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Numerical methods for Fredholm integral equations
based on Padua points

Anna Lucia Laguardia a · Maria Grazia Russo b

Abstract

The numerical solution of two-dimensional Fredholm integral equations on the square by Nyström and
collocation methods based on the Padua points is investigated. The convergence, stability and well
conditioning of the methods are proved in suitable subspaces of continuous functions of Sobolev type.
Some numerical examples illustrate the efficiency of the methods. A comparison with the tensorial
approximation methods, of Nyström and collocation type, based on Legendre zeros, is given.

1 Introduction
The paper deals with the numerical approximation of the solution of Fredholm integral equations (FIEs) of the second kind

f (x , y)−µ
∫

S

k(x , y, s, t) f (s, t)dsd t = g(x , y), (x , y) ∈ S, (1)

where S = [−1,1]2, µ ∈ R, k and g are given continuous functions defined on S2 := S × S and S respectively, while f is the
unknown function.

Such equations appear in different areas, as computer graphics, aerodynamics, mathematical physics, electromagnetic
scattering etc. Indeed some of the problems directly lead to FIEs, as in the case of the rendering equation [10], while some others,
for instance the boundary value ones, can be rewritten in this form, see e.g. [2].

In the last years several different numerical approaches for solving FIEs appeared. Some examples are collocation or Nyström
methods based on piecewise polynomial approximation [11], Galerkin methods based on wavelets (see [3] and the references
therein), discrete or iterated Galerkin methods [9]. Next, global approximation strategies were presented in [12] and [13].

In particular in [12] it was proposed a Nyström method based on the tensor product of two univariate Gaussian rules as well
as a collocation one using the product of two Lagrange interpolating polynomials in some Jacobi zeros.

Moreover in that paper the more general case of functions having singularities along the sides of S was considered and the
whole study of the methods was carried out in subspaces of weighted continuous functions. Nevertheless it is well known that, if
on the one hand the convergence of the proposed methods behaves like the best polynomial approximation of the solution and
the approximation functions can be evaluated wherever it is necessary, on the other hand the tensor product strategy is usually
expensive and the linear systems arising from the methods and which have full matrices of coefficients, can have a large size.

In [6] new sets of nodes, called Padua points, and constructed by means of suitable sub-sequences of Chebychev polynomials
of the second kind, were introduced. Moreover the interpolation and the cubature rules using this set of nodes were studied in [6]
and in [14], respectively. One of the most interesting thing from the application point of view is that the proposed interpolating
process has optimal Lebesgue constants and the cubature error behaves like the best polynomial approximation of the integrating
function.

In addition, with respect to the same order of convergence, the number of interpolation/cubature nodes is about half of that
necessary to build concurrent interpolation/cubature processes of the tensor type using Jacobi zeros.

For the above mentioned reasons, in the present paper we propose a Nyström method and a collocation one, both based on
Padua points, in order to numerically solve equations of the type (1).

We prove convergence, stability and well conditioning of the methods and show in particular when these methods perform
better than those proposed in [12].

The outline of the paper is the following. Section 2 is devoted to notations and preliminary results in particular about the
Padua points. In Section 3 the proposed methods for solving equation (1) are presented and discussed. Section 4 is dedicated
to the numerical experiments, showing the effectiveness of the methods and discussing the comparison with other concurrent
numerical strategies. Finally Section 5 includes the proofs.
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2 Notations and preliminary results
In this section we introduce some notations and preliminary results, useful in the paper. We will denote by C a generic positive
constant, having different values in different estimates. Moreover if C depends on some quantities say a, b, . . . then we will write
C = C(a, b, . . .). On the contrary for saying that C is independent of a, b, . . ., we will use C ̸= C(a, b, . . .).

Next, by C0(S)we will intend the space of continuous functions on S equipped by the uniform norm || f ||∞ =max(x ,y)∈S | f (x , y)|.
It will be also handy to write fx = f (x , ·) and f y = f (·, y) for fixed x , y ∈ S. For smoother functions we introduce the following
Sobolev-type space

Wr =
¦

f ∈ C0(S) : Mr( f ) := sup {|| f (r)y ϕ
r ||∞, || f (r)x ϕ

r ||∞}< +∞
©

, r ∈ N,

where the superscript (r) denotes the r th derivative of the one-dimensional function f y or fx , and ϕ(z) =
p

1− z2, is computed
in the variable with respect to which we are considering the derivative of f (x in the first norm, y in the second one). We equip
Wr with the norm

|| f ||Wr
= || f ||∞ +Mr( f ).

Now, let Π2
n be the space of bivariate algebraic polynomials of total degree n and Pn,n be the space of bivariate polynomials of

degree n in each variable. Obviously Pn,n ⊂ Π2
2n.

We denote by En( f ) and En,n( f ) the errors of best polynomial approximation for bivariate continuous functions by means of
polynomials in Π2

n and Pn,n respectively, i.e.

En( f ) := inf
P∈Π2

n

|| f − P||∞, En,n( f ) := inf
P∈Pn,n
|| f − P||∞.

From the definitions it follows
E2n( f )≤ En,n( f )≤ En( f ). (2)

In this framework, we recall that in [12] the following Favard-type inequality was proved

∀ f ∈Wr En,n( f )≤
C
nr
|| f ||Wr

, C ̸= C(n, f ), (3)

and consequently by (2) the same estimate holds true also for En( f ) i.e.

∀ f ∈Wr En( f )≤
C
nr
|| f ||Wr

, C ̸= C(n, f ). (4)

2.1 The Padua points

Let us recall the so-called Padua points, introduced in [6]. The Padua points is a set of nodes defined as the union of two
bidimensional Chebychev-like grids

Padn = CO
n+1 × C E

n+2 ∪ C E
n+1 × CO

n+2 ⊂ Cn+1 × Cn+2,

where Cn+1 =
¦

zn
j = cos ( j−1)π

n j = 1, ..., n+ 1
©

denotes the set of Chebychev nodes of second kind( including ±1) and C E
n+1,

CO
n+1 are the restrictions to the even and odd indexes respectively. By definition the points Padn lie into the square S.

From now we denote in bold a two-dimensional point x = (x1, x2).
The interpolating polynomial on Padua points is defined as

Ln f (x , y) =
∑

ξ∈Padn

ℓn,ξ(x , y) f (ξ1,ξ2), (5)

where ℓn,ξ(x , y) are the fundamental Lagrange polynomials and satisfy

ℓn,ξ(η) = δξη, δξη =







1 if ξ= η

0 if ξ ̸= η
, ξ,η ∈ Padn. (6)

The fundamental Lagrange polynomials can be written as

ℓn,ξ(x , y) =ωξ(Kn(ξ1,ξ2, x , y)− Tn(ξ1)Tn(x)), ξ= (ξ1,ξ2),

where the quantities {ωξ} are weights of a cubature formula for the product Chebychev measure, exact on almost Π2
2n, and they

are defined as follows

ωξ =
1

n(n+ 1)











1
2

if ξ is a vertex

1 if ξ is an edge point
2 if ξ is an interior point

,

Tn(z) = cos(k arccos(z)) denotes the Chebychev polynomial of first kind and Kn is the reproducing kernel of Π2
n equipped with

the inner product

〈 f , g〉=
∫

S

f (x1, x2)g(x1, x2)W (x1, x2)d x1d x2 =

∫

S

f (x1, x2)g(x1, x2)
d x1

π
Æ

1− x2
1

d x2

π
Æ

1− x2
2

,
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that is, with T̂n =
p

2Tn, T̂0 = 1, denoting the Chebychev first kind orthonormal sequence,

Kn(x , y) =
n
∑

k=0

k
∑

j=0

T̂ j(x1)T̂k− j(x2)T̂ j(y1)T̂k− j(y2), x = (x1, x2), y = (y1, y2),

with the reproduction property
∫

S

Kn(x , y)pn(y)W (y)d y = pn(x ), ∀pn ∈ Π2
n.

There is another way of writing the interpolant at Padua points i.e. via its representation in the basis {T̂ j(x1)T̂k− j(x2)}, 0≤ j ≤
k ≤ n, which is orthonormal with respect to the product Chebychev measure. In fact we have

Ln f (x , y) =
n
∑

k=0

k
∑

j=0

c j,k− j T̂ j(x)T̂k− j(y),

where
c j,k− j =
∑

ξ∈Padn

f (ξ1,ξ2)ωξ T̂ j(ξ1)T̂k− j(ξ2), (k, j) ̸= (n, n),

cn,0 =
1
2

∑

ξ∈Padn

f (ξ1,ξ2)ωξ T̂n(ξ1).

The Lebesgue constants of the interpolating operator at the Padua points Λn =max(x ,y)∈S

∑

ξ∈Padn
|ℓn,ξ(x , y)| have order of growth

O(log2 n)[4], where n is the degree of the polynomial, which is the optimal order as proved in [8]. Hence by the results in [5, 4]
and by (4) it immediately follows

Theorem 2.1. For any f ∈Wr , r ≥ 1, there holds

|| f −Ln f ||∞ ≤ (1+Λn)En( f )≤ C
log2 n

nr
∥ f ∥Wr

, (7)

where C is a suitable positive constant, independent on f and n.

In [14] the following nontensorial Cleshaw-Curtis cubature formula was introduced, by integrating the interpolating polyno-
mial at the Padua points

∫

S

f (x , y)d xd y =
∑

ξ∈Padn

λξ f (ξ1,ξ2) + En( f ), (8)

where En( f ) denotes the error of the formula and it depends on f and n,

λξ =ωξ
∑

|α|≤n

pα(ξ)mα, pα(x , y) = T̂α1
(x)T̂α2

(y), α= α1 +α2,

and

mα =

∫ 1

−1

T̂α1
(x)d x

∫ 1

−1

T̂α2
(y)d y = µα1

µα2
,

with

µk =











2 k = 0
2
p

2
1− k2

k even,k ̸= 0

0 k odd

.

This formula has weights λξ that are not always positive. About the degree of precision, the convergence and stability of cubature
rule the following result was proved in [14].

Theorem 2.2. Formula (8) is exact on Π2
n, is convergent, holding

�

�

�

�

�

∫

S

f (x , y)d xd y −
∑

ξ∈Padn

λξ f (ξ1,ξ2)

�

�

�

�

�

≤ Cπ2En( f ), C ̸= C(n, f )

and is stable, since
lim

n

∑

ξ∈Padn

|λξ|= 4.

From the previous theorem and (4) it immediately follows.

Corollary 2.3. For any f ∈Wr , r ≥ 1, there holds
�

�

�

�

�

∫

S

f (x , y)d xd y −
∑

ξ∈Padn

λξ f (ξ1,ξ2)

�

�

�

�

�

≤
C
nr
∥ f ∥Wr

, C ̸= C(n, f ). (9)
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3 Numerical methods for FIE
Setting

K f (x , y) = µ

∫

S

k(x , y, s, t) f (s, t)dsd t,

then (1) can be rewritten in operatorial form as
(I − K) f = g, (10)

where I is the identity operator on C0(S).
Let us denote k(s,t)( respectively k(x ,y)) the function k of four variables considered as a function of only (x , y) (respectively (s, t)),
i.e.

k(s,t) = k(·, ·, s, t), for fixed s, t ∈ S, k(x ,y) = k(x , y, ·, ·), for fixed x , y ∈ S.

Using standard arguments, it is possible to prove that if k(x , y, s, t) is continuous w.r.t. all the four variables, then K is compact,
as a map of C0(S) into itself, and consequently the Fredholm Alternative holds true for (10) in C0(S), (see for instance [1]). For
this reason we assume that k is at least continuous in each variable. Moreover, if for some r ∈ N, it is

sup
(s,t)∈S
||k(s,t)||wr

< +∞ (11)

then immediately follows that K f ∈ Wr , for any f ∈ C0(S) (see for instance [12]). Therefore if also g ∈ Wr then by (10) we
deduce that f = g + K f ∈Wr .
We underline that the proofs of the theorems of the next subsections are shown in Section 5.

3.1 A Nyström method

In this subsection we introduce a Nyström method based on the non-tensorial cubature (8), with nodes ξ ∈ Padn and weights λξ.
In order to approximate operator K in (10), we can define the discrete linear operator Kn as follows

Kn f (x , y) = µ
∑

ξ∈Padn

λξk(x , y,ξ1,ξ2) f (ξ1,ξ2)

and consider the equation
(I − Kn) fn = g, (12)

where fn is an unknown function. Therefore the new goal is to determine fn, that means to solve (12) instead of (10). To do this,
taking into account the expression of Kn, we collocate (12) on Padn, which has cardinality N = (n+1)(n+2)

2 , i.e. we write down
(12) evaluated on each η ∈ Padn. In this way we obtain that the quantities aξ := fn(ξ1,ξ2), where ξ= (ξ1,ξ2) ∈ Padn, are the
unknowns of the following linear system

aη −µ
∑

ξ∈Padn

λξk(η1,η2,ξ1,ξ2)aξ = g(η1,η2), η= (η1,η2) ∈ Padn. (13)

Setting An = (δηξ −µλξk(η,ξ))ξ,η∈Padn
, b = (g(ξ))Tξ∈Padn

and a = (aξ)ξ∈Padn
, with δξη defined in (6), linear system (13) can be

rewritten in a matrix form as follows
Ana = b. (14)

The solution of this system (if it exists) allows us to construct the unknown fn, also called the Nyström interpolant in two variables,
directly from (12), as

fn(x , y) = g(x , y) +µ
∑

ξ∈Padn

λξk(x , y,ξ1,ξ2)aξ, ξ= (ξ1,ξ2) ∈ Padn, (15)

which will approximate the unknown f of equation (10). Therefore the finite dimensional equation (12) and the linear system
(14) are equivalent. In addition we remark that since we are assuming k and g to be continuous on S2 and S respectively, then fn
will be continuous on S too.

Now let cond(An) = ||An||||A−1
n || denote the condition number in the maximum row sum norm of the coefficient matrix An of

system (13).

Theorem 3.1. Let ker(I − K) = {0} and assume

sup
(s,t)∈S
||k(s,t)||Wr

< +∞, sup
(x ,y)∈S

||k(x ,y)||Wr
< +∞, g ∈Wr .

Then the method is stable, i.e. operators (I − Kn)−1 are uniformly bounded, the equivalent linear system (14) has a unique solution
and it is well conditioned since

sup
n

cond(An)< +∞. (16)

Moreover the Nyström interpolant fn converges to unique solution f ∗ ∈Wr and there holds

|| f ∗ − fn||∞ ≤
C
nr
|| f ∗||Wr

, C ̸= C(n, f ∗). (17)
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3.2 A discrete collocation method

We describe now a discrete collocation method based on the interpolating operator Ln f (x , y) =
∑

ξ∈Padn
ℓn,ξ(x , y) f (ξ1,ξ2),

defined in (5).
In (10) we first replace K f with

K∗ f (x , y) = µ

∫

S

Ln(k(x ,y), s, t) f (s, t)dsd t,

i.e. K∗ f is obtained from K f projecting the kernel k on the space Π2
n by means of operator Ln.

As a second step we use Ln once again, to project the modified equation (i.e. with K∗ instead of K) on Π2
n, searching for a

solution in Π2
n. Hence we have

Fn −Ln(K
∗Fn) = Ln g,

where Fn ∈ Π2
n is an unknown polynomial. Setting HnFn = Ln(K∗Fn) we get the following finite dimensional equation

(I −Hn)Fn = Ln g. (18)

We search for the unknown polynomial Fn via its representation in the basis {ℓn,γ}γ∈Padn
of the Lagrange fundamental

polynomials, i.e.
Fn(x , y) =
∑

γ∈Padn

Fn(γ1,γ2)ℓn,γ(x , y), γ= (γ1,γ2) ∈ Padn. (19)

In order to determine the coefficients Fn(γ1,γ2), γ ∈ Padn, we collocate (18) on the points η= (η1,η2) ∈ Padn and we obtain

Fn(η1,η2)−Ln(K
∗Fn,η1,η2) = Ln(g,η1,η2).

As the Padua points are the interpolation knots, we have

Fn(η1,η2)− K∗Fn(η1,η2) = g(η1,η2), (η1,η2) ∈ Padn. (20)

On the other hand K∗Fn(η), with η ∈ Padn, can be written as

K∗Fn(η) = µ

∫

S

Ln(k(η1,η2, s, t)Fn(s, t)dsd t =

= µ

∫

S

∑

ξ∈Padn

k(η1,η2,ξ1,ξ2)ℓn,ξ(s, t)Fn(s, t)dsd t =

= µ
∑

ξ∈Padn

k(η1,η2,ξ1,ξ2)

∫

S

ℓn,ξ(s, t)Fn(s, t)dsd t.

(21)

Using (19) we finally get

K∗Fn(η) = µ
∑

ξ∈Padn

k(η1,η2,ξ1,ξ2)
∑

γ∈Padn

Fn(γ1,γ2)

∫

S

ℓn,ξ(s, t)ℓn,γ(s, t)dsd t.

Substituting these quantities in (20) we get the linear system

Fn(η1,η2)−µ
∑

ξ∈Padn

k(η1,η2,ξ1,ξ2)
∑

γ∈Padn

Fn(γ1,γ2)

∫

S

ℓn,ξ(s, t)ℓn,γ(s, t)dsd t = g(η1,η2)

and denoting aη = Fn(η1,η2),η= (η1,η2) ∈ Padn we get

aη −µ
∑

γ∈Padn

∑

ξ∈Padn

k(η1,η2,ξ1,ξ2)Mξ,γaγ = g(η1,η2), (22)

where we set Mξ,γ =
∫

S
ℓn,ξ(s, t)ℓn,γ(s, t)dsd t. By construction, linear system (22) is equivalent to the finite dimensional equation

(18) and therefore if this system is solvable it allows to construct the approximating polynomial Fn ∈ Π2
n defined as in (19).

For calculating the integrals Mξ,γ we can approximate them with the cubature formula (8), and we obtain

Mξ,γ =

∫

S

ℓn,ξ(s, t)ℓn,γ(s, t)dsd t ≈
∑

ζ∈Padn

λζδξζδγζ

where δξη denotes the Kronecher symbol δξη =

�

1 if ξ= η
0 if ξ ̸= η

ξ,η ∈ Padn, and then finally we obtain the linear system

aη −µ
∑

γ∈Padn

λγk(η1,η2,γ1,γ2)aγ = g(η1,η2), (η1,η2) ∈ Padn. (23)

We recognize that we get the same linear system (13) obtained in the Nyström method, that we already said to be well
conditioned (see (16)).

About the convergence and stability of the proposed method we have the following result.
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Theorem 3.2. Let ker(I − K) = {0} and assume

sup
(s,t)∈S
∥k(s,t)∥Wr

< +∞, sup
(x ,y)∈S

||k(x ,y)||Wr
< +∞, g ∈Wr . (24)

Then the method is stable, i.e. (I −Hn)−1 are uniformly bounded, the equivalent linear system (22) has a unique solution. Moreover
the approximating polynomial Fn converges to the unique solution f ∗ ∈Wr and there holds

∥ f ∗ − Fn∥∞ ≤
C log2 n

nr
|| f ∗||Wr

, C ̸= C(n, f ∗). (25)

Remark 1. From theorems 3.1 and 3.2 immediately follows that, except for the factor log2 n in the convergence estimate of
the collocation method, the two proposed methods are equivalent and they are reduced to solve the same linear system. The
substantial difference is that the Nyström interpolant (15) is not a polynomial, while Fn in (19) is.

4 Numerical tests
We consider some numerical tests to confirm the effectiveness of our methods.

All the numerical tests were performed in Matlab (release R2022a) on a 2.9 GHz Intel Core i9 6 core processor. For the
computations we used the Matlab package of Padua points described in [7].

The errors were computed as the relative discrete errors on a grid of equidistant nodes in S

errMethodPD=
∥ f ∗(x )− f ∗n (x )∥∞
∥ f ∗(x )∥∞

,

where x = (x i)i=1,...,M , x i ∈ S, M = 10000 and f ∗n is one of the approximating functions of the proposed methods.
When f ∗ was not known, f ∗Nmax was used instead, for Nmax large enough. N = (n+1)(n+2)

2 in the tables is the cardinality of
Padn and denotes the dimension of the solved linear systems. Finally in the table it is reported the condition numbers of the
matrices, evaluated in the maximum row sum norm and is denoted by condPD.

First of all we propose three tests on equations for which it is known the exact solution.

Example 4.1. We consider the following equation

f (x , y)− 2

∫

S

|s+ t|
20
3 (x2 + y) f (s, t)dsd t = x2 + y2 − 2

5
3

�

88704
8671

(x2 + y)
�

.

The exact solution is f ∗(x , y) = x2 + y2 and the kernel, the known function and the parameter µ are

µ= 2, k(x , y, s, t) = |s+ t|
20
3 (x2 + y), g(x , y) = x2 + y2 − 2

5
3

�

88704
8671

(x2 + y)
�

As k(x ,y) ∈W6 and k(s,t), g ∈Wr ,∀r, according to the theoretical estimates we expect an error behaving as O( 1
n6 ). The numerical

results show an estimated convergence order of 10, while machine accuracy cannot be achieved as the condition number is on
the order of 102.

N n errNyströmPD errCollocationocationPD condPD
45 8 8.564786984888906e-05 8.564786985372077e-05 2.067606475761332e+02

153 16 2.857144285031600e-09 2.857153275729234e-09 2.079016750954457e+02
561 32 6.724067533925515e-13 1.118669127180640e-12 2.094718270026205e+02

2145 64 4.370579275376739e-14 6.638302972643527e-14 2.100237468954103e+02

Table 1: Numerical results for Example 4.1

Example 4.2. Consider the equation

f (v, w)−
∫

[0,1]2

v
(8+w)(1+ z + ζ)

f (z,ζ)dzdζ=
1

(1+ v +w)2
−

v
48+ 6w

, (v, w) ∈ [0, 1]2,

taken from [3] where a discrete Galerkin method based on wavelets approximation was proposed. The exact solution is
f ∗(v, w) = 1

(1+v+w)2 .
By linear transformation the integral equation can be considered on the square [−1,1]2 with kernel, known function and

parameter µ as

µ=
1
2

, k(x , y, s, t) =
1+ x

(17+ y)(4+ s+ t)
, g(x , y) =

4
(4+ x + y)2

−
1+ x

2(51+ 3y)
.

As k(x ,y), k(s,t), g ∈ Wr ,∀r, so also the solution fn ∈ Wr ,∀r, and according to the theoretical results we expect a very fast
convergence. The numerical tests confirm this expectation. We remark that for this test function in [3] the better error shows an
estimated order of convergence 4.
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N n errNyströmPD errCollocationPD condPD
45 8 2.109545408864362e-07 6.415945822506977e-05 1.137326923692149e+00

153 16 1.035211849592365e-12 2.429720107599548e-09 1.137134675872489e+00
561 32 2.491699150543592e-17 1.223701138378075e-15 1.137114729433788e+00

Table 2: Numerical results for Example 4.2

Example 4.3. Consider the equation, once again taken from [3]

f (v, w) +

∫

[0,1]2
vwez+ζ f (z,ζ)dzdζ= e−v−w,

and the exact solution of which is f ∗(v, w) = e−v−w − 1
2 vw. By linear transformation the integral equation can be considered on

the square [−1,1]2 with kernel, known function and parameter µ as

µ= −
1

16
, k(x , y, s, t) = (1+ x)(1+ y)e

2+s+t
2 , g(x , y) = e−

2+x+y
2 .

As k(x ,y), k(s,t), g ∈Wr ,∀r, according to the theoretical results we expect a very fast convergence and the numerical tests confirm
this expectation.

N n errNyströmPD errCollocationPD condPD
45 8 8.813092808718864e-10 4.256299436234507e-09 9.371767692740676e+00

153 16 1.145068066566441e-16 7.317906264493577e-16 9.674264996711024e+00

Table 3: Numerical results for Example 4.3

Also in this case the better estimated convergence order shown in [3] is 4 and the corresponding better performance in term
of absolute error is 10−8, while we catch the machine precision solving a linear system of order 153.

Example 4.4. Consider the equation

f (x , y)−
π

2

∫

S

(|x + s|5 + t)e y f (s, t)dsd t = cos (x y),

for which we do not known the exact solution. The kernel, the known function and the parameter µ are

µ=
π

2
, k(x , y, s, t) = (|x + s|5 + t)e y , g(x , y) = cos (x y).

As k(x ,y), k(s,t) ∈W5 and g ∈Wr ,∀r, according to the theoretical results we expect an error O( 1
n5 ) and the numerical tests confirm

this expectation.

N n errNyströmPD errCollocationPD condPD
45 8 3.025017657965084e-03 3.062913257102731e-03 1.490551539782651e+03

153 16 4.248170182393344e-06 4.353132976187091e-06 1.660326660545173e+03
561 32 4.766217466662518e-08 5.332790966304148e-08 1.702893406960435e+03

2145 64 7.633074826073621e-10 7.896547794091552e-10 1.714034174040502e+03
8385 128 1.113975003958422e-11 1.206663215091149e-11 1.716941317381609e+03

Table 4: Numerical results for Example 4.4

Now we compare the Nyström and collocation methods just described to those proposed in [12]. These are a Nyström method
based on a cubature formula obtained as the tensor product of two univariate Gaussian rules and a polynomial collocation method
using a tensor product of two Lagrange polynomials, both based on Legendre zeros.

Starting from the Gaussian formula
∫

S

f (x , y)d xd y =
n1
∑

i=1

n2
∑

j=1

λ
n1
i λ

n2
j f (xn1

i , xn2
j ) + En1 ,n2

( f ), (26)

where xm
k and λm

k are the zeros and the Christoffel numbers related to the Legendre orthonormal polynomials sequence {pm}m
respectively, then the corresponding Nyström interpolant is defined as

fn1 ,n2
(x , y) = µ

n1
∑

i=1

n2
∑

j=1

λ
n1
i λ

n2
j k(x , y, xn1

i , xn2
j ) f (x

n1
i , xn2

j ) + g(x , y). (27)

In [12] the convergence and stability of the method were proved for n1 = n2. Here we reformulate the results in a more general
framework.
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Theorem 4.1. Assume that k satisfy (11) and ker(I − K) = {0} in C0(S). Denote by f ∗ the unique solution of (10) in C0(S) for a
given g ∈ C0(S). If in addition, for some r ∈ N,

g ∈Wr , sup
(x ,y)∈S

||k(x ,y)||Wr
< +∞, (28)

then there holds

|| f ∗ − fn1 ,n2
||∞ ≤ C

�

∥ f ∗(r)x ϕr∥∞
nr

2

+
∥ f ∗(r)y ϕr∥∞

nr
1

�

, (29)

where C ̸= C(n1, n2, f ∗). In the particular case n1 = n2 = n the convergence estimate becomes

|| f ∗ − fn,n||∞ ≤ C
∥ f ∗∥Wr

nr
, C ̸= C(n, f ∗). (30)

Proof. The proof can be lead as done in [12], simply considering, when necessary, the estimate of the best approximation error in
Pn1 ,n2

in terms of the estimates of the univariate best approximation of the functions f ∗x and f ∗y .

In [12] it was also proposed a collocation method obtained by projecting (10) on the space Pn1 ,n2
by means of the Lagrange

operator

Ln1 ,n2
( f , x , y) =

n1
∑

i=1

n2
∑

j=1

ℓn1 ,i(x)ℓn2 , j(y) f (x
n1
i , xn2

j ) (31)

where ℓm,k(z) denote the Lagrange fundamental polynomials w.r.t. the sequence {pm}m, i.e. ℓm,k(z) =
pm(z)

p′m(x
m
k )(z−xm

k )
. The method

searches for a polynomial solution Fn1 ,n2
∈ Pn1 ,n2

, in the form

Fn1 ,n2
(x , y) =

n1
∑

i=1

n2
∑

j=1

ℓn1 ,i(x)ℓn2 , j(y) f (x
n1
i , xn2

j ).

In order to obtain optimal Lebesgue constants for the Lagrange operator (31) it is necessary to consider the approximation of the
equation in a weighted spaces of continuous function Cu(S), where u(x , y) = vγ1 ,δ1(x)vγ2 ,δ2(y) and vγ,δ(z) = (1− z)γ(1+ z)δ

denotes a suitable Jacobi weight, with nonnegative exponents. Cu(S) can be equipped with the weighted norm ∥ f u∥∞ and
mutatis mutandis Sobolev type subspaces Wr(u) can be introduced (for more details see [12]). As done for the above mentioned
Nyström method we reformulate the convergence and stability results for the tensorial collocation method, stated in [12] for
n1 = n2 = n, in the more general case.

Theorem 4.2. Assume the exponents of u satisfy 1
4 ≤ γi ,δi ≤

5
4 , i = 1, 2, and let ker(I −K) = {0} in Cu(S). Denote by f ∗ the unique

solution of (10) in Cu(S) for a given g ∈ Cu(S). Moreover let

g ∈Wr(u), sup
(s,t)∈S
∥k(s,t)∥Wr (u) < +∞, sup

(x ,y)∈S
u(x , y)∥k(x ,y)∥Wr

< +∞,

Then

||[ f ∗ − Fn1 ,n2
]u||∞ ≤ C log n1 log n2

�

∥ f ∗(r)x ϕru∥∞
nr

2

+
∥ f ∗(r)y ϕru∥∞

nr
1

�

(32)

where C ̸= C(n1, n2, f ∗). In the particular case n1 = n2 = n the convergence estimate becomes

||[ f ∗ − Fn,n]u||∞ ≤ C log2 n
∥ f ∗∥Wr (u)

nr
, C ̸= C(n, f ∗). (33)

Proof. The proof can be lead as done in [12], simply considering, when necessary, the estimates of the univariate Lagrange
interpolation error for f ∗x and f ∗y .

If we compare (17) with (30) we recognize that the two Nyström methods have exactly the same rate of convergence.
Analogously if we compare (25) with (33) we see that, except for the difference of the spaces in which one can consider the
approximation processes, the two collocation methods are equivalent, from the convergence point of view.

Nevertheless for the same n we have that the methods based on the Padua points need to solve linear systems having a
number of equations which is the half of the number of linear equations that are necessary to be solved in the case of the “tensor
product" methods.

However if the known functions, and therefore the solution of the equation, have different degree of smoothness with respect
to the two variables, the tensorial strategies, according to (29) and (32), allow to use a different number of nodes on the two
directions and this can reduce the global computational cost, since the number of linear equations (and therefore the dimension
of the involved matrices) can be reduced much more then the half.

What we remarked is confirmed by the following examples. In the tables now we will call errMethodGauss and condGauss
the errors of the methods based on the tensorial strategy and the corresponding condition numbers.
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Example 4.5. In this example we consider the following integral equation

f (x , y)−
π

4

∫

S

(sin (|x − t|
5
2 |s− y|

5
2 ) f (s, t)dsd t = |x − y|

5
2 ,

of which we do not known the exact solution. The kernel, the known function and the parameter µ are

µ=
π

4
, k(x , y, s, t) = sin (|x − t|

5
2 |s− y|

5
2 ), g(x , y) = |x − y|

5
2 .

As k(x ,y), k(s,t), g ∈W2, according to the theoretical results we expect an error O( 1
n2 ) for the methods based on the Padua points

and also for the “tensorial methods". The numerical tests reported in tables 5 and 6 show that effectively the methods are
equivalent and that the Padua points methods have to solve linear systems of a dimension which is about the half of the dimension
of the corresponding linear systems in the tensorial methods.

N n errNyströmPD errCollocationPD condPD
45 8 7.576066165065090e-02 9.765082736392187e-02 6.554074700569336e+00

153 16 6.765154198776951e-03 1.029131358515190e-02 6.096416670061345e+00
561 32 6.635519936473319e-06 1.906965645556420e-04 6.000601495523336e+00

2145 64 4.104113301422593e-07 6.906771132743972e-06 5.915043491951402e+00
8385 128 3.504260471892602e-08 8.136562389557896e-07 5.912600645033277e+00

Table 5: Numerical results for Example 4.5: Nyström and collocation methods on Padua points

N n errNyströmGauss errCollocationGauss condGauss
64 8 1.351963105416440e-02 4.053569579806666e-02 6.212071736299888e+00

256 16 7.388574541307164e-05 3.744924312131188e-03 5.680912444375486e+00
1024 32 6.960662232350263e-06 3.718298215793385e-05 5.893856535088040e+00
4096 64 6.144553341974727e-07 4.613484395560557e-06 5.902255857929990e+00

16384 128 5.747849982383078e-08 5.754961454472095e-07 5.908542935713527e+00

Table 6: Numerical results for Example 4.5: Nyström and collocation methods based on tensorial formulas

Example 4.6. Consider the equation

f (x , y)−
π

2

∫

S

(|x − 0.5|
5
2 + |s− 0.5|

5
2 )3(|y|

5
2 + |t|

5
2 )3 f (s, t)dsd t = |x − y|

5
2 ,

where also in this case we do not known the exact solution. The kernel, the known function and the parameter µ are

µ=
π

2
, k(x , y, s, t) = (|x − 0.5|

5
2 + |s− 0.5|

5
2 )3(|y|

5
2 + |t|

5
2 )3, g(x , y) = |x − y|

5
2 .

As k(x ,y), k(s,t), g ∈W2, according to the theoretical results we expect an error O( 1
n2 ) for the methods based on the Padua points

and also for the “tensorial methods". The numerical behavior is very similar to that of the previous example as shown in tables 7
and 8

N n errNyströmPD errCollocationPD CondPD
45 8 6.074070070080574e-02 7.810654934396465e-02 3.050883302886094e+04

153 16 1.449262344141590e-04 7.925157955796673e-04 1.936755708514138e+04
561 32 7.176170195323578e-06 1.002757247756092e-04 1.935826750224334e+04

2145 64 7.026962161203207e-07 1.230733903318241e-05 1.936199543151200e+04
8385 128 6.636672561146159e-08 1.433674390569745e-06 1.936053340255196e+04

Table 7: Numerical results for Example 4.6: Nyström and collocation methods on Padua points

Example 4.7. Consider the equation

f (x , y)−
π

2

∫

S

(|x + s|
7
2 + t)e y f (s, t)dsd t = cos (x y),

of which we do not known the exact solution. The kernel, the known function and the parameter µ are

µ=
π

2
, k(x , y, s, t) = (|x + s|

7
2 + t)e y , g(x , y) = cos (x y).
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N n errNyströmGauss errCollocationGauss condGauss
64 8 1.366384160119497e-03 8.522827814901306e-03 4.779742814002967e+03

256 16 1.243414308289405e-04 5.002503747339286e-04 1.387298027043163e+04
1024 32 1.154655634130743e-05 6.646169208004555e-05 1.782578361506734e+04
4096 64 1.085348771045084e-06 8.741139745367303e-06 1.896533515223295e+04

16384 128 1.098704522358498e-07 1.036503234390004e-06 1.926061334527154e+04

Table 8: Numerical results for Example 4.6: Nyström and collocation methods based on tensorial formulas

As k(x ,y), k(s,t) ∈W3, g ∈Wr ,∀r, according to the theoretical results we expect the errors of the order O( 1
n3 ). Nevertheless in this

case it is clear that k(x ,y) is a function with a continuous third partial derivative w.r.t. s, but is a polynomial w.r.t. t. Analogously
k(s,t) has a continuous third partial derivative w.r.t. x but is analytic w.r.t. y. Therefore this is a case in which it is possible to
choose operators of different order in the tensorial methods. The numerical results confirm this possibility and the computational
saving is evident (see Tables 9-10).

N n errNyströmPD errCollocationPD CondPD
45 8 2.465271482100009e-03 2.515280367465270e-03 3.339068142772825e+02

153 16 2.501026750147732e-05 2.625470787426196e-05 3.636435705114400e+02
561 32 7.715958142138392e-07 9.661530734480123e-07 3.720671883637921e+02

2145 64 3.914863303638266e-08 4.092132825140609e-08 3.744151261351798e+02
8385 128 1.645201417613668e-09 1.782039892581032e-09 3.750206337212849e+02

Table 9: Numerical results for Example 4.7: Nyström and collocation methods on Padua points

N n1 n2 errNyströmGauss errCollocationGauss condGauss
128 8 16 4.109901467877955e-04 7.224670933831467e-04 3.128149502945657e+02
256 16 16 1.843816637403101e-05 2.006854630734481e-05 3.513579853458843e+02
512 32 16 8.561272768254221e-07 8.767511886440799e-07 3.636004779596027e+02

1024 64 16 3.592369324561472e-08 3.929492645715875e-08 3.668471166557514e+02
2048 128 16 1.478022896153951e-09 1.750110504860680e-09 3.676840753176024e+02

Table 10: Numerical results for Example 4.7: Nyström and collocation methods based on tensorial formulas

Example 4.8. Consider the equation

f (x , y)−
1
2

∫

S

(|x − s|
7
2 + t)(t2 + y2) f (s, t)dsd t = x2 y2,

of which we do not known the exact solution. The kernel, the known function and the parameter µ are

µ=
1
2

, k(x , y, s, t) = (|x − s|
7
2 + t)(t2 + y2), g(x , y) = x2 y2.

As k(x ,y), k(s,t) ∈W3, g ∈Wr ,∀r, according to the theoretical results we expect an error O( 1
n3 ). In this case the considerations about

the smoothness of the function kernel k and the consequent choice of different n1 and n2 in the tensorial methods can be made
similarly to what said in the previous example.

N n errNyströmPD errCollocationPD CondPD
45 8 3.556836420275436e-05 2.621425021666921e-05 4.801963960960753e+01

153 16 1.282345425995348e-06 1.282900279600414e-06 4.766586978932889e+01
561 32 5.629688695654519e-08 5.629868751831099e-08 4.763253425317059e+01

2145 64 2.480710813116984e-09 2.480686129408371e-09 4.762498479136794e+01
8385 128 1.067939388941909e-10 1.057311418982930e-10 4.762384070546259e+01

Table 11: Numerical results for Example 4.8: Nyström and collocation methods on Padua points

5 The proofs
In this section we prove the convergence, stability and well conditioning of the two proposed numerical methods.
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N n1 n2 errNyströmGauss errCollocationGauss condGauss
128 8 16 2.306513742770721e-05 2.185690392173100e-05 3.999732725700071e+01
256 16 16 1.111282148178759e-06 1.089501576228607e-06 4.450823322173192e+01
512 32 16 5.245033393921879e-08 5.241369126284725e-08 4.583066745452771e+01

1024 64 16 2.394564074974570e-09 2.394490834768147e-09 4.617718486838073e+01
2048 128 16 1.037988288528741e-10 1.037986608106382e-10 4.626773459681050e+01

Table 12: Numerical results for Example 4.8: Nyström and collocation methods based on tensorial formulas

Proof of Theorem 3.1. We want to show that the Nyström method is convergent and stable in C0(S). Using standard arguments
(see [1], Theorem 4.1.1, p. 106 and the related remarks) these claims follow if the sequence {Kn}n is collectively compact. The
collectively compactness of the sequence can be obtained by showing that

1. limn ∥K f − Kn f ∥∞ = 0, as f ∈ C0(S),

2. sup
n

lim
m→∞

sup
∥ f ∥∞=1

Em(Kn f ) = 0.

Moreover from the definition of f ∗ and fn it follows that

∥ f ∗ − fn∥∞ ∼ ∥K f ∗ − Kn f ∗∥∞.

Therefore proceeding as in [12] (see the proof of Theorem 3.1, p. 2328) and [13] (see the proof of Theorem 5.1, p.162), using
(9) we can prove 1. and 2. and we get (17).

Finally acting as in [13] it immediately follows that

cond(An)≤ ∥(I − Kn)∥∥(I − Kn)
−1∥< +∞

and the proof is complete.

In order to prove convergence and stability of the collocation method we introduce a preliminary result.

Let W (x , y) =
1
π2

1
p

1− x2

1
p

1− y2
and denote by Lp

W (S) the space of integrable functions f such that

∥ f ∥W,p =

�∫

S

| f (x , y)|pW (x , y)d x d y

�
1
p

< +∞.

In [5] the following result was proved.

Lemma 5.1. For all f ∈ C0(S) it results

∥ f −Ln f ∥W,1 ≤ C En( f ), C ̸= C(n, f ) (34)

where En( f ) is the error of best polynomial approximation in Π2
n in uniform norm.

This result is an important tool in proving Theorem 3.2.

Proof of Theorem 3.2. The proof is conducted in a classical way. Indeed the claim is to prove (see for instance [1], Theorem 3.1.1,
p. 55)

lim
n
||K −Hn||= 0. (35)

We note that
||K f −Hn f ||∞ ≤ ||K f − K∗ f ||∞ + ||K∗ f −Hn f ||∞. (36)

By Lemma 5.1 applied to k(x ,y) ∈Wr , taking into account that W−1 is bounded and in view of (4), we get

||K f − K∗ f ||∞ ≤ C max
(x ,y)∈S

|| f ||∞

∫

S

|k(x , y, s, t)−Ln(k(x ,y), s, t)|W (s, t)dsd t

≤ C || f ||∞ max
(x ,y)∈S

En(k(x ,y))

≤ C || f ||∞ max
(x ,y)∈S

||k(x ,y)||Wr

nr
≤ C
|| f ||∞

nr
, C ̸= C(n, f ).

(37)

On the other hand, in view of (7) it follows.

||K∗ f −Ln(K
∗ f )||∞ ≤ C log2 nEn(K

∗ f ) (38)

Dolomites Research Notes on Approximation ISSN 2035-6803



Laguardia · Russo 50

Now for simplicity let n be an even number and Qn be a polynomial of degree n
2 in each of its four variables. Define a polynomial

on P n
2 , n

2
as follows

KQn f (x , y) =

∫

S

Qn(x , y, s, t) f (s, t)dsd t

Since KQn ∈ P n
2 , n

2
, necessarily KQn ∈ Π2

n, and the interpolation on the Padua points Padn is exact on Π2
n, then, again by (34),

max
(x ,y)∈S

|K∗ f (x , y)− KQn f (x , y)| ≤ max
(x ,y)∈S

|| f ||∞

∫

S

|Ln(k(x ,y) −Qn(x , y, ., .), s, t)|W (s, t)dsd t

≤ C || f ||∞ max
(x ,y)∈S

||k(x ,y) −Qn(x , y, ., .)||∞.
(39)

As Qn(x ,y) is a generic polynomial on Π2
n we obtain

En(K
∗ f )≤ C || f ||∞ max

(x ,y)∈S
En(k(x ,y))≤ C

|| f ||∞
nr

, C ̸= C(n, f ). (40)

Therefore, since k satisfy (24) and (4) holds true, then from (37) and (38) the claim follows.
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