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Abstract

In this work, we develop the theory of 2-variable q-Mittag-Leffler-Laguerre polynomials by employing a
generating function that incorporates 0th- order q-Bessel Tricomi functions. We proceed to derive their se-
ries definition and various properties. By applying the extended monomiality principle for q-polynomials,
we establish the quasi-monomiality characteristics of these polynomials and explore additional features.
Additionally, we determine the operational representations of the 2-variable q-Mittag-Leffler-Laguerre
polynomials. We also introduce the mth order 2-variable q-Mittag-Leffler-Laguerre polynomials. Finally,
this research concludes with the derivation of the 1-variable q-Mittag-Leffler-Laguerre polynomials, an
analysis of their zero distributions, and a graphical representation of their properties.

1 Introduction

In 1903, the Swedish mathematician Gösta Mittag-Leffler identified a special function, as detailed in [26, 27], defined as:

Eα(u) :=
∞
∑

r=0

ur

Γ (αr + 1)
, u ∈ C, Re(α)> 0 (1)

where Γ (·) is a classical gamma function [28]. The Mittag-Leffler function is the name given to the peculiar function found in
equation (1). Because of its use in many disciplines, including physics, chemistry, biology, engineering, and applied sciences, its
importance has increased throughout the past 20 years. Integral and differential equations of fractional order often have the
Mittag-Leffler function as their solution.

In 1905, Wiman [29] introduced, for the first time, a generalization of the Mittag-Leffler function Eα,β (z) as follows:

Eα,β (z) =
∞
∑

n=0

zn

Γ (αn+ β)
, α,β ∈ C, Re(α)> 0. (2)

Many people in fractional calculus and related fields have been interested in the Mittag-Leffler function lately. In this domain,
some mathematicians even consider the classical Mittag-Leffler function a queen function. The theory of Mittag-Leffler functions
has been the subject of much-published research. Anyone interested in learning more about the Mittag-Leffler function and its
many uses should peruse the scholarly works.

Laguerre polynomials find applications in quantum mechanics, particularly in the radial section of the Schrödinger equation for a
single-electron atom. They are a class of orthogonal polynomials with widespread applications in various fields, such as quantum
group theory, harmonic oscillator theory, and coding theory.

Dattoli and Torre [9, 10] explored the theory of 2-variable Laguerre polynomials, demonstrating that ordinary Laguerre polynomials
could be interpreted within the framework of quasi-monomials. The interest in 2-variable Laguerre polynomials stems from
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their significant mathematical relevance. These polynomials emerge as natural solutions to specific sets of partial differential
equations, such as the heat diffusion equation, and find applications in radiation physics problems [24].
Dattoli and colleagues introduced the 2-variable Laguerre polynomials Ln(x , y) as [9, 10]:

∞
∑

n=0

Ln(x , y)
tn

n!
= C0(x t)exp(y t), |y t|< 1; |x |<∞. (3)

An extension of the 2-variable Laguerre polynomial is the mth order 2-variable Laguerre polynomial, which is represented as

m Ln(x , y). The following equation provides its generating function as [12]:

C0(−x tm)exp(y t) =
∞
∑

n=0
m Ln(x , y)

tn

n!
. (4)

The q-calculus is an extension of ordinary calculus that incorporates a new parameter q. This theory has found modern applications
in several domains, including ordinary fractional calculus, optimal control issues, solving q-difference and q-integral equations,
and q-transform analysis.

In 2009, Mansoor [20] introduced a new q-analog of the Mittag-Leffler function, defined as follows:

E(α,β)
q (z) =

∞
∑

n=0

zn

Γq(αn+ β)
, α,β ∈ C, Re(α)> 0, |z|< (1− q)−n. (5)

For additional analogs of the Mittag-Leffler functions on the quantum time scale, particularly in the context of linear Caputo
q-fractional initial value problems and their closer approximation to the theory of time scales [1, 2].

Now, we briefly explore the definitions and notations of q-calculus given from [14].

The q-analogue of a complex number d is provided by:

[d]q =
1− qd

1− q
, 0< |q|< 1; d ∈ C. (6)

The q-factorial is defined as:

[n]q!=

¨
∏n

r=1[r]q, 0< |q|< 1, n≥ 1,

1, n= 0.
(7)

Gauss’s q-binomial formula is expressed as

(x ± a)nq =
n
∑

k=0

�

n
k

�

q

q(
n−k

2 )x k(±a)n−k. (8)

The respective two q-exponential functions are defined as

eq(x) =
∞
∑

n=0

xn

[n]q!
, 0<| q |< 1 (9)

and

Eq(x) =
∞
∑

n=0

q(
n
2)xn

[n]q!
, 0<| q |< 1. (10)

Their product is given by

eq(x)Eq(y) =
∞
∑

n=0

(x ⊕ y)nq
[n]q!

. (11)

Thus, we have
eq(x)Eq(−x) = 1. (12)

The q-derivative of a function f (x) is defined as:

D̂q,x f (x) =
f (qx)− f (x)

qx − x
, 0<| q |< 1, x 6= 0, (13)

and
D̂k

q,x eq(αx) = αkeq(αx), k ∈ N,α ∈ C, (14)
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where D̂k
q,x denotes the kth order q-derivative with respect to x .

The following represents the q-derivative of the product of two functions, f (x) and g(x):

D̂q,x

�

f (x)g(x)
�

= f (x)D̂q,x g(x) + g(qx)D̂q,x f (x). (15)

The q-definite integral of a function f (x) is defined as:
∫ a

0

f (x)dq x = (1− q)a
∞
∑

n=0

qn f (aqn). (16)

Hence, we can deduce that
∫ x

0

ζmdqζ=
xm+1

[m+ 1]q
, m ∈ N∪ {0}. (17)

If we make use of the notation shown below [6]:

D−1
q,x f (x) :=

∫ x

0

f (ζ)dqζ, (18)

then in view of equation (17), we have

D−1
q,x{x

m}=
xm+1

[m+ 1]q
, m ∈ N∪ {0}. (19)

Consequently, [6]
�

D−1
q,x

�r
{1}=

x r

[r]q!
, r ∈ N∪ {0}. (20)

Recently, Cao et al. [6] introduced the 2-variable q-Laguerre polynomials Ln,q(x , y) in the context of monomiality as follows:

C0,q(x t)eq(y t) =
∞
∑

n=0

Ln,q(x , y)
tn

[n]q!
, (21)

where the 0th order q-Bessel Tricomi functions C0,q(x) defined as [6]:

C0,q(x t) = eq(−D−1
q,x t){1}. (22)

Consequently, the series definition is given as

C0,q(x) =
∞
∑

k=0

(−1)k x k

([k]q!)2
, (23)

which converges absolutely ∀x .

Additionally, the authors in [6] have also introduced the m-th order 2-variable q-Laguerre polynomials [m]Ln,q(x , y) in the context
of monomiality as follows:

C0,q(x tm)eq(y t) =
∞
∑

n=0
[m]Ln,q(x , y)

tn

[n]q!
. (24)

The concept of monomiality is a significant tool for analyzing certain specific polynomials and their properties. The concept
of monomiality dates back to the early 19th century, when J. F. Steffensen established the notion of the poweroid [22]. In
1999, Dattoli reformed and advanced the concept into what is known as quasi-monomials [7]. Recently, several scholars
have presented and studied new hybrid special polynomial sequences and families employing the monomiality principle (see
[3, 8, 16, 17, 18, 19, 21, 30, 31, 32]).
For a q-polynomials set pn,q(x) (n ∈ N, x ∈ C), the two q-operators M̂q and P̂q, also termed q-multiplicative and q-derivative
operators, respectively, are realized by [17]:

M̂q {pn,q(x)}= pn+1,q(x) (25)

and
P̂q{pn,q(x)}= [n]q pn−1,q(x). (26)

The q-operators M̂q and P̂q satisfy the following commutation relation:

[P̂q, M̂q] = P̂q M̂q − M̂q P̂q. (27)

If M̂q and P̂q have q-differential realizations, then the q-differential equations, satisfied by pn,q(x), are:

M̂q P̂q {pn,q(x)}= [n]q pn,q(x) (28)
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and
P̂q M̂q {pn,q(x)}= [n+ 1]q pn,q(x). (29)

In particular
pn,q(x) = M̂ n

q {p0,q(x)}= M̂ n
q {1}, (30)

where p0,q(x) = 1 is the q-analogue of polynomial pn,q(x).

Moreover, the following is the generating function of pn,q(x):

eq(M̂q t){1}=
∞
∑

n=0

pn,q(x)
tn

[n]q!
. (31)

The following is how the q-dilatation operator Tz operates on any function [15]:

T k
z f (z) = f (qkz), k ∈ R z ∈ C, (32)

satisfies the property:
T−1

z T 1
z f (z) = f (z). (33)

The q-derivative of the exponential eq(y t2) is defined by [23]:

D̂q,t eq(y t2) = y teq

�

y t2
�

+ q y teq

�

q y t2
�

. (34)

The utilization of the symbolic method offers effective and efficient approaches to introduce and analyze both novel and existing
special functions. The symbolic method originated in 1938 (see [5]). Recently, Babusci and his co-authors introduced a new
approach to the symbolic method in 2013 to study special functions by deriving certain operators, which are called symbolic
operators [4]. In their work, Dattoli et al. [13] introduced a symbolic operator denoted as d(α,β), where α,β ∈ R+. This operator
acts on the vacuum function ψz =

Γ (z+1)
Γ (αz+β) according to the following equation:

dk
(α,β)ψz =

Γ (z + k+ 1)
Γ (α(z + k) + β)

, k ∈ R, (k+ z)> −1. (35)

In particular, one can notice

dk
(α,β)ψ0 := dk

(α,β)ψz

�

�

�

z=0
=
Γ (k+ 1)
Γ (αk+ β)

, k > −1. (36)

Notably, when k = 0, equation (36) yields:

ψ0 =
1
Γ (β)

. (37)

Considering equations (2) and (35), the symbolic representation of the Mittag-Leffler function in terms of d(α,β) can be expressed
as [13]:

Eα,β (z) = ezd(α,β){ψ0}. (38)

In recent years, the Mittag-Leffler function has been described as the “queen function" in the realm of fractional calculus due to its
extensive applications and theoretical significance. This has spurred mathematicians to explore new extensions and generalizations
of this function, particularly within the framework of quantum calculus and special functions. The present research aims to build
on these developments by introducing the 2-variable q-Mittag-Leffler-Laguerre polynomials. These polynomials represent a novel
hybrid family within the q-special functions framework, combining the characteristics of the Mittag-Leffler function and Laguerre
polynomials through the quasi-monomiality principle. The motivation is to explore their properties, establish their operational
identities, and demonstrate their potential applications in solving complex problems in mathematical and physical sciences. The
rest of this article is organized as follows:

In section 2, we introduce the theory of 2-variable q-Mittag-Leffler-Laguerre polynomials by employing a generating function
that involves 0th-order q-Bessel Tricomi functions utilizing a symbolic approach. We proceed to derive their series definition and
various properties. Further, we establish the quasi-monomiality characteristic and determine the operational representation of
these polynomials. In section 3, we introduce mth-order 2-variable q-Mittag-Leffler-Laguerre polynomials and their characteristics.
Finally, we conclude this paper by discussing the several properties of the 1-variable q-Mittag-Leffler-Laguerre polynomials, an
analysis of their zero distributions, and a graphical representation of their properties.
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2 The 2-variable q-Mittag-Leffler-Laguerre polynomials

In this section, we frame the q-Mittag-Leffler function within the context of symbolic formalism. To achieve this, we introduce a
q-symbolic operator d(α,β)q , which acts on the vacuum state ϕz,q =

Γq(z+1)
Γq(αz+β) in the following manner:

dk
(α,β)q

ϕz,q =
Γq(z + k+ 1)

Γq(α(z + k) + β)
, k ∈ R, (k+ z)> −1. (39)

In particular, for z = 0, we have

dk
(α,β)q

ϕ0,q = dk
(α,β)q

ϕz,q|z=0 =
Γq(k+ 1)

Γq(αk+ β)
, k > −1. (40)

Thus in view of equations (39) and (40), we have

d r
(α,β)q

dk
(α,β)q

ϕ0,q =
Γq(r + k+ 1)

Γq(α(r + k) + β)
, k, r ∈ R, (k+ r)> −1. (41)

Notably, when k = 0, equation (36) yields:

ϕ0,q =
1
Γq(β)

. (42)

Considering equations (5) and (39), the symbolic representation of the Mittag-Leffler function in terms of d(α,β)q can be expressed
as:

E(α,β)
q (z) = eq

�

zd(α,β)q

�

ϕ0,q. (43)

Now, taking into account equations (21) and (43), we define 2-variable q-Mittag-Leffler-Laguerre polynomials (2VqMLLP)

EL(α,β)
n,q (x , y) in the following manner:

C0,q(x t)eq

�

d(α,β)q y t
�

ϕ0,q =
∞
∑

n=0
EL(α,β)

n,q (x , y)
tn

[n]q!
, (44)

which leads to the following generating function for the 2VqMLLP EL(α,β)
n,q (x , y):

C0,q(x t)E(α,β)
q (y t) =

∞
∑

n=0
EL(α,β)

n,q (x , y)
tn

[n]q!
, (45)

where C0,q(x) and E(α,β)
q (z) are defined by equation (22) and (43), respectively. Using equations (22) and (43) to simplify the

left-hand side of equation (45), we obtain the following series definition of the 2-variable q-Mittag-Leffler-Laguerre polynomials

EL(β ,α)
n,q (x , y):

EL(α,β)
n,q (x , y) = [n]q!

n
∑

k=0

(−1)k x k yn−k

([k]q!)2Γq(α(n− k) + β)
. (46)

From equation (46), we get the following initial conditions:

EL(α,β)
n,q (x , 0) =

(−1)n xn

Γq(β)[n]q!
and EL(α,β)

n,q (0, y) =
ynΓq(n+ 1)

Γq(αn+ β)
. (47)

In view of equations (22) and (43), we have

eq(−D−1
q,x t)E(α,β)

q (y t){1}=
∞
∑

n=0
EL(α,β)

n,q (x , y)
tn

[n]q!
. (48)

Theorem 2.1. The 2-variable q-Mittag-Leffler-Laguerre polynomials, denoted as EL(α,β)
n,q (x , y), exhibit quasi-monomial behavior

when subjected to the following q-multiplicative and q-derivative operators:

M̂2VqE L = yd(α,β)q Tx − D̂−1
q,x , (49)

or, alternatively
M̂2VqE L = yd(α,β)q − D̂−1

q,x Ty (50)

and

P̂2VqE L = −D̂q,x x D̂q,x = −
∂q

∂q D−1
q,x

, (51)

or, alternatively
P̂2VqE L = d−1

(α,β)q
D̂q,y , (52)

respectively, where D−1
q,x is determined by equation (18), and Tx and Ty signify the q-dilatation operators given by equation (32).
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Proof. Using equations (14), (15), and [6, Lemma 2.1], we obtain the q-derivative of both sides of equation (45) with respect to
t, we have

∞
∑

n=1
EL(α,β)

n,q (x , y)
tn−1

[n− 1]q!
= yd(α,β)q C0,q(qx t)eq(yd(α,β)q t)− D̂−1

q,x C0,q(x t)eq(yd(α,β)q t){ϕ0,q}. (53)

Equations (32) and (45) from the equation (53) are used to obtain
∞
∑

n=1
EL(α,β)

n,q (x , y)
tn−1

[n− 1]q!
=
∞
∑

n=0

�

yd(α,β)q Tx − D̂−1
q,x

�

EL(α,β)
n,q

tn

[n]q!
. (54)

Equation (54) can be solved by comparing the coefficients of equal powers of t on both sides.

EL
(α,β)
n+1,q(x , y) =

�

yd(α,β)q Tx − D̂−1
q,x

�

EL(α,β)
n,q (x , y), (55)

which in view of equation (25), we get assertion (49). Similarly, we apply equation (45) after differentiating both sides of the
equation with respect to t and applying equation (15) for fq(t) = C0,q(x t) and gq(t) = eq(y t). When we compare the equal
powers of t coefficients on both sides of the resulting equation, we get

EL
(α,β)
n+1,q(x , y) =

�

yd(α,β)q − D̂−1
q,x Ty

�

EL(α,β)
n,q (x , y), (56)

which in view of equation (25), we get assertion (50).

Using [6, equation (2.15)] and operating D̂q,x x D̂q,x on both sides of equation (45), we have

D̂q,x x D̂q,x C0,q(x t)E(α,β)
q (y t) =

∂q

∂q D−1
q,x

C0,q(x t)E(α,β)
q (y t) =

∞
∑

n=0

D̂q,x x D̂q,x EL(α,β)
n,q (x , y)

tn

[n]q!
, (57)

which on using [6, Lemma 2.1], we get

− tC0,q(x t)E(α,β)
q (y t) =

∞
∑

n=0

∂q

∂q D−1
q,x

EL(α,β)
n,q (x , y)

tn

[n]q!
=
∞
∑

n=0

D̂q,x x D̂q,x EL(α,β)
n,q (x , y)

tn

[n]q!
. (58)

Using equation (45) in the left hand side of equation (58) and comparing the coefficients of equal powers of t in the resultant
equation, we have

− D̂q,x x D̂q,x EL(α,β)
n,q (x , y) = −

∂q

∂q D−1
q,x

EL(α,β)
n,q (x , y) = [n]q EL

(α,β)
n−1,q(x , y), (59)

which in view of equations (26) and [6, equation (2.15)], gives assertion (51).

Similar to this, by applying equation (14) to both sides of equation (45), we have

d(α,β)q tC0,q(x t)E(α,β)
q (y t) =

∞
∑

n=0

D̂q,y EL(α,β)
n,q (x , y)

tn

[n]q!
, (60)

which on using equation (45) in the left-hand side of the above equation and then comparing the coefficients of equal powers of
t from both sides of the resultant equation, we get

d−1
(α,β)q

D̂q,y EL(α,β)
n,q (x , y) = [n]q EL

(α,β)
n−1,q(x , y). (61)

The aforementioned equation yields (52) in the light of equation (26).

Given a function f (x), we get the following in light of equation (15):

D̂q,x x D̂q,x f (x) = (D̂q,x + qx D̂2
q,x ) f (x). (62)

For 2vqMLLP EL(α,β)
n,q (x , y) following q-partial differential equation is obtained in the light of equations [6, equation 2.15], (59),

(61), and (62):

Corollary 2.2. The 2vqMLLP EL(α,β)
n,q (x , y) satisfy the following q-partial differential equation as:

− D̂q,x x D̂q,x EL(α,β)
n,q (x , y) = d−1

(α,β)q
D̂q,y EL(α,β)

n,q (x , y), (63)

or, alternatively
− (D̂q,x + qx D̂2

q,x )EL(α,β)
n,q (x , y) = d−1

(α,β)q
D̂q,y EL(α,β)

n,q (x , y), (64)

or, alternatively

−
∂q

∂q D−1
q,x

EL(α,β)
n,q (x , y) = d−1

(α,β)q
D̂q,y EL(α,β)

n,q (x , y). (65)
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Now, we derive the operational identities for the 2-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y):

Theorem 2.3. The following operational identities are satisfied by 2VqMLLP EL(α,β)
n,q (x , y) as follows:

EL(α,β)
n,q (x , y) = eq(−d−1

(α,β)q
D̂−1

q,x D̂q,y){(d(α,β)q y)nϕ0,q}, (66)

or, equivalently

EL(α,β)
n,q (x , y) = C0,q(xd−1

(α,β)q
D̂q,y){dn

(α,β)q
yn}{ϕ0,q}, (67)

EL(α,β)
n,q (x , y) = E(α,β)

q

�

− y
∂q

∂q D−1
q,x

�¦ −xn

[n]q!

©

, (68)

d−n
(α,β)q

Eq(D̂
−1
q,x D̂q,y)EL(α,β)

n,q (x , y){ϕ0,q}=
Γq(n+ 1)yn

Γq(αn+ β)
(69)

and

E (α,β)
q

�

y
∂q

∂q D−1
q,x

�

EL(α,β)
n,q (x , y) =

−xn

[n]q!
. (70)

Proof. By taking the kth q-derivative of yn, and utilizing equation (46), followed by the application of equations (9) and (20) to
the resulting expression, we obtain the desired assertion (66). In view of equation (22) and (66), we get the desired assertion
(67). Using equations (23) and (45) and then comparing the coefficients of t on both sides of the resultant equation, we get
the desired result (68). Applying d−n

(α,β)q
Eq(D̂−1

q,x D̂q,y){ϕ0,q} on both sides of equation (66) and then using equation (12), we get

the assertion (69). Similarly, applying E (α,β)
q

�

y
∂q

∂q D−1
q,x

�

on both sides of equation (66) and then using equation (12), we get the

desired assertion (70). The proof of the theorem is complete.

Subsequently, in the following theorem, we obtain the q-integro-differential equations governing the 2VqMLLP EL(α,β)
n,q (x , y):

Theorem 2.4. The following q-integro-differential equations for the 2-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y)

hold true:
∫ x

0

D̂q,uEL(α,β)
n,q (u, y)dqu+ q

∫ x

0

uD̂2
q,uEL(α,β)

n,q (u, y)dqu=
�

[n]q + q yd(α,β)q Tx D̂q,x + yd(α,β)q x Tx D̂2
q,x

�

EL(α,β)
n,q (x , y) (71)

and
∫ x

0

D̂q,y EL(α,β)
n,q (u, y)dqu= d(α,β)q

�

yTx D̂q,y − [n]q
�

EL(α,β)
n,q (x , y) = 0. (72)

Proof. Taking into account of equations (28), (49) and (51), we have

(yd(α,β)q Tx − D̂−1
q,x )(−D̂q,x x D̂q,x )EL(α,β)

n,q (x , y) = [n]q EL(α,β)
n,q (x , y). (73)

employing equation (62) in equation (73), we have

(yd(α,β)q Tx − D̂−1
q,x )(−D̂q,x − qx D̂2

q,x )EL(α,β)
n,q (x , y) = [n]q EL(α,β)

n,q (x , y), (74)

taking into account of equation (18), the proceeding equation gives assertion (71).

Now, in light of equations (28), (49) and (52), we have

(yTx D̂q,y − d−1
(α,β)q

D̂−1
q,x D̂q,y)EL

(α,β)q
n,q (x , y) = [n]q EL(α,β)

n,q (x , y), (75)

which, in view of equation (18), gives assertion (72).

Now, we consider 10th and 11th degree 2VqMLLP:

EL
(α,β)
10,q (x , y) = [10]q!

� y10

Γq(10α+ β)
−

x y9

Γq(9α+ β)
+

x2 y8

([2]q!)2Γq(8α+ β)
−

x3 y7

([3]q!)2Γq(7α+ β)

+
x4 y6

([4]q!)2Γq(6α+ β)
−

x5 y5

([5]q!)2Γq(5α+ β)
+

x6 y4

([6]q!)2Γq(4α+ β)
−

x7 y3

([7]q!)2Γq(3α+ β)

+
x8 y2

([8]q!)2Γq(2α+ β)
−

x9 y
([9]q!)2Γq(α+ β)

�

+
x10

[10]q!Γq(β)
, (76)

Dolomites Research Notes on Approximation ISSN 2035-6803



Kumar · Raza · Ramírez 125

and

EL
(α,β)
11,q (x , y) = [11]q!

� y11

Γq(11α+ β)
−

x y10

Γq(10α+ β)
+

x2 y9

([2]q!)2Γq(9α+ β)
−

x3 y8

([3]q!)2Γq(8α+ β)

+
x4 y7

([4]q!)2Γq(7α+ β)
−

x5 y6

([5]q!)2Γq(6α+ β)
+

x6 y5

([6]q!)2Γq(5α+ β)
−

x7 y4

([7]q!)2Γq(4α+ β)

+
x8 y3

([8]q!)2Γq(3α+ β)
−

x9 y2

([9]q!)2Γq(2α+ β)
+

x10 y
([10]q!)2Γq(α+ β)

�

−
x10

[11]q!Γq(β)
.

(77)

The subsequent visual depictions of the 2-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y) can be computed using

equations (76) and (77) in the program Wolfram Mathematica, with specific values assigned to α, β , and q in Figures 1 and 2,
respectively:

Figure 1: Surface plot of EL
(0.14,0.5)
10,0.004 (x , y) Figure 2: Surface plot of EL

(0.4,0.5)
11,0.004(x , y)

In the following section, we present the mth order 2-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y) and examine

their properties.

3 mth-order 2-variable q-Mittag-Leffler-Laguerre polynomials

This section presents the mth order 2-variable q-Mittag-Leffler-Laguerre polynomials (m2VqMLLP) using an exponential generating
function that incorporates 0th order q-Tricomi functions. In addition, we determine specific attributes of these polynomials, such
as their series definition and quasi-monomiality properties.

Considering equations (4) and (43), we establish the definition of the mth order 2-variable q-Mittag-Leffler-Laguerre polynomials.

[m]EL(α,β)
n,q (x , y) in the following manner:

C0,q(−x tm)eq(d(α,β)q y t) =
∞
∑

n=0
[m]EL(α,β)

n,q (x , y)
tn

[n]q!
, m ∈ N, (78)

which results in the following generating function:

C0,q(−x tm)E(α,β)
q (y t) =

∞
∑

n=0
[m]EL(α,β)

n,q (x , y)
tn

[n]q!
, m ∈ N. (79)

We derive the series definition of m2VqMLLP as follows. Equations (9) and (23) are used to extend the left-hand side of equation
(79), yielding EL(α,β)

n,q (x , y). The coefficients of equal powers of t from both sides of the resultant equation are then compared:

[m]EL(α,β)
n,q (x , y) = [n]q!

[n/m]
∑

k=0

x k yn−mk

([k]q!)2Γq(α(n−mk) + β)
. (80)

Now, we obtain the following theorem for the operational identities of m2VqMLLP EL(α,β)
n,q (x , y):
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Theorem 3.1. The following operational identities are satisfied by m2VqMLLP [m]EL(α,β)
n,q (x , y):

[m]EL(α,β)
n,q (x , y) = eq(D̂

−1
q,x d−m

(α,β)q
D̂m

q,y)(d(α,β)q y)nϕ0,q, (81)

or, alternatively

[m]EL(α,β)
n,q (x , y) = C0,q(−xd−m

(α,β)q
D̂m

q,y)(d(α,β)q y)nϕ0,q (82)

and

Eq

�

−D−1
q,x d−m

(α,β)q
D̂m

q,y

�

EL(α,β)
n,q (x , y) =

Γq(n+ 1)yn

Γq(αn+ β)
. (83)

Proof. By taking the mk-times q-derivative of yn with respect to y, and utilizing equation (80), followed by the application of
equations (9) and (20) to the resulting expression, we obtain the desired assertion (81). In view of equation (22) and (81), we
get the desired assertion (82). Applying Eq

�

−D−1
q,x d−m

(α,β)q
D̂m

q,y

�

on both sides of equation (81) and then using equation (12), we
get the assertion (83).

In view of equations (22), (32) and (82), we have the following inequality:

T r
D̂−1

q,x
[m]EL(α,β)

n,q (x , y) = T r
x [m]EL

(α,β)
n,q (x , y). (84)

Now, we have the following q-multiplicative and q-derivative operators of the m2VqMLLP [m]EL(α,β)
n,q (x , y):

Theorem 3.2. The mth order 2-variable q-Mittag-Leffler-Laguerre polynomials [m]EL(α,β)
n,q (x , y) are quasi-monomials under the action

of the following q-multiplicative and q-derivative operators:

M̂2Vq[m]E L = yd(α,β)q Tx + D−1
q,x T(x;m)d

1−m
(α,β)q

D̂m−1
q,y , (85)

or, alternatively
M̂2Vq[m]E L = yd(α,β)q + D−1

q,x T(x;m)d
1−m
(α,β)q

D̂m−1
q,y Ty (86)

and
P̂2Vq[m]E L = d−1

(α,β)q
D̂q,y , (87)

where T(x;m) defined as [6]:

T(x;m) :=
1− qmT m

x

1− qTx
= 1+ qTx + · · ·+ qm−1T m−1

x . (88)

Proof. Differentiating (79) with respect to t and in view of [6, (3.16)-(3.21)], we have

∞
∑

n=1
[m]EL(α,β)

n,q (x , y)
tn−1

[n− 1]q!
=
∞
∑

n=0

�

yd(α,β)q Tx + D−1
q,x T(x;m)d

1−m
(α,β)q

D̂m−1
q,y

� tn

[n]q!
, m ∈ N. (89)

Comparing the powers of t of the equation (89) and taking into account equation (25), we get the assertion (85).
Similarly, by taking the q-derivative of equation (79) with respect to t for f̃q(t) = C0,q(−x tm) and g̃q(t) = E(α,β)

q (y t), and subse-
quently employing equations (32) and (79), followed by comparing the coefficients of t, we obtain an equivalent representation
of the q-multiplicative operator corresponding to the m2VqMLLP [m]EL(α,β)

n,q (x , y), as given in equation (86).
Using equation (79) and [6, (3.21)] and comparing the coefficient of t, we have

D̂q,y [m]EL(α,β)
n,q (x , y) = [n]q [m]EL

(α,β)
n−1,q(x , y), (90)

which, in view of equation (26) gives the assertion (87). Hence, the proof of the theorem is complete.

Now, we demonstrate the partial differential equation for m2VqMLLP [m]EL(α,β)
n,q (x , y):

Theorem 3.3. The mth order 2-variable q-Mittag-Leffler-Laguerre polynomials [m]EL(α,β)
n,q (x , y) satisfy the following q-partial differ-

ential equation:
d−m
(α,β)q

D̂m
q,y [m]EL

(α,β)
n,q (x , y) = D̂q,x x D̂q,x [m]EL(α,β)

n,q (x , y), (91)

or, alternatively
�

d−m
(α,β)q

D̂m
q,y − x D̂2

q,x − qD̂q,x

�

[m]EL(α,β)
n,q (x , y) = 0, (92)

or, alternatively

d−m
(α,β)q

D̂m
q,y [m] EL(α,β)

n,q (x , y) = −
∂q

∂q D−1
q,x

[m]EL(α,β)
n,q (x , y). (93)
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Proof. With reference to [6, Lemma 2.1] and equation (14), and upon applying equation (79), equating the resulting expressions
and comparing the coefficients of t yield the required assertion (91). In view of [6, Lemma 2.1], and equation (91) gives the
assertion (92). Similarly, in view of [6, Remark 2.1] and then applying equation (79) on both sides of the resultant equation and
comparing the coefficients of t, we get the assertion (93). Hence, the proof of the theorem is complete.

Next, we prove the following theorem to establish the q-integro-differential equation of m2VqMLLP [m]EL(α,β)
n,q (x , y):

Theorem 3.4. The following q-integro-differential equation of m2VqMLLP [m]EL(α,β)
n,q (x , y) holds true:

∫ x

0

d−m
(α,β)q

D̂m−1
q,y T(u;m) D̂q,y [m]EL(α,β)

n,q (u, y)dqu=
�

[n]q − yTx D̂q,y

�

[m]EL(α,β)
n,q (x , y), (94)

or, alternatively

d−m
(α,β)q

m−1
∑

k=0

qk

∫ x

0

D̂m
q,y [m]EL

(α,β)
n,q (q

ku, y)dqu=
�

[n]q − yTx D̂q,y

�

[m]EL(α,β)
n,q (x , y), (95)

where T(x;m) is defined by equation (88).

Proof. In view of equation (28), (85), and (87), then applying equation (18), we get the assertion (94). Applying T(x;m) on

[m]EL(α,β)
n,q (x , y) given in equation (88) and then using resultant equation in equation (94), we get assertion (95). The proof of

the theorem is complete.

Remark 1. For m = 2, equations (79) and (80) simplify to the generating function and series definition of the 2nd -order
two-variable q-Mittag-Leffler-Laguerre polynomials [2]EL(α,β)

n,q (x , y):

C0,q(−x t2)E(α,β)
q (y t) =

∞
∑

n=0
[2]EL(α,β)

n,q (x , y)
tn

[n]q!
(96)

and

[2]EL(α,β)
n,q (x , y) = [n]q!

[n/2]
∑

k=0

x k yn−2k

([k]q!)2Γq(α(n− 2k) + β)
, (97)

respectively.

Remark 2. For m = 1 the m2VqMLLP reduce to 2VqMLLP and for q→ 1− the m2VqMLLP reduce to 2-variable Mittag-Leffler-
Laguerre polynomials. Moreover, for α= 1,β = 1, the m2VqMLLP and 2VqMLLP reduce to the mth order 2-variable q-Laguerre
polynomials and 2-variable q-Laguerre polynomials, respectively [6].

In view of the above remark for m= 2, Theorems 3.1-3.4 reduces for the second order two variable q-Mittag-Leffler-Laguerre
polynomials [2]EL(α,β)

n,q (x , y).

Now, we consider 3rd -order 10th and 14th degree m2VqMLLP:

[3]EL
(α,β)
10,q (x , y) = [10]q!

� y10

Γq(10α+ β)
−

x y7

Γq(7α+ β)
+

x2 y4

([2]q!)2Γq(4α+ β)
−

x3 y
([3]q!)2Γq(α+ β)

�

(98)

[3]EL
(α,β)
14,q (x , y) = [14]q!

� y14

Γq(14α+ β)
−

x y11

Γq(11α+ β)
+

x2 y8

([2]q!)2Γq(8α+ β)
−

x3 y5

([3]q!)2Γq(5α+ β)
+

x4 y2

([4]q!)2Γq(2α+ β)

�

. (99)

The following graphical representations of the m2VqMLLP [m]EL(α,β)
n,q (x , y) for certain values of α,β , m and q are obtained by

using equations (98) and (99) in the software Wolfram Mathematica in Figures (3) and (4), respectively:

4 Concluding remarks and distributions of zeros

In this section, we first introduce another type of q-Mittag-Leffler function by utilizing a symbolic approach. in view of equations
(10) and (39), we have another kind of q-Mittag Leffler function as:

E (α,β)
q (z) = Eq

�

zd(α,β)q

�

ϕ0,q, (100)

which becomes in view of equation (39)

E (α,β)
q (z) =

∞
∑

n=0

q(
n
2)zn

Γq(αn+ β)
. (101)
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Figure 3: Surface plot of [3]EL
(0.14,0.5)
10,0.004 (x , y) Figure 4: Surface plot of [3]EL

(0.4,0.5)
14,0.004(x , y)

Utilizing (100), we define a different type of two-variable q-Mittag-Leffler-Laguerre polynomials, denoted by EL(α,β)
n,q (x , y):

C0,q(x t)E (α,β)
q (y t) =

∞
∑

n=0
EL(α,β)

n,q (x , y)
tn

[n]q!
. (102)

The series definition of EL(α,β)
n,q (x , y) is derived by expanding the left-hand side of equation (102) using equations (10) and (23),

and then equating the coefficients of corresponding powers of t from both sides of the resulting equation:

EL(α,β)
n,q (x , y) = [n]q!

n
∑

k=0

(−1)kq(
n−k

2 )x k yn−k

([k]q!)2Γq(α(n− k) + β)
. (103)

Now, we consider 11th and 12th degree EL(α,β)
n,q (x , y):

EL
(α,β)
11,q (x , y) = [11]q!

� q55 y11

Γq(11α+ β)
−

q45 x y10

Γq(10α+ β)
+

q36 x2 y9

([2]q!)2Γq(9α+ β)
−

q28 x3 y8

([3]q!)2Γq(8α+ β)

+
q21 x4 y7

([4]q!)2Γq(7α+ β)
−

q15 x5 y6

([5]q!)2Γq(6α+ β)
+

q10 x6 y5

([6]q!)2Γq(5α+ β)
−

q6 x7 y4

([7]q!)2Γq(4α+ β)

+
q3 x8 y3

([8]q!)2Γq(3α+ β)
−

qx9 y2

([9]q!)2Γq(2α+ β)
+

x10 y
([10]q!)2Γq(α+ β)

�

−
x11

[11]q!Γq(β)
, (104)

and

EL
(α,β)
12,q (x , y) = [12]q!

� q66 y12

Γq(11α+ β)
−

q55 x y11

Γq(11α+ β)
+

q45 x2 y10

([2]q!)2Γq(10α+ β)
−

q36 x3 y9

([3]q!)2Γq(9α+ β)

+
q28 x4 y8

([4]q!)2Γq(8α+ β)
−

q21 x5 y7

([5]q!)2Γq(7α+ β)
+

q15 x6 y6

([6]q!)2Γq(6α+ β)
−

q10 x7 y5

([7]q!)2Γq(5α+ β)

+
q6 x8 y4

([8]q!)2Γq(4α+ β)
−

q3 x9 y3

([9]q!)2Γq(3α+ β)
+

qx10 y2

([10]q!)2Γq(2α+ β)
−

x11 y
([11]q!)2Γq(α+ β)

�

+
x12

[12]q!Γq(β)
, (105)

respectively.

The graphical representations of another type of the two-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y) for specific

values of α, β , and q are generated using the aforementioned expressions in equations (104) and (105) using software Wolfram
Mathematica in Figures 5 and 6, respectively.

For y = 1, equations (45) and (46) yield the following generating function and series definition of the q-Mittag-Leffler-Laguerre
polynomials EL(α,β)

n,q (x):

C0,q(x t)E(α,β)
q (t) =

∞
∑

n=0
EL(α,β)

n,q (x)
tn

[n]q!
(106)
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Figure 5: Surface plot of EL
(.14,.15)
11,.104 (x , y) Figure 6: Surface plot of EL

(0.1,0.2)
12,.14 (x , y)

and

EL(α,β)
n,q (x) = [n]q!

n
∑

k=0

(−1)k x k

([k]q!)2Γq(α(n− k) + β)
. (107)

Therefore, for y = 1, all the outcomes related to the two-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x , y) simplify to

the corresponding results for the one-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x). In the following equation, we

focus on the 12th degree EL(α,β)
n,q (x):

EL
(α,β)
12,q (x) = [12]q!

� 1
Γq(12α+ β)

−
x

Γq(11α+ β)
+

x2

([2]q!)2Γq(10α+ β)
−

x3

([3]q!)2Γq(9α+ β)

+
x4

([4]q!)2Γq(8α+ β)
−

x5

([5]q!)2Γq(7α+ β)
+

x6

([6]q!)2Γq(6α+ β)
−

x7

([7]q!)2Γq(5α+ β)

+
x8

([8]q!)2Γq(4α+ β)
−

x9

([9]q!)2Γq(3α+ β)
+

x10

([10]q!)2Γq(2α+ β)
−

x11

([11]q!)2Γq(α+ β)

�

+
x12

[12]q!Γq(β)
. (108)

Similarly, for y = 1, equations (102) and (103) yield the following generating function and series definition for EL(α,β)
n,q (x):

C0,q(x t)E (α,β)
q (t) =

∞
∑

n=0
EL(α,β)

n,q (x)
tn

[n]q!
(109)

and

EL(α,β)
n,q (x) = [n]q!

n
∑

k=0

(−1)kq(
n−k

2 )x k

([k]q!)2Γq(α(n− k) + β)
, (110)

respectively.
In the following equation, we consider 11th degree EL(α,β)

n,q (x):

EL
(α,β)
11,q (x) = [11]q!

� q55

Γq(11α+ β)
−

q45 x
Γq(10α+ β)

+
q36 x2

([2]q!)2Γq(9α+ β)
−

q28 x3

([3]q!)2Γq(8α+ β)

+
q21 x4

([4]q!)2Γq(7α+ β)
−

q15 x5

([5]q!)2Γq(6α+ β)
+

q10 x6

([6]q!)2Γq(5α+ β)
−

q6 x7

([7]q!)2Γq(4α+ β)

+
q3 x8

([8]q!)2Γq(3α+ β)
−

qx9

([9]q!)2Γq(2α+ β)
+

x10

([10]q!)2Γq(α+ β)

�

−
x11

[11]q!Γq(β)
. (111)

The following graphical representations of EL(α,β)
n,q (x) and EL(α,β)

n,q (x) for certain values of α,β and q are obtained by using
Equations (108) and (111) in the software Wolfram Mathematica in Figures 7 and 8, respectively:
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Figure 7: Graphical Representation of EL
(α,β)
n,q (x)
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Figure 8: Graphical Representation of EL
(α,β)
n,q (x)

Now, we examine the zeros of EL(α,β)
n,q (x). In Figure 9, we present the zeros of EL(α,β)

n,q (x) for n= 30, α= 0.24, β = 0.15, q = 0.5
(blue), for n= 40, α= 0.34, β = 0.25, q = 0.65 (yellow), and for n= 50, α= 0.14, β = 0.25, q = 0.65 (green).

Table 1: Approximate solutions of 1-variable q-Mittag-Leffler-Laguerre polynomials EL
(α,β)
n,q (x) = 0

n Zeros of 1-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x) = 0

5 1.5563, 2.34197− 9.96429i, 2.34197+ 9.96429i, 5.9176− 2.43837i, 5.9176+ 2.43837i
10 1.50037,−11.041− 26.6286i,−11.041+ 26.6286i, 4.59782− 20.0026i, 4.59782+ 20.0026i,

7.9976, 11.3883− 11.519i, 11.3883+ 11.519i, 13.1682− 3.61071i, 13.1682+ 3.61071i
−29.9905− 36.0576i,−29.9905+ 36.0576i,−8.33263− 35.3824i,−8.33263+ 35.3824i, 1.46282

15 5.50499− 29.7562i, 5.50499+ 29.7562i, 7.81177,14.1384− 21.9877i, 14.1384+ 21.9877i
18.5957,18.7323− 13.5782i, 18.7323+ 13.5782i, 19.9976− 5.45678i, 19.9976+ 5.45678i

−47.159− 39.1026i,−47.159+ 39.1026i,−24.4925− 43.9222i,−24.4925+ 43.9222i, 7.66739,
20 −7.59638− 42.8389i,−7.59638+ 42.8389i, 1.4352, 5.29604− 38.3028i, 5.29604+ 38.3028i,

14.8032− 31.6892i, 14.8032+ 31.6892i, 19.3176, 21.3051− 23.9447i, 21.3051+ 23.9447i,
25.133− 15.7825i, 25.133+ 15.7825i, 26.6772− 7.75102i, 26.6772+ 7.75102i, 26.8166

21 −50.1500− 39.1900i,−50.1500+ 39.1900i,−27.6500− 44.9000i,−27.6500+ 44.9000i,
−10.5200− 44.6900i,−10.5200+ 44.6900i, 1.4300, 2.8710− 40.9000i, 2.8710+ 40.9000i,

7.6430, 13.0700− 34.8600i, 13.0700+ 34.8600i, 19.2500, 20.3800− 27.4900i, 20.3800+ 27.4900i,
25.0900− 19.4800i, 25.0900+ 19.4800i, 27.4600− 11.4000i, 27.4600+ 11.4000i, 28.0300− 3.6970i, 28.0300+ 3.6970i

22 −52.9800− 39.1500i,−52.9800+ 39.1500i,−30.7400− 45.6900i,−30.7400+ 45.6900i,
−13.4700− 46.3100i,−13.4700+ 46.3100i, 0.3258− 43.2700i, 0.3258+ 43.2700i,

1.4260, 7.6190,11.1200− 37.8300i, 11.1200+ 37.8300i, 19.1700− 30.8800i, 19.1700+ 30.8800i, 19.2000,
24.6900− 23.1100i, 24.6900+ 23.1100i, 27.8900− 15.0600i, 27.8900+ 15.0600i, 29.1000− 7.2270i, 29.1000+ 7.2270i, 29.1600

23 −55.6500− 39.0000i,−55.6500+ 39.0000i,−33.7300− 46.2800i,−33.7300+ 46.2800i,
−16.4200− 47.7000i,−16.4200+ 47.7000i,−2.3060− 45.4000i,−2.3060+ 45.4000i, 1.4220,

7.5970,8.9970− 40.5800i, 8.9970+ 40.5800i, 17.7000− 34.1100i, 17.7000+ 34.1100i, 19.1400,
23.9600− 26.6400i, 23.9600+ 26.6400i, 27.9700− 18.7100i, 27.9700+ 18.7100i,

29.9200− 10.7800i, 29.9200+ 10.7800i, 30.2500− 3.3920i, 30.2500+ 3.3920i
24 −58.1600− 38.7500i,−58.1600+ 38.7500i,−36.6300− 46.7200i,−36.6300+ 46.7200i,

−19.3300− 48.8900i,−19.3300+ 48.8900i,−4.9950− 47.3000i,−4.9950+ 47.3000i,
1.4180,6.7330− 43.1200i, 6.7330+ 43.1200i, 7.5750, 16.0100− 37.1500i, 16.0100+ 37.1500i, 19.0900,

22.9500− 30.0400i, 22.9500+ 30.0400i, 27.7000− 22.3000i, 27.7000+ 22.3000i,
30.4200− 14.3700i, 30.4200+ 14.3700i, 31.1800,31.3100− 6.7330i, 31.3100+ 6.7330i
−60.5204− 38.4304i,−60.5204+ 38.4304i,−39.4209− 47.0008i,−39.4209+ 47.0008i,
−22.2105− 49.8788i,−22.2105+ 49.8788i,−7.7159− 48.9909i,−7.7159+ 48.9909i,

25 4.35875− 45.4396i, 4.35875+ 45.4396i, 14.1313− 40.0022i, 14.1313+ 40.0022i
21.6898− 33.2886i, 21.6898+ 33.2886i, 27.1344− 25.8021i, 27.1344+ 25.8021i
30.5883− 17.9702i, 30.5883+ 17.9702i, 32.1875− 10.1876i, 32.1875+ 10.1876i

32.2072− 3.08003i, 32.2072+ 3.08003i, 1.41369, 7.55437,19.0376
26 −62.7300− 38.0400i,−62.7300+ 38.0400i,−42.1000− 47.1500i,−42.1000+ 47.1500i,−25.0300− 50.6900i,−25.0300+ 50.6900i,

−10.4500− 50.4700i,−10.4500+ 50.4700i, 1.4100, 1.9040− 47.5500i, 1.9040+ 47.5500i, 7.5350, 12.1000− 42.6500i, 12.1000+ 42.6500i,
18.9900, 20.2100− 36.3700i, 20.2100+ 36.3700i, 26.2900− 29.1900i, 26.2900+ 29.1900i,

30.4300− 21.5200i, 30.4300+ 21.5200i, 32.7600− 13.7300i, 32.7600+ 13.7300i, 32.9200,33.3400− 6.2300i, 33.3400+ 6.2300i
27 −64.8000− 37.5900i,−64.8000+ 37.5900i,−44.6600− 47.1900i,−44.6600+ 47.1900i,

−27.7800− 51.3400i,−27.7800+ 51.3400i,−13.1700− 51.7600i,−13.1700+ 51.7600i,
−0.6069− 49.4400i,−0.6069+ 49.4400i, 1.4060, 7.5160,9.9540− 45.1000i, 9.9540+ 45.1000i,

18.5400− 39.2700i, 18.5400+ 39.2700i, 18.9400, 25.2000− 32.4400i, 25.2000+ 32.4400i,
29.9800− 24.9900i, 29.9800+ 24.9900i, 32.9900− 17.2700i, 32.9900+ 17.2700i, 33.9300− 2.7060i,

33.9300+ 2.7060i, 34.3000− 9.6140i, 34.3000+ 9.6140i
28 −66.7300− 37.1000i,−66.7300+ 37.1000i,−47.1100− 47.1200i,−47.1100+ 47.1200i,

−30.4600− 51.8300i,−30.4600+ 51.8300i,−15.8700− 52.8600i,−15.8700+ 52.8600i,
−3.1520− 51.1400i,−3.1520+ 51.1400i, 1.4030, 7.4970,7.7070− 47.3400i, 7.7070+ 47.3400i,

16.7200− 41.9900i, 16.7200+ 41.9900i, 18.9000, 23.8900− 35.5300i, 23.8900+ 35.5300i,
29.2700− 28.3400i, 29.2700+ 28.3400i, 32.9200− 20.7700i, 32.9200+ 20.7700i, 34.3400,34.9200− 13.1100i,

34.9200+ 13.1100i, 35.2400− 5.6880i, 35.2400+ 5.6880i
29 −68.5400− 36.5600i,−68.5400+ 36.5600i,−49.4500− 46.9600i,−49.4500+ 46.9600i,

−33.0500− 52.1900i,−33.0500+ 52.1900i,−18.5300− 53.7900i,−18.5300+ 53.7900i,−5.7130− 52.6500i,
−5.7130+ 52.6500i, 1.3990, 5.3880− 49.4000i, 5.3880+ 49.4000i, 7.4800,14.7600− 44.5300i, 14.7600+ 44.5300i,

18.8500, 22.3900− 38.4600i, 22.3900+ 38.4600i, 28.3100− 31.5800i, 28.3100+ 31.5800i,
32.5600− 24.1900i, 32.5600+ 24.1900i, 35.2100− 16.6000i, 35.2100+ 16.6000i,

35.4300− 2.1770i, 35.4300+ 2.1770i, 36.2900− 9.0540i, 36.2900+ 9.0540i
−70.2165− 36.0005i,−70.2165+ 36.0005i,−51.6686− 46.7161i,−51.6686+ 46.7161i
−35.5629− 52.4271i,−35.5629+ 52.4271i,−21.1378− 54.5706i,−21.1378+ 54.5706i
−8.27289− 53.9833i,−8.27289+ 53.9833i, 3.01739− 51.2594i, 3.01739+ 51.2594i

30 12.6969− 46.8724i, 12.6969+ 46.8724i, 20.7417− 41.2244i, 20.7417+ 41.2244i
27.1515− 34.6684i, 27.1515+ 34.6684i, 31.9523− 27.519i, 31.9523+ 27.519i
35.195− 20.0566i, 35.195+ 20.0566i, 36.9391− 12.5206i, 36.9391+ 12.5206i

37.0796− 5.09704i, 37.0796+ 5.09704i, 1.39626, 7.4626,18.8118, 35.3404
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Similarly, we examine the zeros of EL(α,β)
n,q (x). In Figure 10, we present the zeros of EL(α,β)

n,q (x) for n = 30, α = 0.09, β = 0.09, q =
0.89 (blue), for n= 40, α= 0.09, β = 0.09, q = 0.9 (yellow), and for n= 50, α= 0.09, β = 0.09, q = 0.92 (green).
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Figure 9: Zeros of EL
(α,β)
n,q (x)
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Figure 10: Zeros of EL
(α,β)
n,q (x)

The plot of real zeros of the EL(α,β)
n,q (x). for 1 ≤ n ≤ 30, α = 0.19, β = 0.18, and q = 0.9 structure are presented in Figure 11.

Stacks of zeros of the EL(α,β)
n,q (x) for 1≤ n≤ 30, α= 0.09, β = 0.8, and q = 0.9 from a 3D structure are presented in Figure 13.

Similarly, the plot of real zeros of the EL(α,β)
n,q (x). for 1≤ n≤ 30, α = 0.09, β = 0.8, and q = 0.9 structure are presented in Figure

11. Stacks of zeros of the EL(α,β)
n,q (x) for 1≤ n≤ 30, α = 0.09, β = 0.8, and q = 0.9 from a 3D structure are presented in Figure 13.
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Figure 11: Real zeros of EL
(α,β)
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Figure 12: Real zeros of EL
(α,β)
n,q (x)

Our numerical results for the solutions satisfying 1-variable q-Mittag-Leffler-Laguerre polynomials EL(α,β)
n,q (x) = 0, for n =

5, 10, 15, 20, 25, 30, α= 0.09, β = 0.8, and q = 0.9 are listed in Table 1.

Similarly, our numerical results for the solutions satisfying another kind of 1-variable q-Mittag-Leffler-Laguerre polynomials

EL(α,β)
n,q (x) = 0, for n= 5, 10, 15, 20, 25, 30, α= 0.09, β = 0.8, and q = 0.9 are listed in Table 2.

In this article, we set out to unveil the q-symbolic approach to the Mittag-Leffler function. By leveraging the q-symbolic definition,
we present the two-variable q-Mittag-Leffler-Laguerre polynomials and delve into their properties through a symbolic lens. The

Dolomites Research Notes on Approximation ISSN 2035-6803



Kumar · Raza · Ramírez 132

Figure 13: Zeros of EL
(α,β)
n,q (x) Figure 14: Zeros of EL

(α,β)
n,q (x)

Table 2: Approximate solutions of another kind of 1-variable q-Mittag-Leffler-Laguerre polynomials EL
(α,β)
n,q (x) = 0

n Zeros of another kind of 1-variable q-Mittag-Leffler-Laguerre polynomials

EL(α,β)
n,q (x) = 0

5 0.965684, 3.53999− 8.7904i, 3.53999+ 8.7904i, 5.01489− 1.30641i, 5.01489+ 1.30641i
10 −3.46115− 24.4367i,−3.46115+ 24.4367i, 7.09787− 13.5726i, 7.09787+ 13.5726i,

0.549511,2.88872, 7.20417,8.92742, 9.44072− 5.8136i, 9.44072+ 5.8136i
−13.2332− 35.4015i,−13.2332+ 35.4015i, 3.16655− 24.2692i, 3.16655+ 24.2692i

15 0.316317,1.66314, 4.07179,7.52223, 9.3094− 15.5416i, 9.3094+ 15.5416i
10.5768,11.3191− 3.6335i, 11.3191+ 3.6335i, 11.3482− 8.79407i, 11.3482+ 8.79407i
−21.25− 41.9701i,−21.25+ 41.9701i,−1.61722− 31.0461i,−1.61722+ 31.0461i

20 0.183241, 0.963526,2.3593, 4.35701,6.93654, 9.92745
10.3762− 15.3355i, 10.3762+ 15.3355i, 11.3097− 1.91834i, 11.3097+ 1.91834i
11.8078− 9.82054i, 11.8078+ 9.82054i, 11.9444− 5.42725i, 11.9444+ 5.42725i

21 −22.5500− 42.9000i,−22.5500+ 42.9000i,−2.4740− 32.0100i,−2.4740+ 32.0100i,
0.1644, 0.8643,2.1160, 3.9090,6.0740− 23.2600i, 6.0740+ 23.2600i, 6.2230,9.0530,

10.0200− 16.3200i, 10.0200+ 16.3200i, 10.8400, 11.4900− 2.8570i, 11.4900+ 2.8570i,
11.6400− 10.8000i, 11.6400+ 10.8000i, 11.9600− 6.3870i, 11.9600+ 6.3870i

22 −23.7500− 43.7400i,−23.7500+ 43.7400i,−3.2830− 32.8800i,−3.2830+ 32.8800i,
0.1475, 0.7754,1.8990, 3.5070,5.5110− 24.1400i, 5.5110+ 24.1400i,

8.1050, 9.6440− 17.2000i, 9.6440+ 17.2000i, 10.7400− 0.9241i, 10.7400+ 0.9241i,
5.5830, 11.4300− 11.6900i, 11.4300+ 11.6900i, 11.5900− 3.7160i, 11.5900+ 3.7160i,

11.9100− 7.2680i, 11.9100+ 7.2680i
23 −24.8600− 44.4800i,−24.8600+ 44.4800i,−4.0400− 33.6500i,−4.0400+ 33.6500i,

0.1323, 0.6958,1.7040, 3.1470,4.9680− 24.9200i, 4.9680+ 24.9200i,
5.0100, 7.2750,9.2640− 18.0000i, 9.2640+ 18.0000i, 9.7800,10.9400− 1.6280i,
10.9400+ 1.6280i, 11.1900− 12.4800i, 11.1900+ 12.4800i, 11.6200− 4.5120i,

11.6200+ 4.5120i, 11.8000− 8.0690i, 11.8000+ 8.0690i
24 −25.8700− 45.1500i,−25.8700+ 45.1500i,−4.7460− 34.3400i,−4.7460+ 34.3400i,

0.1187, 0.6244,1.5290, 2.8240,4.4510− 25.6200i, 4.4510+ 25.6200i,
4.4960, 6.5290,8.8880− 18.7000i, 8.8880+ 18.7000i, 8.9170,10.4100, 10.9400− 13.2000i,

10.9400+ 13.2000i, 11.0200− 2.3630i, 11.0200+ 2.3630i, 11.5800− 5.2400i,
11.5800+ 5.2400i, 11.6500− 8.7930i, 11.6500+ 8.7930i

25 −26.8015− 45.7467i,−26.8015+ 45.7467i,−5.40108− 34.9532i,−5.40108+ 34.9532i
0.106574,0.560416, 1.37234,2.53464, 3.96207− 26.2368i, 3.96207+ 26.2368i

5.86038, 8.52015− 19.3276i, 8.52015+ 19.3276i, 10.2257− 0.733129i, 10.2257+ 0.733129i,
4.03579, 10.6697− 13.8361i, 10.6697+ 13.8361i, 11.0422− 3.02503i, 11.0422+ 3.02503i,
7.98772,11.4816− 9.44187i, 11.4816+ 9.44187i, 11.5048− 5.89931i, 11.5048+ 5.89931i

0.0621531, 0.326838,0.800395, 1.47838,2.35415, 3.41883,4.66113, 6.0673,7.62053,
−30.3656− 47.9078i,−30.3656+ 47.9078i,−7.97091− 37.1553i,−7.97091+ 37.1553i

26 −27.6500− 46.2800i,−27.6500+ 46.2800i,−6.0060− 35.5000i,−6.0060+ 35.5000i,
0.0957, 0.5030,1.2320, 2.2750,3.5040− 26.7900i, 3.5040+ 26.7900i,

3.6230, 5.2610,7.1720, 8.1670− 19.8800i, 8.1670+ 19.8800i, 9.2490,10.3400− 1.2870i,
10.3400+ 1.2870i, 10.4000− 14.4000i, 10.4000+ 14.4000i, 11.0100− 3.6290i, 11.0100+ 3.6290i,

11.2900− 10.0200i, 11.2900+ 10.0200i, 11.3900− 6.4910i, 11.3900+ 6.4910i
27 −28.4300− 46.7600i,−28.4300+ 46.7600i,−6.5630− 35.9900i,−6.5630+ 35.9900i,

0.0859, 0.4516,1.1060, 2.0420,3.0760− 27.2800i, 3.0760+ 27.2800i,
3.2520, 4.7230,6.4380, 7.8310− 20.3800i, 7.8310+ 20.3800i, 8.3880,

9.7610, 10.1400− 14.9000i, 10.1400+ 14.9000i, 10.3300− 1.8520i, 10.3300+ 1.8520i,
10.9500− 4.1730i, 10.9500+ 4.1730i, 11.0900− 10.5300i, 11.0900+ 10.5300i,

11.2600− 7.0190i, 11.2600+ 7.0190i
28 −29.1400− 47.1800i,−29.1400+ 47.1800i,−7.0750− 36.4200i,−7.0750+ 36.4200i,

0.0771, 0.4054,0.9928, 1.8340,2.6790− 27.7100i, 2.6790+ 27.7100i,
2.9200,4.2400, 5.7810,7.5140− 20.8100i, 7.5140+ 20.8100i, 7.5240,9.4960− 0.4786i, 9.4960+ 0.4786i,

9.8840− 15.3400i, 9.8840+ 15.3400i, 10.3000− 2.3530i, 10.3000+ 2.3530i,
10.8500− 4.6580i, 10.8500+ 4.6580i, 10.8900− 10.9900i, 10.8900+ 10.9900i, 11.1100− 7.4870i, 11.1100+ 7.4870i

29 −29.7800− 47.5700i,−29.7800+ 47.5700i,−7.5430− 36.8100i,−7.5430+ 36.8100i,
0.0692, 0.3640,0.8914, 1.6460,2.3130− 28.1000i, 2.3130+ 28.1000i, 2.6220,3.8070,

5.1910,6.7560, 7.2180− 21.2000i, 7.2180+ 21.2000i, 8.4570, 9.5730− 0.9286i, 9.5730+ 0.9286i,
9.6410− 15.7400i, 9.6410+ 15.7400i, 10.2400− 2.8020i, 10.2400+ 2.8020i, 10.6900− 11.3800i, 10.6900+ 11.3800i,

10.7300− 5.0880i, 10.7300+ 5.0880i, 10.9500− 7.8980i, 10.9500+ 7.8980i
30 1.97581− 28.4441i, 1.97581+ 28.4441i, 8.94894,6.94265− 21.5443i, 6.94265+ 21.5443i

9.41184− 16.0796i, 9.41184+ 16.0796i, 9.5118− 1.34485i, 9.5118+ 1.34485i
10.1468− 3.19998i, 10.1468+ 3.19998i, 10.5006− 11.7337i, 10.5006+ 11.7337i

10.608− 5.46474i, 10.608+ 5.46474i, 10.7901− 8.25949i, 10.7901+ 8.25949i
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key achievements of our study encompass the derivation of generating functions, series definitions, quasi-monomiality properties,
q-partial differential equations, operational identities, and q-integro-differential equations for the newly introduced two-variable
q-Mittag-Leffler-Laguerre polynomials. Moreover, we extend these results to the mth-order two-variable q-Mittag-Leffler-Laguerre
polynomials. The research culminates with the introduction of an additional type of two-variable q-Mittag-Leffler-Laguerre
polynomials. Additionally, we derive the one-variable counterparts of these polynomials. Finally, we provide graphical represen-
tations and explore the symmetric structure of their approximate zeros for various values of α, β , and q using computer-aided tools.

The findings presented in this paper may encourage readers and scholars to study these q-special polynomials in more detail.
These findings could have applications in engineering, mathematics, and mathematical physics.
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