(z) = ω∗(z, E, D) ≡ 0 in D or else ω∗ is a nonconstant psh function in D satisfying (dd cω∗)N = 0 in
D \ E. We have ω∗ ≡ 0 if and only if E is pluripolar.

Proof. If ω∗(z0) = 0 at some point z0 ∈ D, then ω∗ ≡ 0 in D by the maximum principle for shm functions on domains in R2N .
Hence ω(z, E, D) = 0 a.e. in D. Fix a point z′ with ω(z′, E, D) = 0 and take a sequence of psh functions u j in D with u j ≤ 0 in D,
u j |E ≤−1, and u j(z′)≥−1/2 j . Then u(z) :=

∑

u j(z) is psh in D (the partial sums form a decreasing sequence of psh functions)
with u(z′)≥−1 (so u 6≡ −∞) and u|E =−∞; thus E is pluripolar.

Conversely, if E is pluripolar, there exists u psh in D with u|E = −∞; since D is bounded we may assume u ≤ 0 in D. Then
εu ≤ ω(z, E, D) in D for all ε > 0 which implies that ω(z, E, D) = 0 for z ∈ D where u(z) 6= −∞. Since pluripolar sets have
measure zero (why?), ω(z, E, D) = 0 a.e. in D and hence ω∗(z, E, D)≡ 0 in D.

The proof that (dd cω∗)N = 0 in D \ E in case E is nonpluripolar goes along the same lines as the proof for VK in the
Claim.

Using this result, one can show (exercise 9) that locally bounded psh functions put no mass on pluripolar sets.

Corollary 7.4. If u is psh and locally bounded in D and E ⊂ D is pluripolar, then
∫

E

(dd cu)N = 0.

In particular, if u ∈ L+(CN ), then (dd cu)N puts no mass on pluripolar sets.

This second statement can be thought of as a (very weak) multivariate version of Propsition 2.4.

Exercises.

1. Let u ∈ C2(D) where D is a domain in CN . Prove that u is pluriharmonic in D if and only if dd cu= 0 in D.

2. Let u ∈ C∞(D) where D is a domain in CN . Prove that if u is psh in D and harmonic considered as a function in D ⊂ R2N ,
then u is pluriharmonic in D.

3. Let u(z) be shm in a domain D ⊂ C. Show that U(z, w) := u(z) is a maximal psh function in D×C⊂ C2.

4. Let D ⊂ RN be a domain. Show that u : D → R is convex if and only if U(z1, ..., zN ) := u(Rez1, ..., RezN ) : D + iRN ⊂
CN → R is psh.

5. Let L : (C \ {0})× (C \ {0})→ R2 be defined as

L(z1, z2) = (log |z1|, log |z2|).

Suppose f : D ⊂ R2→ R is of class C2 on D and let u := f ◦ L.

(a) Show that u is psh (where defined) if f is convex.
(b) Find a formula for (dd cu)2 in terms of the real Hessian of f .

6. Verify that for the set
E := {(z1, z2) ∈ C2 : Im(z1 + z2

2) = Re(z1 + z2 + z2
2) = 0}

any complex line L := {(z1, z2) : a1z1 + a2z2 = b}, a1, a2, b ∈ C intersects E in at most four points.
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7. Let D ⊂ C be a domain and let f : D→ C be holomorphic. Show that

G( f ) := {(z, f (z)) : z ∈ D}

is pluripolar. (A deep result of Shcherbina states that for continuous f on D, f is holomorphic if and only if G( f ) is
pluripolar).

8. Prove the claim that for a compact, circled set E ⊂ CN and a polynomial pd = hd + hd−1 + · · ·+ h0 of degree d written
as a sum of homogeneous polynomials, ||h j ||E ≤ ||pd ||E , j = 0, . . . , d. (Hint: Fix a point b ∈ E at which |h j(b)| = ||h j ||E
and use Cauchy’s estimates on λ 7→ pd(λb) =

∑d
j=0 λ

jh j(b)).

9. Use Proposition 7.3 and (50) to prove Corollary 7.4.
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8 Transfinite diameter and polynomial interpolation in CN .
We have seen that, as in C, for a compact set K ⊂ CN , either V ∗K ≡ +∞, in which case K is pluripolar, or else V ∗K ∈ L+(CN ).
In the latter case, the measure µK =

1
(2π)N

(dd c V ∗K )
N plays the role of the equilibrium measure. However, since the complex

Monge-Ampère operator is nonlinear, there is no natural notion of energy of measures which µK minimizes. Nevertheless, there
is an analogue of the notion of transfinite diameter, and this turns out to be a nonnegative set function on compact sets which
is zero precisely on the pluripolar sets. We highlight the main points of the fundamental work of Zaharjuta [28]. We begin by
considering a function Y from the set of multiindices α ∈ NN to the nonnegative real numbers satisfying:

Y (α+ β)≤ Y (α) · Y (β) for all α, β ∈ NN . (51)

We call a function Y satisfying (51) submultiplicative; we have two main examples below. Let e1(z), ..., e j(z), ... be a listing
of the monomials {ei(z) = zα(i) = zα1

1 · · · z
αN
N } in CN indexed using a lexicographic ordering on the multiindices α = α(i) =

(α1, ...,αN ) ∈ NN , but with degei = |α(i)| nondecreasing. We write |α| :=
∑N

j=1 α j .
We define the following integers:

1. m(N)d = md := the number of monomials ei(z) of degree at most d in N variables;

2. h(N)d = hd := the number of monomials ei(z) of degree exactly d in N variables;

3. l(N)d = ld := the sum of the degrees of the md monomials ei(z) of degree at most d in N variables.

We have the following relations:

m(N)d =
�

N + d

d

�

; h(N)d = m(N)d −m(N)d−1 =
�

N − 1+ d

d

�

(52)

and

h(N+1)
d =

�

N + d

d

�

= m(N)d ; l(N)d = N
�

N + d

N + 1

�

= (
N

N + 1
) · dm(N)d . (53)

The elementary fact that the dimension of the space of homogeneous polynomials of degree d in N + 1 variables equals the
dimension of the space of polynomials of degree at most d in N variables will be useful. Finally, we let

r(N)d = rd := dh(N)d = d(m(N)d −m(N)d−1)

which is the sum of the degrees of the hd monomials ei(z) of degree exactly d in N variables. We observe that

l(N)d =
d
∑

k=1

r(N)k =
N
∑

k=1

kh(N)k . (54)

Let K ⊂ CN be compact. Here are two natural constructions of families of Chebyshev-type constants associated to K:

1. Chebyshev constants: Define the class of polynomials

Pi = P(α(i)) := {ei(z) +
∑

j<i

c j e j(z)};

and the Chebyshev constants
Y1(α) := inf{||p||K : p ∈ Pi}.

We write tα,K := tα(i),K for a Chebyshev polynomial; i.e., tα,K ∈ P(α(i)) and ||tα,K ||K = Y1(α).
2. Homogeneous Chebyshev constants: Define the class of homogeneous polynomials

P(H)i = P(H)(α(i)) := {ei(z) +
∑

j<i, deg(e j )=deg(ei )

c j e j(z)};

and the homogeneous Chebyshev constants

Y2(α) := inf{||p||K : p ∈ P(H)i }.

We write t(H)α,K := t(H)
α(i),K for a homogeneous Chebyshev polynomial; i.e., t(H)α,K ∈ P(H)(α(i)) and ||t(H)α,K ||K = Y2(α).

Let Σ denote the standard (N − 1)−simplex in RN ; i.e.,

Σ = {θ = (θ1, ...,θN ) ∈ RN :
N
∑

j=1

θ j = 1, θ j ≥ 0, j = 1, ..., N},

and let
Σ0 := {θ ∈ Σ : θ j > 0, j = 1, ..., N}.

Given a submultiplicative function Y (α), define, as with the above examples, a new function

τ(α) := Y (α)1/|α|. (55)

An examination of lemmas 1, 2, 3, 5, and 6 in the fundamental paper by Zaharjuta [28] shows that (51) is the only property of
the numbers Y (α) needed to establish those lemmas. To summarize, we have the following results for Y : NN → R+ satisfying
(51) and the associated function τ(α) in (55).
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Lemma 8.1. For all θ ∈ Σ0, the limit
T (Y,θ) := lim

α/|α|→θ
Y (α)1/|α| = lim

α/|α|→θ
τ(α)

exists.

We call T (Y,θ) a directional Chebyshev constant in the direction θ .

Lemma 8.2. The function θ → T (Y,θ) is log-convex on Σ0 (and hence continuous).

Lemma 8.3. Given b ∈ ∂Σ,
lim inf
θ→b, θ∈Σ0

T (Y,θ) = lim inf
i→∞, α(i)/|α(i)|→b

τ(α(i)).

Lemma 8.4. Let θ(k) := α(k)/|α(k)| for k = 1,2, ... and let Q be a compact subset of Σ0. Then

lim sup
|α|→∞

{logτ(α(k))− log T (Y (θ(k))) : |α(k)|= α, θ(k) ∈Q}= 0.

Lemma 8.5. Define

τ(Y ) := exp
� 1

meas(Σ)

∫

Σ

log T (Y,θ)dθ
�

Then

lim
d→∞

1

hd

∑

|α|=d

logτ(α) = logτ(Y );

i.e., using (55),
lim
d→∞

�

∏

|α|=d

Y (α)
�1/dhd = τ(Y ).

One can incorporate all of the Y (α)′s for |α| ≤ d; this is the content of the next result.

Theorem 8.6. We have
lim
d→∞

�

∏

|α|≤d

Y (α)
�1/ld exists and equals τ(Y ).

Proof. Define the geometric means
τ0

d :=
�

∏

|α|=d

τ(α)
�1/hd , d = 1, 2, ...

The sequence
logτ0

1, logτ0
1, ...(r1 times), ..., logτ0

d , logτ0
d , ...(rd times), ...

converges to logτ(Y ) by the previous lemma; hence the arithmetic mean of the first ld =
∑d

k=1 rk terms (see (54)) converges to
logτ(Y ) as well. Exponentiating this arithmetic mean gives

�

d
∏

k=1

(τ0
k)

rk
�1/ld =

�

d
∏

k=1

∏

|α|=k

τ(α)k
�1/ld =

�

∏

|α|≤d

Y (α)
�1/ld (56)

and the result follows.

Returning to our examples (1) and (2), example (1) was the original setting of Zaharjuta [28] which he utilized to prove
the existence of the limit in the definition of the transfinite diameter of a compact set K ⊂ CN . For ζ1, ...,ζn ∈ CN , let

V DM(ζ1, ...,ζn) = det[ei(ζ j)]i, j=1,...,n (57)

= det









e1(ζ1) e1(ζ2) . . . e1(ζn)
...

...
. . .

...
en(ζ1) en(ζ2) . . . en(ζn)









be a generalized Vandermonde determinant, in analogy with the univariate case, and for a compact subset K ⊂ CN let

Vn = Vn(K) := max
ζ1 ,...,ζn∈K

|V DM(ζ1, ...,ζn)|.

Then
δ(K) = lim

d→∞
V 1/ld

md
(58)

is the transfinite diameter of K; Zaharjuta [28] showed that the limit exists by showing that one has

δ(K) = exp
� 1

meas(Σ)

∫

Σ0

logτ(K ,θ)dθ
�

(59)
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where τ(K ,θ) = T (Y1,θ) from (1); i.e., the right-hand-side of (59) is τ(Y1). This follows from Theorem 8.6 for Y = Y1 and the
estimate

�

d
∏

k=1

(τ0
k)

rk
�1/ld ≤ V 1/ld

md
≤ (md !)1/ld

�

d
∏

k=1

(τ0
k)

rk
�1/ld

in [28] (compare the estimate (56)). A set of points z1, ..., zmd
∈ K with

Vmd
= Vmd

(K) = |V DM(z1, ..., zmd
)|

is called a set of Fekete points of order d for K .
For a compact circled set K ⊂ CN ; i.e., z ∈ K if and only if eiφz ∈ K , φ ∈ [0, 2π], one need only consider homogeneous

polynomials in the definition of the directional Chebyshev constants τ(K ,θ). In other words, in the notation of (1) and (2),
Y1(α) = Y2(α) for all α so that

T (Y1,θ) = T (Y2,θ) for circled sets K .

This is because for such a set, if we write a polynomial p of degree d as p =
∑d

j=0 H j where H j is a homogeneous polynomial
of degree j, then, from the Cauchy integral formula, ||H j ||K ≤ ||p||K , j = 0, ..., d (see the Claim and exercise 8 in the previous
section). Moreover, a slight modification of Zaharjuta’s arguments proves the existence of the limit of appropriate roots of
maximal homogeneous Vandermonde determinants; i.e., the homogeneous transfinite diameter d(H)(K) of a compact set. From
the above remarks, it follows that

for circled sets K , δ(K) = d(H)(K). (60)

We will use this in the next section. Since we will be using the homogeneous transfinite diameter, we amplify the discus-
sion. We relabel the standard basis monomials {e(H,d)

i (z) = zα(i) = zα1
1 · · · z

αN
N } where |α(i)| = d, i = 1, ..., hd , we define the

d−homogeneous Vandermonde determinant

V DMHd((ζ1, ...,ζhd
) := det

�

e(H,d)
i (ζ j)

�

i, j=1,...,hd
. (61)

Then
d(H)(K) = lim

d→∞

�

max
ζ1 ,...,ζhd

∈K
|V DMHd(ζ1, ...,ζhd

)|
�1/dhd (62)

is the homogeneous transfinite diameter of K; the limit exists and equals

exp
� 1

meas(Σ)

∫

Σ0

log T (Y2,θ)dθ
�

where T (Y2,θ) comes from (2).
A useful fact is that

δ(K) = δ(bK) and d(H)(K) = d(H)(bK) (63)

for K compact where
bK := {z ∈ CN : |p(z)| ≤ ||p||K , all polynomials p}

is the polynomial hull of K .
Clearly if a compact set K is contained in an algebraic subvariety of CN then δ(K) = 0 (why?). It turns out that for K ⊂ CN

compact, δ(K) = 0 if and only if K is pluripolar [23]. If the compact set K ⊂ CN is L-regular, then for each R> 1 we define

DR ≡ {z : VK(z)< log R}; (64)

then we clearly have, from (48), the Bernstein-Walsh inequality

|p(z)| ≤ ||p||KRdeg p, z ∈ DR (65)

for every polynomial p in CN .
Recall that a compact set K ⊂ CN is called polynomially convex if K coincides with its polynomial hull

bK ≡ {z ∈ CN : |p(z)| ≤ ||p||K , p polynomial}.

For example, every compact set K ⊂ RN = RN + i0 ⊂ CN is polynomially convex (why?). For N = 1, exercise 1 of section 4
showed that K ⊂ C is polynomially convex if and only if C−K is connected. With the above definitions, Theorem 4.4 goes over
exactly to several complex variables:

Theorem 8.7. Let K be an L-regular, polynomially convex compact set in CN . Let R > 1, and let DR be defined by (64). Let f be
continuous on K. Then

lim sup
n→∞

dn( f , K)1/n ≤ 1/R

if and only if f is the restriction to K of a function holomorphic in DR.
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Here, recall that for f ∈ C(K),
dn = dn( f , K)≡ inf{|| f − pn||K : pn ∈ Pn}.

For the rest of this section, we use n instead of d to index the degree of polynomials to avoid notational issues with the distance
“dn”. To prove “only if” we may repeat the proof after the statement of Theorem 23, since K satisfies the Bernstein-Walsh
inequality (65). The “if” proof, although not hard, requires some deeper knowledge of several complex variables.

We can utilize Lagrange interpolation in this higher-dimensional setting. Choose mn points An = {an1, ..., anmn
} ⊂ K and

form the Vandermonde determinant
Vn(An)≡ det[ei(an j)]i, j=1,...,mn

.

If Vn(An) 6= 0, we can form the FLIP’s

ln j(x)≡
Vn(an1, ..., x , ..., anmn

)

Vn(An)
, j = 1, ..., mn. (66)

In the one (complex) variable case, we get cancellation in this ratio so that the formulas for the FLIP’s simplify. In general, we
still have ln j(ani) = δ ji and ln j ∈ Pn since ln j is a linear combination of e1, .., emn

. Note that for a set of Fekete points of order n,
we have ||ln j ||K = 1 for j = 1, ..., mn (why?). For f defined on K ,

(Ln f )(x)≡
mn
∑

j=1

f (an j)ln j(x)

is the Lagrange interpolating polynomial (LIP) for f at the points An. We call

Λn ≡ sup
x∈K

mn
∑

j=1

|ln j(x)|

the n-th Lebesgue constant for K , An. As in section 4, this is the norm of the linear operator

Ln : C(K)→ Pn ⊂ C(K)

defined by Ln( f ) := Ln f where we equip C(K) with the supremum norm. For a set of Fekete points of order n, we have Λn ≤ mn.
We say that K is determining for

⋃

Pn if whenever h ∈
⋃

Pn satisfies h= 0 on K , it follows that h≡ 0. For these sets we can find
points An for each n with Vn(An) 6= 0. We have the following elementary result, similar to the proof in one variable that arrays
satisfying (32) yield good polynomial approximants to holomorphic functions.

Theorem 8.8. Let K be determining for
⋃

Pn and let An ⊂ K satisfy Vn(An) 6= 0 for each n. Given f bounded on K , if lim supΛ1/n
n =

1, then lim sup || f − Ln f ||1/nK = lim sup d1/n
n .

Proof. Fix ε > 0 and choose, for each n, a polynomial pn ∈ Pn with || f − pn||
1/n
K ≤ d1/n

n + ε. Since pn ∈ Pn, we have Lnpn = pn
and

|| f − Ln f ||K = || f − pn + Lnpn − Ln f ||K
≤ || f − pn||K +Λn|| f − pn||K = (1+Λn)|| f − pn||K .

Using the hypothesis limsupΛ1/n
n = 1, we obtain the conclusion.

Immediately from Theorems 8.7 and 8.8 we have

Corollary 8.9. Let K be an L-regular, polynomially convex compact set in CN and let {An} ⊂ K satisfy limsupΛ1/n
n = 1. Then for

any f holomorphic on a neighborhood of K, Ln f → f uniformly on K.

As in the univariate case, for K ⊂ CN compact, L−regular and polynomially convex, we can consider the following four
properties which an array {an j} j=1,...,mn; n=1,2,... ⊂ K may or may not possess:

1. limn→∞Λ1/n
n = 1;

2. limn→∞ |V DM(an1, ..., anmn
)|

1
ln = δ(K);

3. limn→∞
1

mn

∑mn
j=1 δan j

= µK weak-*;

4. Ln f ⇒ f on K for each f holomorphic on a neighborhood of K .

Corollary 8.9 shows that (1) =⇒ (4); the univariate proof that (1) =⇒ (2) generalizes to the multivariate setting;
and a recent deep result in [6], which we give as Corollary 10.6 in section 10, shows that (2) =⇒ (3). The reference [10]
includes counterexamples to most other implications. A major problem with Lagrange interpolation of holomorphic functions
in CN , N > 1, is the lack of a Hermite remainder formula. Together with the fact that one needs to insure, for each n, that
the points an1, ..., anmn

one chooses satisfy V DM(an1, ..., anmn
) 6= 0 (unisolvence), one might seek other polynomial interpolation

procedures.
A more promising type of interpolation procedure has been successfully applied to many approximation problems by Tom

Bloom and his collaborators. A natural extension of Lagrange interpolation to RN , N > 1 was discovered by P. Kergin (a student
of Bloom) in his thesis. Indeed, Kergin interpolation acting on ridge functions (a univariate function composed with a linear
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form) is Lagrange interpolation. The Kergin interpolation polynomials generalize to the case of Cm functions in RN both the
Lagrange interpolation polynomials and those of Hermite.

As brief motivation, given f ∈ Cm([0,1]), say, and given m+ 1 points t0 < · · ·< tm ∈ [0, 1], if one constructs the Lagrange
interpolating polynomial Lm f for f at these points, then there exist (at least) m− 1 points between pairs of successive t j at
which f ′ and (Lm f )′ agree; then there exist (at least) m− 2 points between triples of successive t j at which f ′′ and (Lm f )′′

agree, etc. Given a set A= [A0, A1, . . . , Am]⊂ RN of m+ 1 points and f a function of class Cm on a neighborhood of the convex
hull of these points, there exists a unique polynomial KA( f ) = KA( f )(x1, . . . , xN ) of total degree m such that KA( f )(A j) = f (A j),
j = 0, 1, . . . , m, and such that for every integer r, 0 ≤ r ≤ m− 1, every subset J of {0, 1, . . . , m} with cardinality equal to r + 1,
and every homogeneous differential operator Q of order r with constant coefficients, there exists ξ belonging to the convex hull
of the (A j), j ∈ J , such that Q f (ξ) = QKA( f )(ξ). In [7], Bloom gives a proof of this result by using a formula due to Micchelli
and Milman [24] which gives an explicit expression for KA( f ). If f = u+ iv is holomorphic in a convex region D in CN , and if
A = [A0, A1, . . . , Am] ⊂ D ⊂ CN = R2N , then we can construct KA(u) and KA(v). It turns out (cf., [17]) that KA(u) + iKA(v) is a
holomorphic polynomial.

An alternate description, which we give in the holomorphic setting, is as follows (cf., [12]). Let D be a C-convex domain
in CN , i.e., the intersection of D with any complex line is connected and simply connected. Note that in RN this is the same
condition as convexity if we replace “complex line” by “real line.” For any set A= [A0, . . . , Ad] of (not necessarily distinct) d+1
points in D there exists a unique linear projector KA : O(D)→ Pd (recall that O(D) is the space of holomorphic functions on D
and Pd is the space of polynomials of N complex variables of degree less than or equal to d) such that

1. KA( f )(A j) = f (A j) for j = 0, · · · , d,

2. KA(g ◦λ) = Kλ(A)(g) ◦λ for every affine map λ : CN → C and g ∈O(λ(D)), where λ(A) = (λ(A0), . . . ,λ(Ad)),

3. KA is independent of the ordering of the points in A, and

4. KB ◦KA = KB for every subsequence B of A.

The operator KA is called the Kergin interpolating operator with respect to A.
Set Kd := KAd

with Ad = [Ad0, . . . , Add] and Ad j in a compact subset K of D ⊂ CN for every j = 0, . . . , d and d = 1,2, 3, . . ..
Under what conditions on the array {Ad}d=1,2,... is it true that Kd( f ) converges to f uniformly on K as d →∞ for every function f
holomorphic in some neighborhood of D? Bloom and Calvi [12] attacked this problem with the aid of an integral representation
formula for the remainder f −Kd( f ) proved by M. Andersson and M. Passare [2]. Their solution reads as follows. Assume that
the measures µd = (d + 1)−1

∑d
j=0 δAd j

converge weak-* as d → ∞ to a measure µ. In one variable, the answer comes from
potential theory: one considers the logarithmic potential

Vµ(z) :=

∫

K

log |z− ζ|dµ(ζ)

and the required condition is that
{z ∈ C : Vµ(z)≤ sup

K
Vµ} ⊂ D.

For N > 1, given a linear form p : CN → C, define µp = p∗µ as the push-forward of µ to C via p, i.e., for f ∈ C0(C),

µp( f ) :=

∫

C
f dµp = µ( f ◦ p) :=

∫

CN

( f ◦ p)dµ.

Set

Ψµ(p, z) := µp(log |z− ·|) =
∫

C
log |z− ζ|dµp(ζ),

and let Mµ(p) be the maximum of z 7→ Ψµ(p, z) on p(K). If D has C2 boundary and {z ∈ C : Ψµ(p, z) ≤ Mµ(p)} ⊂ p(D) for
every linear form p on CN , then Kd( f ) converges to f uniformly on K as d → ∞ for every function f holomorphic in some
neighborhood of D.

We call an array {Ad}d=1,2,... extremal for K if Kd( f ) converges to f uniformly on K for each f holomorphic in a neigh-
borhood of K . Of course, Kd( f ) should make sense; i.e., f should be defined, e.g., in the convex (or more generally, the
C−convex) hull of K . In the setting of compact, convex subsets K of RN , Bloom and Calvi proved the following striking result.

Theorem 8.10. [13] Let K ⊂ RN , N ≥ 2, be a compact, convex set with nonempty interior. Then K admits extremal arrays if and
only if N = 2 and K is the region bounded by an ellipse.

For the Andersson-Passare remainder formula one needs an integral formula with a holomorphic kernel; moreover, one
with a kernel that is the composition of a univariate function with an affine function. Together with property (2) of the Kergin
interpolating operator, this allows a reduction of the multivariate problem to a univariate setting. For an outline of these items,
see [21].

Exercises.

1. Let K = {(z1, z2) ∈ C2 : |z1| ≤ 1, z2 = 0}. What is δ(K)? Give a proof of your answer.

2. Let K = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1}. What is δ(K)? Give a proof of your answer.
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3. Extra Credit. Let K = {(z1, z2) ∈ C2 : (Rez1)2 + (Rez2)2 ≤ 1, Imz1 = Imz2 = 0}. What is δ(K)? Give a proof of your
answer.

4. Let K = {(z1, z2) ∈ C2 : 0≤ |z1| ≤ |z2| ≤ 1}. Find bK .

5. Let {An} be a Fekete array for K; i.e., for each n= 1,2, ..., the points An = {an1, ..., anmn
} ⊂ K form a set of Fekete points

of order n for K . Prove that limn→∞Λ1/n
n = 1.

6. Verify (63) that for K compact, δ(K) = δ(bK) and d(H)(K) = d(H)(bK). (Hint: Compare the supremum norms of the
Chebyshev polynomials tα,K , tα,bK and those of the homogeneous Chebyshev polynomials t(H)α,K , t(H)

α,bK
).
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9 Weighted pluripotential theory in CN , N > 1, Bergman functions and L2−theory.
As in the univariate case, in weighted pluripotential theory in CN for N > 1 one restricts to closed but possibly unbounded sets.
Again for K ⊂ CN closed we let A(K) denote the collection of lowersemicontinuous Q :=− log w where w is a nonnegative, usc
function on K with {z ∈ K : w(z)> 0} nonpluripolar; if K is unbounded, we require

|z|w(z)→ 0 as |z| →∞, z ∈ K . (67)

We define the weighted extremal function or weighted pluricomplex Green function V ∗K ,Q(z) := lim supζ→z VK ,Q(ζ) where

VK ,Q(z) := sup{u(z) : u ∈ L(CN ), u≤Q on K}.

We have V ∗K ,Q ∈ L+(CN ). In the unbounded case, we again remind the reader that property (67) is equivalent to

Q(z)− log |z| → +∞ as |z| →∞ through points in K;

hence VK ,Q is well-defined and equals VK∩BR ,Q for R > 0 sufficiently large where BR = {z : |z| ≤ R} (Definition 2.1 and Lemma
2.2 of Appendix B in [26]). It is known that the support

Sw := supp(µK ,Q)

of the weighted extremal measure

µK ,Q :=
1

(2π)N
(dd c V ∗K ,Q)

N

is compact (recall the definition of µK in (49)). The proof of (39), adjusted using the solution of the Dirichlet problem for the
complex Monge-Ampère equation on a ball, shows that

Sw ⊂ S∗w := {z ∈ K : V ∗K ,Q(z)≥Q(z)}. (68)

Moreover,
V ∗K ,Q =Q q.e. on Sw

(i.e., V ∗K ,Q =Q on Sw \ F where F is pluripolar); and if u ∈ L(CN ) satisfies u≤Q q.e. on Sw then u≤ V ∗K ,Q on CN . Indeed,

VK ,Q(z) = sup{
1

deg(p)
log |p(z)| : ||wdeg(p)p||Sw

≤ 1, p polynomial} (69)

and
||wdeg(p)p||Sw

= ||wdeg(p)p||K .

Theorem 2.8 of Appendix B in [26] includes the slightly stronger statement that

V ∗K ,Q(z) =
�

sup{
1

deg(p)
log |p(z)| : ||wdeg(p)p||∗K ≤ 1, p polynomial}

�∗

where
||wdeg(p)p||∗K := inf{||wdeg(p)p||K\F : F ⊂ K pluripolar}.

The unweighted case is when K is compact and w ≡ 1 (Q ≡ 0); we then write VK := VK ,0 to be consistent with the previous
notation.

A natural definition of a weighted transfinite diameter uses weighted Vandermonde determinants. Let K ⊂ CN be compact
and let w be an admissible weight function on K . Given ζ1, ...,ζmd

∈ K , let

W (ζ1, ...,ζmd
) := V DM(ζ1, ...,ζmd

)w(ζ1)
d · · ·w(ζmd

)d

= det









e1(ζ1) e1(ζ2) . . . e1(ζmd
)

...
...

. . .
...

emd
(ζ1) emd

(ζ2) . . . emd
(ζmd
)









·w(ζ1)
d · · ·w(ζmd

)d

be a weighted Vandermonde determinant. Define a d−th order weighted Fekete set for K and w to be a set of md points ζ1, ...,ζmd
∈

K with the property that
Wmd

=Wmd
(K) := |W (ζ1, ...,ζmd

)|= sup
ξ1 ,...,ξmd

∈K
|W (ξ1, ...,ξmd

)|.

In analogy with the univariate notation, we also set

δd
w(K) :=W 1/ld

md
.

Define
δw(K) := lim sup

d→∞
W 1/ld

md
= limsup

d→∞
δd

w(K). (70)

We will show in Proposition 9.1 that limd→∞W 1/ld
md

(the weighted analogue of (58)) exists.
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Proposition 9.1. Let K ⊂ CN be a compact set with an admissible weight function w. The limit

lim
d→∞

�

max
λ(i)∈K

|V DM(λ(1), ...,λ(m
(N)
d ))| ·w(λ(1))d · · ·w(λ(m

(N)
d ))d

�1/l(N)d

exists (and equals δw(K)).

Proof. Following [9], we define the circled set

F = F(K , w) := {(t, z) = (t, tλ) ∈ CN+1 : λ ∈ K , |t|= w(λ)}.

We first relate weighted Vandermonde determinants for K with homogeneous Vandermonde determinants for the compact set

F(D) := {(t, z) = (t, tλ) ∈ CN+1 : λ ∈ K , |t| ≤ w(λ)}. (71)

Note that F ⊂ F ⊂ F(D)⊂ bF (cf., [9], (2.4)) where bF is the polynomial hull of F (recall (63)); thus

d(H)(F) = d(H)(F(D)). (72)

To this end, for each positive integer d, choose

m(N)d =
�

N + d

d

�

(recall (52)) points {(t i , z(i))}i=1,...,m(N)d
= {(t i , t iλ

(i))}i=1,...,m(N)d
in F(D) and form the d−homogeneous Vandermonde determinant

V DMHd((t1, z(1)), ..., (tm(N)d
, z(m

(N)
d ))).

We extend the lexicographical order of the monomials in CN to CN+1 by letting t precede any of z1, ..., zN . Writing the standard
basis monomials of degree d in CN+1 as

{td− j e(H,d)
k (z) : j = 0, ..., d; k = 1, ...,h j};

i.e., for each power d − j of t, we multiply by the standard basis monomials of degree j in CN , and dropping the superscript
(N) in m(N)d , we have the d−homogeneous Vandermonde matrix













td
1 td

2 . . . td
md

td−1
1 e2(z(1)) td−1

2 e2(z(2)) . . . td−1
md

e2(z(md ))
...

...
. . .

...
emd
(z(1)) emd

(z(2)) . . . emd
(z(md ))













=















td
1 td

2 . . . td
md

td−1
1 z(1)1 td−1

2 z(2)1 . . . td−1
md

z(md )
1

...
...

. . .
...

(z(1)N )
d (z(2)N )

d . . . (z(md )
N )d















.

Factoring td
i out of the i−th column, we obtain

V DMHd((t1, z(1)), ..., (tmd
, z(md ))) = td

1 · · · t
d
md
· V DM(λ(1), ...,λ(md ));

thus, writing |A| := |det A| for a square matrix A,
�

�

�

�

�

�

�

�

�

�

td
1 td

2 . . . td
md

td−1
1 z(1)1 td−1

2 z(2)1 . . . td−1
md

z(md )
1

...
...

. . .
...

(z(1)N )
d (z(2)N )

d . . . (z(md )
N )d

�

�

�

�

�

�

�

�

�

�

(73)

= |t1|d · · · |tmd
|d

�

�

�

�

�

�

�

�

�

1 1 . . . 1
λ
(1)
1 λ

(2)
1 . . . λ

(md )
1

...
...

. . .
...

(λ(1)N )
d (λ(2)N )

d . . . (λ(md )
N )d

�

�

�

�

�

�

�

�

�

,

where λ( j)k = z( j)k /t j provided t j 6= 0. By definition of F(D), since (t i , z(i)) = (t i , t iλ
(i)) ∈ F(D), we have |t i | ≤ w(λ(i)). Clearly

the maximum of
|V DMHd((t1, z(1)), ..., (tmd

, z(md )))|
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over points in F(D) will occur when all |t j |= w(λ( j))> 0 (recall w is an admissible weight) so that from (73)

max
(ti ,z(i))∈F(D)

|V DMHd((t1, z(1)), ..., (tmd
, z(md )))|=

max
λ(i)∈K

|V DM(λ(1), ...,λ(md ))| ·w(λ(1))d · · ·w(λ(md ))d .

As mentioned in the discussion of (62) the limit

lim
d→∞

�

max
(ti ,z(i))∈F(D)

|V DMHd((t1, z(1)), ..., (tmd
, z(md )))|

�1/dh(N+1)
d

=: d(H)(F(D))

exists; thus the limit

lim
d→∞

�

max
λ(i)∈K

|V DM(λ(1), ...,λ(md ))| ·w(λ(1))d · · ·w(λ(md ))d
�1/l(N)d := δw(K)

exists.

Corollary 9.2. For K ⊂ CN a nonpluripolar compact set with an admissible weight function w and

F = F(K , w) := {(t, z) = (t, tλ) ∈ CN+1 : λ ∈ K , |t|= w(λ)},

δw(K) = d(H)(F)
N+1

N = δ(F)
N+1

N . (74)

Proof. The first equality follows from the proof of Proposition 9.1 using (72) and the relation

l(N)d = (
N

N + 1
) · dh(N+1)

d

(see (53)). The second equality is (60).

Given a compact set K ⊂ CN and a measure ν on K , we say that (K ,ν) satisfies the Bernstein-Markov inequality if, as in
the univariate case, there is a strong comparability between L2 and L∞ norms of holomorphic polynomials on K . Precisely, for
all pd ∈ Pd ,

||pd ||K ≤ Md ||pd ||L2(ν) with lim sup
d→∞

M1/d
d = 1;

equivalently, given ε > 0, there exists a constant M̃ = M̃(ε) such that

||pd ||K ≤ M̃(1+ ε)d ||pd ||L2(ν).

If K is L−regular, (K ,µK) satisfies the Bernstein-Markov inequality where µK is the extremal measure 1
(2π)N

(dd c VK)N from (49).
One can even find a Bernstein-Markov measure ν which is rather “sparse” in the sense that there exists a countable subset K ′ ⊂ K
with ν(K ′) = ν(K). The next result shows that any compact set admits a Bernstein-Markov measure; indeed, the construction
below provides a “sparse” example.

Proposition 9.3. Let K ⊂ CN be an arbitrary compact set. Then there exists a measure ν ∈M(K) such that (K ,ν) satisfies a
Bernstein-Markov property.

Proof. To construct ν , we first observe that if K is a finite set, any measure ν which puts positive mass at each point of K will
work. If K has infinitely many points, for each k = 1, 2, ... let mk =dimPk(K), the holomorphic polynomials on CN restricted to
K . Then limk→∞mk =∞ and mk ≤

�N+k
k

�

= 0(N k). For each k, let

µk :=
1

mk

mk
∑

j=1

δ(z(k)j )

where {z(k)j } j=1,...,mk
is a set of Fekete points of order k for K relative to the vector space Pk(K); i.e., if {e1, ..., emk

} is any basis
for Pk(K),

�

�det[ei(z
(k)
j )]i, j=1,...,mk

�

�= max
q1 ,...,qmk

∈K

�

�det[ei(q j)]i, j=1,...,mk

�

�. (75)

Define

ν := c
∞
∑

k=3

1

k(log k)2
µk

where c > 0 is chosen so that ν ∈M(K). If p ∈ Pk(K), we have

p(z) =
mk
∑

j=1

p(z(k)j )l
(k)
j (z)
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where l(k)j ∈ Pk(K) with l(k)j (z
(k)
k ) = δ jk. We have ||l(k)j ||K = 1 from (75) and hence

||p||K ≤
mk
∑

j=1

|p(z(k)j )|.

On the other hand,

||p||L2(dν) ≥ ||p||L1(dν) ≥
c

k(log k)2

∫

K

|p|dµk

=
c

kmk(log k)2

mk
∑

j=1

|p(z(k)j )|.

Thus we have

||p||K ≤
kmk(log k)2

c
||p||L2(dν).

We return to the setting of Theorem 8.7, i.e., K is a polynomially convex L-regular compact set in CN . Given a measure ν
such that (K ,ν) satisfies a Bernstein-Markov property, we show that best L2(ν)-approximating polynomials to certain functions
f ∈ C(K) – which are in principle easy to calculate – have asymptotic behavior similar to best supremum norm polynomial
approximants. It will be convenient to let n denote the degree of a polynomial pn ∈ Pn since we recall the notation

dn = dn( f , K) = inf{|| f − pn||K : pn ∈ Pn}.

Proposition 9.4. Let K be a polynomially convex L-regular compact set in CN and let ν be a measure supported on K such that
(K ,ν) satisfies the Bernstein-Markov property. If f ∈ C(K) satisfies

limsup
n→∞

dn( f , K)1/n = ρ < 1,

and if {pn} is a sequence of best L2(ν)-approximants to f , then

limsup
n→∞

|| f − pn||
1/n
K = ρ.

Proof. Note the hypothesis implies that f extends to be holomorphic on a neighborhood of K by Theorem 8.7. For simplicity we
take ν(K) = 1. The proof follows trivially from the fact that if ρ < r < 1 and {qn} are best sup-norm approximating polynomials,
so that || f − qn||K ≤ M rn for some M (independent of n), then

|| f − pn||L2(ν) ≤ ||qn − f ||L2(ν) ≤ ||qn − f ||K ≤ M rn.

Thus we have ||pn − pn−1||L2(ν) ≤ M rn(1+ 1/r) which shows that p0 +
∑∞

n=1(pn − pn−1) converges to f in L2(ν) and pointwise
ν-a.e. to f on K . By the Bernstein-Markov property, for each ε < 1/r − 1 there exists M̃ > 0 with

||pn − pn−1||K ≤ M̃(1+ ε)n||pn − pn−1||L2(ν) ≤ M̃[(1+ ε)r]nM(1+ 1/r)

showing that p0 +
∑∞

n=1(pn − pn−1) converges uniformly to a continuous function g on K (holomorphic on the interior of K).
Since f and g are continuous and g = f ν-a.e. on K , g = f on K . Then

|| f − pn||K = ||
∞
∑

k=n+1

(pk − pk−1)||K ≤ M̃[(1+ ε)r]n+1M
(1+ 1/r)

[1− (1+ ε)r]

showing that limsupn→∞ ||pn − f ||1/nK ≤ (1+ ε)r.

We recall briefly the basic theory of reproducing kernels on a Hilbert space in the context of the Hilbert space Hn consisting
of elements in Pn equipped with the L2−norm associated to a (probability) measure ν with compact support K . We presume
that the measure is “thick” enough so that ||p||2

L2(ν)
:=
∫

K
|p|2dν = 0 for p ∈ Pn implies p ≡ 0. Then for each z ∈ K , the linear

functional of point evaluation z→ p(z) is continuous as a map from Hn to C (why?). Thus, by the Riesz representation theorem,
this functional is given by taking an inner product (in the norm of Hn) with a fixed element Qz ∈ Pn; i.e.,

p(z) =

∫

K

pQz dν for p ∈ Pn.

Define Kνn (z, w) :=Qz(w). One can check that if {q(n)j } j=1,...,mn
is an orthonormal basis for Pn with respect to L2(ν), then

Kνn (z, w) =
mn
∑

j=1

q(n)j (z)q
(n)
j (w)
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(note here that mn =
�N+n

n

�

). Indeed, observing that for any p ∈ Pn we have

p(z) =
mn
∑

j=1

�

∫

K

p(w)q(n)j (w)dν(w)
�

q(n)j (z),

we see that
∫

K

p(w)
�

mn
∑

j=1

q(n)j (z)q
(n)
j (w)

�

dν(w) =

mn
∑

j=1

�

q(n)j (z)

∫

K

p(w)q(n)j (w)dν(w)
�

= p(z),

verifying that Qz(w) =
∑mn

j=1 q(n)j (z)q
(n)
j (w). Restricting this reproducing kernel to the diagonal {z = w}, we call

Bνn (z) := Kνn (z, z) =
mn
∑

j=1

|q(n)j (z)|
2

the n− th Bergman function of K ,ν . It is known if (K ,ν) satisfies the Bernstein-Markov inequality that

lim
n→∞

1

2n
log Bνn (z) = VK(z) (76)

locally uniformly on CN (cf., [16]).
As an easy example, take K = {z ∈ C : |z| ≤ 1}, the closed unit disk in C, and take ν = 1

2π
dθ = µK . It is easy to see that the

monomials 1, z, ..., zn give an orthonormal basis for Pn in L2(ν), and thus

Bνn (z) =
n
∑

j=0

|z|2 j =
|z|2n+2 − 1

|z|2 − 1
.

Clearly, then, limn→∞
1

2n
log Bνn (z) = log+ |z| locally uniformly (exercise).

What happens in the weighted situation? For K ⊂ CN compact, w = e−Q an admissible weight function on K , and ν a
measure on K , we say that the triple (K ,ν ,Q) satisfies a weighted Bernstein-Markov property if there is a strong comparability
between L2 and L∞ norms of weighted polynomials on K; precisely, for all pn ∈ Pn, writing ||wnpn||K := supz∈K |w(z)npn(z)| and
||wnpn||2L2(ν)

:=
∫

K
|pn(z)|2|w(z)|2ndν(z),

||wnpn||K ≤ Mn||wnpn||L2(ν) with limsup
n→∞

M1/n
n = 1.

If K is locally regular and w is continuous, taking ν = (dd c VK ,Q)N we have (K ,ν ,Q) satisfies a weighted Bernstein-Markov
property (cf., [9]). Now if (K ,ν ,Q) satisfies a weighted Bernstein-Markov property we have that

lim
n→∞

1

2n
log Kν ,w

n (z, z) = VK ,Q(z) (77)

locally uniformly on CN where

Kν ,w
n (z,ζ) :=

mn
∑

j=1

q(n)j (z)q
(n)
j (ζ).

and

Bν ,w
n (z) := Kν ,w

n (z, z)w(z)2n :=
mn
∑

j=1

|q(n)j (z)|
2w(z)2n (78)

is the n− th Bergman function of K , w,ν (cf., [8]). Here, {q(n)j } j=1,...,mn
is an orthonormal basis for Pn with respect to the weighted

L2−norm p→ ||wnpn||L2(ν). A sketch of the proof of (77) and/or (76) runs as follows: first, one shows that if

ΦK ,Q,n(z) := sup{|p(z)| : ||wdeg p p||K ≤ 1, p ∈ Pn},

then
1

n
logΦK ,Q,n→ VK ,Q

locally uniformly on CN (see Corollary (4.3) and exercise 4 of section 5 for univariate versions). Next, one verifies the inequality

[ΦK ,Q,n(z)]2

mn
≤ Kν ,w

n (z, z)≤ mn ·M2
n [ΦK ,Q,n(z)]

2.
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The left-hand inequality follows simply from the reproducing property of the kernel function Kν ,w
n (z,ζ); i.e., for any p ∈ Pn,

p(z) =

∫

K

Kν ,w
n (z,ζ)p(ζ)w(ζ)2ndν(ζ),

and the Cauchy-Schwartz inequality; it is the right-side inequality which utilizes the weighted Bernstein-Markov property. In-
deed, for an element q(n)j ∈ Pn in the orthonormal basis,

||wnq(n)j ||K ≤ Mn and
|q(n)j (z)|

||wnq(n)j ||K
≤ ΦK ,Q,n(z)

imply
|q(n)j (z)| ≤ MnΦK ,Q,n(z)

so that

Kν ,w
n (z, z) =

mn
∑

j=1

|q(n)j (z)|
2 ≤ mn ·M2

n [ΦK ,Q,n(z)]
2.

These results were proved in the unweighted case, i.e., (76), by Bloom and Shiffman [16] and in the general (weighted) case,
i.e., (77), by Bloom [8].

From the local uniform convergence in (77) follows the weak-* convergence of the Monge-Ampère measures

[dd c 1

2n
log Kν ,w

n (z, z)]N → (dd c V ∗K ,Q)
N weak- ∗ .

One of the main results in the next section is a much stronger version of “Bergman asymptotics” to be proved in Corollary 10.5:
if (K ,ν , w) satisfies a weighted Bernstein-Markov inequality, then

1

mn
Bν ,w

n dν → µK ,Q :=
1

(2π)N
(dd c V ∗K ,Q)

N weak- ∗ .

This was proved in the one variable case (N = 1) in [14].
We continue with a multivariate version of Theorem 5.3, the relation of the weighted Bernstein-Markov property and

weighted transfinite diameter. Here, we use the notion

Gν ,w
n :=

�
∫

K

ei(z)e j(z)w(z)
2ndν

�

∈ Cmn×mn (79)

for the Gram matrix of the standard basis monomials ei ∈ Pn with respect to the measure ν and weight w. Recall that

ln =
mn
∑

j=1

deg(e j) =
Nnmn

N + 1
.

Thus, in the formulas below, N+1
2Nnmn

is simply 1
2ln

.

Proposition 9.5. Let K ⊂ CN be a compact set and let w be an admissible weight function on K. If ν is a measure on K with
(K ,ν ,Q) satisfying a weighted Bernstein-Markov property, then

lim
n→∞

N + 1

2Nnmn
· log det Gν ,w

n = logδw(K).

Proof. Note first that det Gν ,w
n =

∏mn
j=1 ||r j ||2L2(w2nν)

where {r1, ..., rmn
} are an orthogonal basis of Pn obtained by applying Gram-

Schmidt to the standard basis monomials of Pn. Defining, analogous to (20),

Zn := Zn(K , w,ν)

:=

∫

K

· · ·
∫

K

|V DM(z1, ..., zmn
)|2w(z1)

2n · · ·w(zmn
)2ndν(z1) · · · dν(zmn

)

we show that

lim
n→∞

Z
N+1

2Nnmn
n = δw(K).

To see this, clearly

Zn ≤ δw
n (K)

2Nnmn
N+1 ν(K)mn . (80)

On the other hand, taking points x1, ..., xmn
achieving the maximum in δw

n (K), we have, upon applying the weighted Bernstein-
Markov property to the weighted polynomial

z1→ V DM(z1, x2..., xmn
)w(z1)

n · · ·w(xmn
)n,
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δw
n (K)

2Nnmn
N+1 = |V DM(x1, ..., xmn

)|2w(x1)
2n · · ·w(xmn

)2n

≤ M2
n

∫

K

· · ·
∫

K

|V DM(z1, x2..., xmn
)|2w(z1)

2n · · ·w(xmn
)2ndν(z1).

Repeating this argument in each variable we obtain

δw
n (K)

2Nnmn
N+1 ≤ M2mn

n Zn. (81)

Note that (80) and (81) give

Zn ≤ δw
n (K)

2Nnmn
N+1 ν(K)N ≤ ν(K)N M2mn

n Zn.

Since [ν(K)N M2mn
n ]

N+1
2Nnmn → 1, using (70)

lim
n→∞

Z
N+1

2Nnmn
n

exists and equals

lim
n→∞

δw
n (K)

N+1
Nnmn .

Using elementary row operations in |V DM(z1, ..., zmn
)|2 in the integrand of Zn, we can replace the monomials {e j} by the

orthogonal basis {r1, ..., rmn
} and obtain

Zn = mn!
mn
∏

j=1

||r j ||2L2(w2nν)
.

Putting everything together gives the result. Note that

Zn = mn! · det(Gν ,w
n )

(see (83) below).

Definition 9.1. If a probability measure µ has the property that

det(Gµ
′ ,w

n )≤ det(Gµ,w
n ) (82)

for all other probability measures µ′ on K then µ is said to be an optimal measure of degree n for K and w.

Note we have fixed the usual monomial basis to compute our Gram matrices but it is an easy exercise to show that the
notion of optimal measure is independent of the basis we choose. We continue with some algebraic preliminaries relating Gram
determinants, Bergman functions, and generalized Vandermonde determinants, whose proofs we leave as exercises.

Lemma 9.6. Suppose that µ ∈M(K) and that w is an admissible weight. Then

det(Gµ,w
n ) =

1

mn!

∫

Kmn

|V DM(z1, · · · , zmn
)|2 (83)

·w(z1)
2n · · ·w(zmn

)2ndµ(z1) · · · dµ(zmn
) =

Zn

mn!

and

Bµ,w
n (z) =

mn

Zn

∫

Kmn−1

|V DM(z, z2, · · · , zmn
)|2 (84)

·w(z)2nw(z2)
2n · · ·w(zmn

)2ndµ(z2) · · · dµ(zmn
).

A similar argument to the proof of Proposition 9.5 shows that the Gram determinants associated to a sequence of weighted
optimal measures also converges to δw(K) (exercise 7). In this proposition, we again compute the Gram determinant with
respect to the standard basis monomials.

Proposition 9.7. Let K be compact and w an admissible weight function. For n = 1, 2, ..., let µn be an optimal measure of order n
for K and w. Then

lim
n→∞

det(Gµn ,w
n )

N+1
2Nnmn = δw(K).

The connection between (weighted) optimal measures and (weighted) Bergman functions is the following.

Proposition 9.8. Let w be an admissible weight on K . A probability measure µ is an optimal measure of degree n for K and w if
and only if

max
z∈K

Bµ,w
n (z) = mn. (85)

For the proof of Proposition 9.8, cf., [18]. As a corollary, we obtain the following key property of optimal measures.

Lemma 9.9. Suppose that µ is an optimal measure of degree n for K and w Then

Bµ,w
n (z) = mn, a.e. µ.
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Proof. On the one hand, by Proposition 9.8
max
z∈K

Bµ,w
n (z) = mn,

while on the other hand, by orthonormality of the q(n)j in (78) (with ν = µ)

∫

K

Bµ,w
n dµ=

∫

K

mn
∑

j=1

|q(n)j (z)|
2w(z)2n dµ(z) = mn,

and the result follows.

Exercises.

1. Give a proof of (68) analogous to the univariate proof of (39) using the solution to the Dirichlet problem for the complex
Monge-Ampère operator in a ball.

2. Suppose K is the closed unit ball and Q is continuous on K and plurisuperharmonic on the interior of K (i.e., −Q is psh).
What can you say about Sw?

3. Suppose K is the closed unit ball and Q is continuous on K and is a maximal psh function on the interior of K . What
can you say about Sw?

4. Find VK ,Q for K the closed unit ball and Q(z) =−|z|2.

5. Verify that the dimension of the space of homogeneous polynomials of degree d in CN+1 equals the dimension of the
space of polynomials of degree at most d in CN .

6. Verify equations (83) and (84) of Lemma 9.6.

7. Prove Proposition 9.7. (Hint: Use the fact that det(Gνn ,w
n ) ≤ det(Gµn ,w

n ) where νn =
1

mn

∑mn
k=1 δxk

and x1, ..., xmn
are

points in K achieving the maximum in δw
n (K).)
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10 Recent results in pluripotential theory.
In this final section, we outline proofs of the strong Bergman asymptotic result mentioned in the previous section as well as the
analogue of Proposition 5.2 for asymptotic weighted Fekete arrays in CN . These results are based on work of R. Berman and S.
Boucksom. As the reader will see, the weighted theory is essential even if one only wants these results in the unweighted case.

Given a compact set K ⊂ C, a discretization of the logarithmic energy minimization problem infµ∈M(K) I(µ) led to the
notion of transfinite diameter δ(K). In the nonpolar case, the energy-minimizing measure is given by µK =

1
2π
∆V ∗K . Thus, in

a sense, the notion of logarithmic energy relates δ(K) with V ∗K . How can we relate these two notions in CN , N > 1 without a
notion of energy of a measure?

Proposition 10.11 below provides part of the answer; but Theorem 10.3 is the key. We begin by defining a special functional
on the class L+(CN ). The strictly psh function u0(z) := 1

2
log(1+ |z|2) belongs to this class. For u ∈ L+(CN ) we define

E(u) :=
1

N + 1

∫

CN

N
∑

j=0

(u− u0)(dd cu) j ∧ (dd cu0)
N− j . (86)

The functional E is a primitive for the complex Monge-Ampère operator in a sense that will be made precise in Proposition 10.2.
In the univariate case; i.e., N = 1,

E(u) =
1

2

∫

C
(u− u0)dd c(u+ u0). (87)

Next, for Q ∈A(K), define
P(Q) = PK(Q) := V ∗K ,Q.

We record some straightforward properties of this operator P.

Proposition 10.1. The operator P : A(K)→ L+(CN ) is increasing and concave: for 0≤ t ≤ 1 and Q1,Q2 ∈A(K),

P(Q1)≤ P(Q2) if Q1 ≤Q2 and

P(tQ1 + (1− t)Q2)≥ tP(Q1) + (1− t)P(Q2).

In addition, P is Lipschitz: for t ∈ R, Q1 ∈A(K) and Q2 ∈ C(K),

|P(Q1 + tQ2)− P(Q1)| ≤ C |t|, C = C(Q1,Q2). (88)

The composition of the E and P operators is Gateaux differentiable; this non-obvious result (Theorem 10.3) was proved by
Berman and Boucksom in [5] and is the key to many recent results in (weighted) pluripotential theory.

Proposition 10.2. The functional E is increasing and concave; i.e., for u, v ∈ L+(CN ) the function f (t) := E((1− t)u+ t v) is twice
differentiable for 0≤ t ≤ 1 with f ′(t)≥ 0 and f ′′(t)≤ 0. We have

f ′(0) := lim
t↓0+

f (t)− f (0)
t

=

∫

CN

(v− u)(dd cu)N . (89)

Proof. We will verify (89) and leave the rest to the reader. To understand the idea, we consider first the univariate case, N = 1.
It suffices to show that

f (t)− f (0) = t

∫

C
(v− u)(dd cu) + 0(t2).

From the definition in (87), setting w := v − u,

2[ f (t)− f (0)] = 2
�

E(u+ t(v− u)− E(u)
�

= 2
�

E(u+ tw)− E(u)
�

=

∫

C
(u+ tw− u0)[dd c(u+ tw+ u0)]−

∫

C
(u− u0)[dd c(u+ u0)]

= t
�

∫

C
(u− u0)dd c w+

∫

C
wdd c(u+ u0)

�

+0(t2)

= 2t

∫

C
wdd cu+ 0(t2)

which gives the result.
For the multivariate case, we begin with the observation that if again we set w := v− u, then

N
∑

j=0

[dd c(u+ tw)] j ∧ (dd cu0)
N− j −

N
∑

j=0

(dd cu) j ∧ (dd cu0)
N− j

= t
N
∑

j=0

j[dd c w ∧ (dd cu) j−1 ∧ (dd cu0)
N− j + 0(t2).
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Then (all integrals are over CN )

(N + 1)
�

E(u+ t(v− u)− E(u)
�

= (N + 1)
�

E(u+ tw)− E(u)
�

=

∫

[u+ tw− u0]
N
∑

j=0

[dd c(u+ tw)] j ∧ (dd cu0)
N− j

−
∫

(u− u0)
N
∑

j=0

(dd cu) j ∧ (dd cu0)
N− j

= t

∫

(u− u0)
N
∑

j=0

j[dd c w ∧ (dd cu) j−1 ∧ (dd cu0)
N− j + 0(t2)

+

∫

tw
N
∑

j=0

[dd c(u+ tw)] j ∧ (dd cu0)
N− j

= t
�

∫

(u− u0)
N
∑

j=0

j[dd c w ∧ (dd cu) j−1 ∧ (dd cu0)
N− j]

+

∫

w
N
∑

j=0

(dd cu) j ∧ (dd cu0)
N− j�+ 0(t2)

= t
�

∫

w
N
∑

j=0

j[dd c(u− u0)∧ (dd cu) j−1 ∧ (dd cu0)
N− j]

+

∫

w
N
∑

j=0

(dd cu) j ∧ (dd cu0)
N− j�+ 0(t2).

In the last step we have used an “integration by parts” formula involving differences of functions in L+(CN ); to wit: for A, B, C , D ∈
L+(CN ) and u1, ..., uN−1 ∈ L+(CN ) (so that T := dd cu1 ∧ · · · ∧ dd cuN−1 is a positive closed (N − 1, N − 1) current), we have

∫

CN

(A− B)(dd c C − dd c D)∧ dd cu1 ∧ · · · ∧ dd cuN−1

=

∫

CN

(C − D)(dd cA− dd c B)∧ dd cu1 ∧ · · · ∧ dd cuN−1.

Now check that
N
∑

j=0

jdd c(u− u0)∧ (dd cu) j−1 ∧ (dd cu0)
N− j +

N
∑

j=0

(dd cu) j ∧ (dd cu0)
N− j

= (N + 1)(dd cu)N

(try the case N = 2!) and the result follows.

Theorem 10.3. [Berman-Boucksom] The functional defined for a nonpluripolar compact set K ⊂ CN as the composition E ◦ P is
Gateaux differentiable; i.e., for Q ∈A(K), F(t) := (E ◦ P)(Q+ t v) is differentiable for all v ∈ C(K) and t ∈ R. Furthermore,

F ′(0) =

∫

K

v(dd c P(Q))N . (90)

The proof of Theorem 10.3 utilizes a global version of the comparison principle from section 7: for u, v ∈ L+(CN ),
∫

{u<v}
(dd c v)N ≤

∫

{u<v}
(dd cu)N , (91)

as well as the properties of the E and P operators in Proposition 10.1. The proof of (91) is outlined in exercise 2.
Theorem 10.3 is one ingredient used to obtain the following general result.

Proposition 10.4. Let K ⊂ CN be compact with admissible weight w. Let {µn} be a sequence of probability measures on K with the
property that

lim
n→∞

N + 1

2Nnmn
· log det Gµn ,w

n = logδw(K). (92)

Then
1

mn
Bµn ,w

n dµn→ µK ,Q =
1

(2π)N
(dd c V ∗K ,Q)

N weak- ∗ . (93)
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In particular, from Proposition 10.4 and Proposition 9.5 we have a general strong Bergman asymptotic result.

Corollary 10.5. [Strong Bergman Asymptotics] If (K ,µ, w) satisfies a weighted Bernstein-Markov inequality, then

1

mn
Bµ,w

n dµ→ µK ,Q weak- ∗ .

Another consequence of Proposition 10.4 is the analogue of Proposition 5.2 on asymptotic weighted Fekete arrays in CN .

Corollary 10.6. [Asymptotic Weighted Fekete Points] Let K ⊂ CN be compact with admissible weight w. For each n, take points
x (n)1 , x (n)2 , · · · , x (n)mn

∈ K for which

lim
n→∞

�

|V DM(x (n)1 , · · · , x (n)mn
)|w(x (n)1 )

nw(x (n)2 )
n · · ·w(x (n)mn

)n
�

(N+1)
Nnmn

= δw(K) (94)

(asymptotically weighted Fekete points) and let µn := 1
mn

∑mn
j=1 δx(n)j

. Then µn→ µK ,Q weak−∗.

Proof. Note that the hypothesis (94) is equivalent to (92) by observing (83) with µ = µn. By direct calculation, we have
Bµn ,w

n (x (n)j ) = mn for j = 1, ..., mn and hence a.e. µn on K . Indeed, this property holds for any discrete, equally weighted
measure µn := 1

mn

∑mn
j=1 δx(n)j

with

|V DM(x (n)1 , · · · , x (n)mn
)|w(x (n)1 )

nw(x (n)2 )
n · · ·w(x (n)mn

)n 6= 0

(exercise 3). The result follows immediately from Proposition 10.4, specifically, equation (93).

Finally, using Lemma 9.9 and Proposition 9.7 in conjuction with Proposition 10.4, we conclude that a sequence of weighted
optimal measures converges to µK ,Q.

Corollary 10.7. [Weighted Optimal Measures] Let K ⊂ CN be compact with admissible weight w. For each n, let µn be an
optimal measure of degree n for K and w. Then µn→ µK ,Q weak−∗.

We proceed with an outline of the steps utilized to prove Proposition 10.4. Let w be an admissible weight function on K
and fix u ∈ C(K). Following the ideas in [1], [2], [3], [4], [5] we consider the perturbed weight wt(z) := w(z)exp(−tu(z)),
t ∈ R. For the moment, we let {µn} be any sequence of measures in M(K). We set

fn(t) :=−
1

2ln
log det(Gµn ,wt

n ). (95)

We have the following (see Lemma 6.4 in [5]).

Lemma 10.8. We have

f ′n(t) =
N + 1

Nmn

∫

K

u(z)Bµn ,wt
n (z)dµn.

In particular,

f ′n(0) =
N + 1

Nmn

∫

K

u(z)Bµn ,w
n (z)dµn

and if Bµn ,w
n = mn a.e. µn,

f ′n(0) =
N + 1

N

∫

K

u(z)dµn. (96)

Before we give the proof, an illustrative example can be given if µn := 1
mn

∑mn
j=1 δx j

. Then Bµn ,w
n (x j) = mn for j = 1, ..., mn

(see exercise 2) so
logdet(Gµn ,wt

n )

= log
�

|W (x1, ..., xmn
)|2e−2ntu(x1) · · · e−2ntu(xmn )

�

implies
d

d t
log det(Gµn ,wt

n )|t=0 =
d

d t
�

−2tn
N
∑

j=1

u(x j)
�

|t=0

=−2n
mn
∑

j=1

u(x j) =−2nmn

∫

K

u(z)
1

mn
Bµn ,w

n (z)dµn.
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Proof. The proof we offer here is based on the integral formulas of Lemma 9.6.
By (83) we may write

fn(t) =−
1

2ln
log(Fn) +

1

2ln
log(mn!)

where ln = (
N

N+1
)nmn and

Fn(t) :=

∫

Kmn

V exp(−tU)dµ

and
V := V (z1, z2, · · · , zmn

) = |V DM(z1, · · · , zmn
)|2w(z1)

2n · · ·w(zmn
)2n,

U := U(z1, z2, · · · , zmn
) = 2n(u(z1) + · · ·+ u(zmn

)),

dµ := dµn(z1)dµn(z2) · · · dµn(zmn
).

Further, by (84) for w = wt and µ= µn, we have
Bµn ,wt

n (z)

=
mn

Zn

∫

Kmn−1

V (z, z2, z3, · · · , zmn
)exp(−tU)dµn(z2) · · · dµn(zmn

)

where

Zn = Zn(t) := mn! det(Gµn ,wt
n ) =

∫

Kmn

V exp(−tU)dµ.

Note that Zn(t) = Fn(t). Now

f ′n(t) =−
1

2ln

F ′n(t)
Fn(t)

and we may compute

F ′n(t) =

∫

Kmn

V (−U)exp(−tU)dµn(z1) · · · dµn(zmn
)

=−2n

∫

Kmn

(u(z1) + · · ·+ u(zmn
))V exp(−tU)dµn(z1) · · · dµn(zmn

).

Notice that the integrand is symmetric in the variables and hence we may “de-symmetrize” to obtain

F ′n(t)

=−2nmn

∫

Kmn

u(z1)V (z1, · · · , zmn
)exp(−tU)dµn(z1) · · · dµn(zmn

)

so that, integrating in all but the z1 variable, we obtain

F ′n(t) =−2nmn

∫

K

u(z)Bµn ,wt
n (z)

Zn

n
dµn(z).

Thus, using the fact that Zn(t) = Fn(t), we obtain

f ′n(t) =
N + 1

Nmn

∫

K

u(z)Bµn ,wt
n (z)dµn(z)

as claimed. In particular,

f ′n(0) =
N + 1

Nmn

∫

K

u(z)Bµn ,w
n (z)dµn

and if Bµn ,w
n = mn a.e. µn, we recover (96):

f ′n(0) =
N + 1

N

∫

K

u(z)dµn.

The next result was proved in a different way in [6], Lemma 2.2, and also in [11], Lemma 3.6.

Lemma 10.9. The functions fn(t) are concave.
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Proof. We show that f ′′n (t)≤ 0. With the notation used in the proof of Lemma 10.8,

f ′′n (t) =
1

2ln

(F ′n(t))
2 − F ′′n (t)

F2
n (t)

and

F ′n(t) = −
1

mn!

∫

Kmn

UV exp(−tU)dµ,

F ′′n (t) =
1

mn!

∫

Kmn

U2V exp(−tU)dµ.

We must show that (F ′n(t))
2 − F ′′n (t)≥ 0. Now, for a fixed t, we may mulitply V by a constant so that

∫

Kmn

V exp(−tU)dµ= 1.

Let dγ := V exp(−tU)dµ. Then by the above formulas for F ′n and F ′′n , we must show that

∫

Kmn

U2dγ≥
�
∫

Kmn

U dγ

�2

,

but this is a simple consequence of the Cauchy-Schwarz inequality.

The following “calculus lemma” is essential for the proof of Proposition 10.4.

Lemma 10.10. (Berman and Boucksom [5]) Let fn(t) be a sequence of concave functions on R and g(t) a function on R.
Suppose that

lim inf
n→∞

fn(t)≥ g(t), ∀t ∈ R

and that
lim
n→∞

fn(0) = g(0).

Suppose further that the fn and g are differentiable at t = 0. Then

lim
n→∞

f ′n(0) = g ′(0).

Here we really need differentiability at t = 0; one-sided differentiability is not sufficient. The last key ingredient we need
for Proposition 10.4 is an amazing relationship between the weighted transfinite diameter δw(K) and E(V ∗K ,Q). Indeed, the proof
of this result uses Theorem 10.3 and is more difficult but almost equivalent to Proposition 10.4.

Proposition 10.11. For K ⊂ CN compact and w an admissible weight on K, we have

− logδw(K) = E(V ∗K ,Q)− E(VT ). (97)

With these preliminaries, we now prove Proposition 10.4.

Proof. Recall we are assuming the measures {µn} satisfy (92):

lim
n→∞

N + 1

2Nnmn
· logdet Gµn ,w

n = logδw(K)

and we want to show (93):
1

mn
Bµn ,w

n dµn→ µK ,Q =
1

(2π)N
(dd c V ∗K ,Q)

N weak- ∗ .

For u ∈ C(K) we again set wt(z) := w(z)exp(−tu(z)) which corresponds to Q t := Q+ tu and fn(t) as in (95). From (92), for
t = 0, w0 = w we have

lim
n→∞

fn(0) =− log(δw(K)).

From (97) and Theorem 10.3, setting g(t) =− log(δwt (K)),

g ′(0) =
N + 1

N(2π)N

∫

K

u(z)(dd c V ∗K ,Q)
N . (98)

Now note that for each fixed t, the measure µn is a candidate for the optimal measure for K and wt . If follows from Definition
9.1 that

det(Gµn ,wt
n )≤ det(Gµ

t
n ,wt

n )
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where we denote an optimal measure for K and wt by µt
n. Hence (see (95))

fn(t)≥−
1

2mn
log(det(Gµ

t
n ,wt

n ))

and consequently from Proposition 9.7 we have

lim inf
n→∞

fn(t)≥− log(δwt (K)) = g(t). (99)

It now follows from Lemma 10.10 that
lim
n→∞

f ′n(0) = g ′(0).

In other words, by Lemma 10.8,

lim
n→∞

N + 1

N

∫

K

u(z)dµn =
N + 1

N(2π)N

∫

K

u(z)(dd c V ∗K ,Q)
N

=
N + 1

N

∫

K

u(z)dµK ,Q,

and hence µn→ µK ,Q weak−∗.

The reader can consult [22] for a self-contained discussion of the results in this section.

Exercises.

1. Prove that the operator P : A(K)→ L+(CN ) is increasing and concave: for 0≤ t ≤ 1 and Q1,Q2 ∈A(K),

P(Q1)≤ P(Q2) if Q1 ≤Q2 and

P(tQ1 + (1− t)Q2)≥ tP(Q1) + (1− t)P(Q2).

2. Prove (91) using the following outline:

(a) We can assume u≥ 0 (why?). For ε > 0, apply (46) to (1+ ε)u and v on the bounded set {(1+ ε)u< v}.
(b) Show that

⋃∞
j=1{(1+ 1/ j)u< v}= {u< v}.

(c) Apply (a) with ε= 1/ j and conclude using (b) and monotone convergence.

3. Verify that Bµn ,w
n (x (n)j ) = mn for j = 1, ..., mn for any discrete, equally weighted measure µn := 1

mn

∑mn
j=1 δx(n)j

with

|V DM(x (n)1 , · · · , x (n)mn
)|w(x (n)1 )

nw(x (n)2 )
n · · ·w(x (n)mn

)n 6= 0.

(Hint: Show that the orthonormal polynomials are given by q(n)j (z) =
p

mn ln j (z)

w(x(n)j )
2n

where ln j is the FLIP associated to x (n)j

(recall (66) ).

4. Prove Lemma 10.10.
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11 Appendix A: Differential forms and currents in CN .
We introduce some standard material on differential forms and currents. We may identify CN with R2N via the mapping

(z1, . . . , zN ) = (x1 + i y1, . . . , xN + i yN ) 7→ (x1, y1, . . . , xN , yN ).

We have for k = 1, . . . , N , the complex differentials

dzk = d xk + id yk, dzk = d xk − id yk.

We also recall the following notation—for a multi-index I = (i1, . . . , ip) we write

|I |= p (the multi-index length),

dz I = dzi1 ∧ · · · ∧ dzip , dz I = dz i1 ∧ · · · ∧ dz ip .

The standard volume form in CN ∼ R2N is defined by

dV2N :=
�

i

2

�N

dz1 ∧ dz1 ∧ · · · ∧ dzN ∧ dzN = d x1 ∧ d y1 ∧ · · · ∧ d xN ∧ d yN .

Let D be a domain in CN and k a nonnegative integer, k ≤ 2N . A complex differential k-form on D can be written as

ω= Σ′|I |+|J |=kωI J dz I ∧ dzJ

for some coefficient functions ωI J ∈ C∞(D,C) := C∞(D). Here the ‘prime’ ( ′ ) indicates that we sum over increasing multi-
indices only: if I = (i1, . . . , ip), then 1≤ i1 < i2 < · · ·< ip ≤ N . The norm of ω is given pointwise by

|ω|=
�

Σ′|I |+|J |=k|ωI J |2
�

1
2

.

It measures at each point of D the Euclidean norm of the k-form with respect to the orthonormal basis {dz I ∧ dzJ}|I |+|J |=k.

We write
∧k(D,C) to denote the complex vector space of (smooth) k-forms on D. The 0-forms, by convention, are the

functions in C∞(D,C). The space
∧k(D,C) has some important subspaces. Given nonnegative integers p, q with p+ q = k, we

define
∧p,q(D,C), the forms of bidegree (p,q), as the set of all k-forms ω that can be written as

ω= Σ′|I |=p,|J |=qωI J dz I ∧ dzJ .

In pluripotential theory we often consider only the spaces
∧p,p(D,C), where 0≤ p ≤ N is a nonnegative integer. Note that

∧2N (D,C) =
∧N ,N (D,C). For such differential forms, we will define the notion of positivity.

Definition 11.1. An (N , N)-form ω on D is called positive if ω= τdV2N for some function τ : D→ [0,∞).

A (p, p)-form α is called elementary strongly positive if there are linearly independent complex linear mappings η j : CN →
C, j = 1, . . . , p such that

α=
i

2
dη1 ∧ dη1 ∧ · · · ∧

i

2
dηp ∧ dηp.

A form ω is called strongly positive if ω=
∑

λ jω j for m non-negative numbers λ1, . . . ,λm and elementary strongly positive
forms ω1, . . . ,ωm, where m is a positive integer.

A (p, p)-form ω is called positive if for any strongly positive (N−p, N−p)-form η, the (N , N)-form ω∧η is positive.
As an example, the standard Kähler form in CN is defined by β := i

2

∑N
j=1 dz j ∧ dz j . For a positive integer p ≤ N ,

β p = β ∧ · · · ∧ β (p times) is a positive (p, p)-form. In particular, βN = N !dV2N .
We denote by Dk(D,C) the subspace of

∧k(D,C) made up of those forms whose coefficients are in C∞0 (D,C) := C∞0 (D).
They are called the test forms of degree k. Note that D0(D,C) = C∞0 (D,C), the usual test functions of distribution theory. The
test forms of bidegree (p, q), Dp,q(D,C), are defined similarly.

We equip D0(D,C) with the topology characterized by the following convergence property: given test functions {φ j}∞j=1,φ
then φ j → φ if there exists a compact set K ⊂ D such that

1. supp(φ j), supp(φ)⊂ K

2. The functions φ j converge uniformly to φ on K , and the derivatives (of all orders) of φ j converge uniformly to the
corresponding derivatives of φ.

The topology on Dk(D,C) is characterized by the property that given forms {ω j},ω in Dk(D,C), then ω j → ω if and only if
each coefficient of ω j converges to the corresponding coefficient of ω in the above sense.

Definition 11.2. A current T of degree k is a linear functional on D2N−k(D,C), i.e., an element of the dual space
�

D2N−k(D,C)
�′.

We will use the dual pairing notation <T,φ> to indicate the action of a current T on a test form φ.
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We furnish the space of currents
�

D2N−k(D,C)
�′ with the weak∗ topology, which is characterized by the property that given

currents {T j}, T then T j → T if and only if <T j ,φ>→ <T,φ> for all φ ∈D2N−k(D,C).

If T is a k-current and ψ is a smooth m-form with k+m≤ 2N , then we define the (k+m)-current T ∧ψ by the formula

<T ∧ψ , φ>:=<T , ψ∧φ>, φ ∈DN−k−m(D,C). (100)

Remark 4. One can extend the definition of differential k-forms to a larger class by allowing the forms to have distribution
coefficients. Denoting the set of such forms by D′k(D,C), it turns out that D′k(D,C) =

�

D2N−k(D,C)
�′. Similarly, we can also

define D′p,q(D,C) to be the (p, q)-forms with distribution coefficients. Then we also have D′p,q(D,C) =
�

DN−p,N−q(D,C)
�′, the

currents of bidegree (p, q).
A distribution T , considered as a 0-current, acts on a test 2N -form φ = φ2N dV2N by the formula

<T,φ> := (T,φ2N ), (101)

where the pairing (·, ·) on the right-hand side of 101 is the usual pairing of a distribution with a test function. If T is a k-current
in CN that can be written as T = T0ω where T0 is a distribution and ω is a k-form, then by (100) and (101), T acts on a test
form φ of degree 2N−k as follows:

<T,φ>=<T0 , ω∧φ>= (T0 , [ω∧φ]2N ).

In the above equation we use the subscript 2N to denote the coefficient of dV2N in a 2N -form on CN .
We will generalize the notion of positivity in Definition 11.1 to currents; first, we recall the notion of a positive distribution.

Definition 11.3. A positive distribution is a distribution S such that for any test function φ with range in [0,∞), we have
(S,φ) ∈ [0,∞).

Definition 11.4. For k ≤ N , a (k, k)-current T is called positive if for every strongly positive (N−k, N−k)-formω, T∧ω= τdV2N
for some positive distribution τ.

Remark 5. A positive distribution can be extended to a linear functional on C0(D,C). The Riesz representation theorem says that
for any continuous linear functional A on C0(D), there exists a unique measure µ such that (A,φ) =

∫

D
φ dµ for any φ ∈ C0(D).

The measure µ thus obtained is called a Radon measure. We may therefore identify positive distributions with Radon measures.
If T is a current which can be written in the form T = µω, where ω is a k-form and µ is a Radon measure, then the action of T
on a test (2N−k)-form φ is given by

<T , φ>=<µ , ω∧φ>=
∫

[ω∧φ]2N dµ.

Dolomites Research Notes on Approximation ISSN 2035-6803



Levenberg 58

12 Appendix B: Exercises on distributions.
1. If g ∈ L1

loc(R), we define the distribution Lg via

Lg(φ) =

∫

R
φ(x)g(x)d x

for φ ∈ C∞0 (R).
(a) Show that if {gn} ⊂ L1

loc(R) and gn→ g in L1
loc(R), then Lgn

→ Lg as distributions.
(b) Verify that if g ∈ C1(R) then L′g = Lg′ .

2. If g1, g2 ∈ L1
loc(R) and g1 = g2 a.e., then clearly Lg1

= Lg2
as distributions. Prove the converse: let g1, g2 ∈ L1

loc(R);
suppose that

Lg1
(φ) = Lg2

(φ) for all φ ∈ C∞0 (R);

and show that g1 = g2 a.e. (Hint: Clearly g1∗χ1/ j = g2∗χ1/ j for all j = 1,2, ... where χ(x) = χ(|x |)≥ 0 with χ ∈ C∞0 (R)
and

∫

R χ(x)d x = 1. Thus it suffices to show that gi ∗χ1/ j → gi , i = 1,2 in L1
loc(R) as j→∞).

3. Let f (x) = |x |.

(a) Show that if φ is a C1−function (φ is differentiable and φ′ is continuous) which is identically zero outside of an
interval; e.g., φ(x) = 0 if |x |> M for some M , then

∫

R
φ′(x) f (x)d x =−

∫

R
φ(x) f ′(x)d x .

(b) Show that if φ is a C2−function (φ′′ is continuous) which is identically zero outside of an interval; e.g., φ(x) = 0
if |x |> M for some M , then

∫

R
φ′′(x) f (x)d x = 2φ(0).

This shows in particular that as distributions,

L′′|x | = 2δ0(x)

where δ0(x) is the delta function at 0; i.e., the distribution whose action on a test function φ(x) gives φ(0).

4. We defined the derivative L′ of a distribution L by L′( f ) := −L( f ′) and the product of a distribution L and a smooth
function g by

(g ·L)( f ) := L(g f ).

(a) Using this definition, find the distribution x ·δ0(x); i.e., describe its action on a test function f (x).
(b) Using this definition, and the definition of distributional deriviative, find the distribution x · δ′0(x); i.e., describe

its action on a test function f (x).
(c) Using this definition, and the definition of distributional deriviative, find the distribution x2 ·δ′′0 (x); i.e., describe

its action on a test function f (x).

5. We recall again the derivative L′ of a distribution L in one variable is defined by L′( f ) :=−L( f ′).
(a) Suppose g is piecewise smooth on R, differentiable on R \ {0}, and has a (possible) jump discontinuity at 0; i.e.,

g(0+) := limx→0+ g(x) and g(0−) := limx→0− g(x) exist but (perhaps) are different. Find the distribution L′g ;
i.e., describe its action on a test function f (x).

(b) Let g(x) be the Heaviside function H(x); i.e., H(x) = 0 if x < 0 and H(x) = 1 if x > 0. What does your answer
to (a) give for the action of L′H on a test function f (x)?

(c) Compare the distributions L′g1
and L′g2

where

g1(x) = 0 for x ≤ 0 and g1(x) = x2 for x ≥ 0 and

g2(x) =−1 for x < 0 and g2(x) = x2 for x ≥ 0;

i.e., describe each one’s action on a test function f (x).

6. Suppose L is a distribution with L′ = 0, i.e., L′( f ) = 0 for all f ∈ C∞0 (R). What can you conclude about L ?

7. Let g(x , y) = H(x)H(y) : R2→ R where H is the (univariate) Heaviside function; i.e., H(x) = 0 if x < 0 and H(x) = 1
if x > 0. Then g determines a distribution Lg on C∞0 (R

2) by

Lg( f ) :=

∫ ∫

f (x , y)g(x , y)dA(x , y).

Determine the distribution ∆Lg ; i.e., describe its action on a test function f (x , y).
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