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Abstract

The metric space of pluriregular sets was introduced over two decades ago but to this day most of its
topological properties remain a mystery. The purpose of this short survey is to present the current state
of knowledge concerning this space.
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1 Introduction
A pseudometric measuring the distance between pluriregular sets was introduced in [18] in 1995. The initial motivation for
introducing such a concept came a couple of years earlier from two quite different mathematical directions, both of which were
linked to pluripotential theory.

First came the observation that the invariance formula for pluricomplex Green functions shown in [15] (see also [16] and
Theorem 5.3.1 in [17]) makes it possible to treat proper polynomial mappings in CN as contractions acting on the set of continuous
pluricomplex Green functions. Consequently, the construction of classical filled-in Julia sets in the complex plane can be reduced
to a simple application of Banach’s Contraction Principle.

The other source of motivation was an inequality shown in [4] (see Theorem 2.1). In that paper, Aron, Beauzamy and Enflo,
using techniques from classical analysis, were comparing real and complex supremum norms for multivariate polynomials, with
focus on estimates independent of the dimension of the underlying space. In particular, they compared the supremum norm of
polynomials with real coefficients on the closed unit polydisc P ⊂ CN , with the supremum norm of the same polynomial on the
hypercube H := [−1,1]N = P∩RN , concluding that for any polynomial p with real coefficients, ‖p‖P ≤ C‖p‖H, for explicitly
given constant C depending only on the degree of the polynomial p. It was shown in [18] (and already acknowledged in [4] –
see added in proof p. 197) that by comparing the pluricomplex Green functions for P and H one can get considerably better
constants for all complex polynomials of degree at least 2. In fact, the improvement gets better exponentially as the degree of the
polynomial increases.

The aim of this paper is to collect and interpret the results concerning the metric space of pluriregular sets, as these results
have been scattered in literature over the last two decades. Most of them come from papers authored or co-authored by one or
both of the authors of this survey. Those results have also found uses and extensions in the work of other researchers — see [5],
[11], [40], [12], [41], [31] and [14].

We will close the paper with some general comments and a few open problems.

2 Preliminaries and Notation
For any non-empty sets X , Y, we will denote by Y X the set of all functions from X to Y . If F is a non-empty collection of subsets
of a set X , then

⋃

F :=
⋃

F∈F
F ⊂ X .

We will be using several metric spaces and so we have to establish convenient notational conventions. First of all, the default
metric in CN is the Euclidean metric. If (X , d) is a metric space, then Bd(a, r) and Bd(a, r) will denote, respectively, the open
and closed balls with centre at a ∈ X and radius r > 0. For the Euclidean balls, the subscript d will be dropped. By κ(X ) we
will denote the family of all non-empty compact subsets of X . The symbol Cb(X ) will stand for the vector space of bounded
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complex-valued continuous functions on X , furnished with the metric d∞( f , g) = supX | f − g|. If E ∈ κ(X ), then ‖ f ‖E = supE | f |
for any f ∈ Cb(X ). We define

δE(z) := dist(z, E) = inf{d(z, w) : w ∈ E}

for any closed set E ⊂ X and the ε-dilation of E

Eε := {z ∈ X : δE(z)≤ ε}, ε > 0.

The Hausdorff distance on κ(X ) is defined by

χ
d
(E, F) :=max{‖δE‖F ,‖δF‖E}= ‖δE −δF‖X . (2.1)

For the Hausdorff distance in κ(CN ), with d being the Euclidean metric, we will simply use the letter χ.
The dimension N will be fixed throughout the paper. The symbol pk will denote the family of all complex polynomials

p : CN −→ C with deg p ≤ k. By p we will denote the set of all polynomials. The symbol Pk will stand for the set of all complex
polynomial mappings P : CN −→ CN of degree at most k, that is

Pk = pk × . . .× pk
︸ ︷︷ ︸

N -copies

.

We say that P ∈ Pk is regular, if the zero set of the homogeneous part of P of degree k is a singleton.
For any set E ∈ κ(CN ), we will denote its pluricomplex Green function by VE . For historical and mathematical background

concerning pluricomplex Green functions we refer the reader to [17]. It is well-known that

VE = logΦE , (2.2)

where ΦE is the Siciak extremal function

ΦE(z) := sup
�

|p(z)|1/deg p : p ∈ p, ‖p‖E ≤ 1, deg p ≥ 1
	

, z ∈ CN .

It follows from (2.2) that for any compact set E, the polynomially convex hull bE of E coincides with the zero set of VE . A compact
set E is said to be pluriregular if VE is continuous. We will use the symbol R∗ to denote the family of all compact pluriregular
subsets of CN . We also put

R := {E ∈R∗ : E = bE}.

Siciak’s extremal functions, and hence the pluricomplex Green functions, as well as pluriregular sets, have proved to be very
useful concepts in pluricomplex analysis and most of all in approximation theory (see the excellent survey by Pleśniak [35] for an
overview).

For any E ∈ κ(CN ) and any ε > 0, we define the ε-augmentation of E as the set

E(ε) := {z ∈ CN : VE(z)≤ ε}.

Because of lower semicontinuity of VE , all augmentations of E are closed. If E ∈ R∗, then all E(ε) are compact. Moreover
VE(ε) =max{0, VE − ε} as shown by Mazurek [37, Proposition 5.11]. The relationship between the dilations and augmentations of
E is in general far from clear.

Following Siciak [39], we say that a non-empty subset E ⊂R has the equicontinuity property if

lim
ε→0

sup
E∈E
‖VE‖Eε = 0. (2.3)

Another natural concept linked to the pluricomplex Green functions is the Robin constant

γ(E) = limsup
‖z‖→∞

�

V ∗E (z)− log‖z‖
�

, E ∈ κ(CN ), (2.4)

where V ∗E denotes the upper semicontinuous regularization of VE .

3 Definition and fundamental properties
Following [18], we can define the pseudometric

Γ (E, F) :=max{||VE ||F , ||VF ||E}= ||VE − VF ||CN , E, F ∈R∗. (3.1)

When restricted to the sets from R, the pseudometric Γ becomes a metric and we will refer to the pair (R, Γ ) as the space of
pluriregular sets. It turns out that (R, Γ ) is a complete metric space (see [18, Theorem 1]). Consequently, if B denotes the closed
unit ball in CN , then

�

R, Γ
�

3 E 7−→ VE − VB ∈
�

Cb(CN ), d∞
�

is an isometric embedding with closed range.
One of the most attractive properties of the metric space of pluriregular sets is the fact that proper polynomial mappings lead

to natural contractions of that space. In order to be more precise we need some extra terminology. The Łojasiewicz exponent at
infinity of a polynomial mapping P : CN −→ CN is the real number defined as

L∞(P) := sup
§

δ ∈ R : lim inf
||z||→∞

||P(z)||
||z||δ

> 0
ª

.
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It turns out that the supremum is always achieved. Moreover, if R> 0 is sufficiently large, then there exists M > 0 such that

||P(z)|| ≥ M ||z||L∞(P), ||z|| ≥ R. (3.2)

The mapping P is proper if and only if L∞(P)> 0. If P is regular, then L∞(P) = deg P. The survey [29] provides comprehensive
information concerning the Łojasiewicz exponent at infinity and its properties.

If P : CN −→ CN is a proper polynomial mapping, then

L∞(P)VP−1(E) ≤ VE ◦ P ≤ deg(P)VP−1(E) (3.3)

for any E ∈ κ
�

CN
�

(see [15], [16] or [17, Theorem 5.3.1]). In particular, if E ∈R, then also P−1(E) ∈R. Moreover, it follows
that the function defined by the formula

A{P} : R 3 E 7−→ P−1(E) ∈R (3.4)

satisfies the Lipschitz condition with respect to Γ with the constant 1/L∞(P) (see [18]). Furthermore, if P is regular, then A{P} is
a similitude [3], that is

Γ
�

A{P}(E), A{P}(F)
�

=
1

deg P
Γ (E, F), E, F ∈R.

An escape radius for a polynomial mapping P : CN −→ CN , provided that it exists, is a number R> 0 such that if z ∈ CN \B(0, R),
then limn→∞ ‖zn‖ =∞, where z0 = z and zn = P(zn−1) for n ≥ 1. If 1 < δ ≤L∞(P), then there exists an escape radius R > 1
such that (see [19])

inf
§

‖P(z)‖
‖z‖δ

: ‖z‖ ≥ R
ª

> R1−δ. (3.5)

In this case
B(0, R) ⊃ P−1

�

B(0, R)
�

(3.6)

and hence, because of (3.3), we get the practical estimate

Γ
�

P−1(B(0, R)), B(0, R)
�

≤
‖P‖∂ B(0,R)

Rδ
. (3.7)

For a survey of the concept of escape radii see [28].
Directly from the definitions of the metric Γ and the Siciak extremal function we get another estimate

‖p‖E ≤ exp
�

kΓ (E, F)
�

‖p‖F , p ∈ pk, E, F ∈R, (3.8)

the usefulness of which depends on our ability to calculate or estimate the exact value of Γ (E, F). When E, F ∈R are in some
way simple, this can often be done easily (see e.g. [18]). For instance, for the augmentations of any E ∈R, we have the equality
Γ (E, E(ε)) = ε, where ε > 0, and for the sets mentioned in the introduction Γ (P,H) = log(1+

p
2). The latter fact, together

with (3.8), proved to be important in [14, Proposition 1.2]. However, in general, the exact calculation might be a difficult task.
Nevertheless, for some classes of sets a viable approximation is possible.

Recall that if E ∈R∗ and µ is a positive Borel measure supported on E, then the pair (E,µ) is said to have the Bernstein-Markov
property if the sequence

Mk := sup

�

||p||E
||p||L2(µ)

: p ∈ Pk(CN )

�

, k ≥ 1,

has subexponential growth, that is
lim sup

k→∞

k
p

Mk ≤ 1.

A comprehensive overview of this property can be found in [9] and [32]. One of the attractive consequences of the Bernstein-
Markov property is the possibility of convenient approximation of the pluricomplex Green function of E. Bloom and Shiffman
[10] demonstrated that if {Q j ∈ pk : j = 1, . . . , dimpk} is an orthonormal basis for pk ∩ L2(µ) and

Bµk (z) :=
dimpk
∑

j=1

|Q j(z)|2, z ∈ CN ,

then

lim
k→∞

1
2k

log Bµk (z) = VE(z), z ∈ CN , (3.9)

and the convergence is uniform on compact subsets of CN (see [10, Lemma 3.4]). The function Bµk is called the Bergman
function of E of order k. Bergman functions can be approximated numerically with the help of weakly admissible meshes [32]
or Monte-Carlo simulation [2]. Whenever such an approximation is viable for both E and F , the approximation of Γ (E, F) is a
natural consequence.

The following theorem summarizes the most useful metric and topological characteristics of the metric space (R, Γ ).

Theorem 3.1. We have the following properties:

(i) The metric space (R, Γ ) is complete.
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(ii) If E, F ∈ κ(CN ) and α,β > 0, then

Γ
�

Eα, Fβ
�

≤ log

�

χ
�

Eα, Fβ
�

min{α,β}
+ 1

�

.

(iii) If E ∈ κ(R), then
⋃

E ∈ κ(CN ).

(iv) If E ,F ∈ κ(R), then
Γ
�⋃

E ,
⋃

F
�

≤max
�

Γ (E, F) : E ∈ E , F ∈ F
	

.

(v) If E, F, G ∈R and E ⊂ F ⊂ G, then max{Γ (E, F), Γ (F, G)} ≤ Γ (E, G).

(vi) If E ,F ∈ κ(R), then
Γ
�⋃

E ,
⋃

F
�

≤ χ
Γ
(E ,F).

(vii) The space (R, Γ ) is separable. Polynomially convex hulls of finite unions of closed balls with centres in (Q+ iQ)N and rational
radii form a dense subset of R.

(viii) Closed balls in (R, Γ ) do not have to be compact. In other words, the space is not proper.

(ix) A set E is relatively compact in R if and only if
⋃

E is bounded in CN and E has the equicontinuity property.

(x) Assume that En, E ∈R, n ∈ N, and limn→∞ χ(En, E) = 0. Then the sequence (En)∞n=1 has the equicontinuity property if and
only if limn→∞ Γ (En, E) = 0.

(xi) The Robin constant, treated as a real-valued function on R, is non-expanding, that is, |γ(E)− γ(F)| ≤ Γ (E, F) for all E, F ∈R.
In particular, the logarithmic capacity Cap : R 3 E 7→ exp (−γ(E)) ∈ R+ is continuous.

(xii) If (X , d) is a metric space and f : X −→R is continuous, then f is upper semicontinuous as a set-valued function, i.e. for any
open subset U ⊂ CN , the set {x ∈ X : f (x) ⊂ U} is open.

Proof. For proofs we refer the reader to the literature. Property (i) was shown in [18, Theorem 1]). Proofs of (ii), (iv) and (xi)
can also be found in [18]. Part (v) follows directly from the definitions. Parts (iii), (vi) and (vii) were shown in [1]. Property
(viii) was shown in [1] using [39, Example 3.6]. Parts (ix) and (x) are due to Siciak [39]. Statement (xii) follows from the
fact that given E ∈R, the family {{VE < ε} : ε > 0} forms a base of the filter of all neighbourhoods of the set E in CN (see [18,
Corollary 1]).

We would like to present here a more direct proof of (viii) (which also justifies Siciak’s example [39, Example 3.6] in an
elementary way). Let

En,m =
n−1
⋃

j=0

�

j
n

,
j
n
+

1
2mn

�

∪ [1,2], n, m ∈ N,

and let Fn = { j/n : j = 0, . . . , n− 1} for n ∈ N. When n is fixed, then

lim
m→∞

VEn,m
= VFn∪[1,2]

pointwise, and there exists a polar set Zn such that VFn∪[1,2](z) = V[1,2](z) for all z ∈ C \ Zn. The set Z = Z1 ∪ Z2 ∪ Z3 ∪ . . . is polar.
Let a ∈ [0, 1) \ Z be arbitrarily chosen. For each n, there exist mn such that

0< V[1,2](a)− VEn,mn
(a)< 1/n.

The choices can be made by induction so that mn < mn+1 for all n. Then

lim sup
n→∞

Γ
�

En,mn
, [0,2]

�

≥ lim
n→∞

VEn,mn
(a) = V[1,2](a)> 0.

It is also clear that limn→∞ χ(En,mn
, [0,2]) = 0. In view of (x) the sequence (En,mn

)∞n=1 is not relatively compact in the metric
space (R, Γ ). Because of (v), Γ (En,mn

, [0, 2])≤ Γ ([1, 2], [0, 2]). Consequently, the closed ball in R with center at [0, 2] and radius
Γ ([1,2], [0,2]) is not compact. If N > 1, we simply consider the N -th Cartesian powers of the sets En,mn

, [1,2] and [0,2]. The
product property of the pluricomplex Green functions (see [37, Proposition 5.9] or [17, Theorem 5.1.8]) implies that

lim sup
n→∞

Γ
�

(En,mn
)N , [0,2]N

�

= lim sup
n→∞

Γ (En,mn
, [0,2])> 0.

Also, since χ
�

(En,mn
)N , [0,2]N

�

→ 0 as n→∞, Part (x) yields the same conclusion as in the one-dimensional case.
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4 Julia sets and iteration problems
Different classes of Julia sets have been studied extensively in complex dynamics over the last few decades (see e.g. references
given in [1]). In this section we only look at the types of Julia sets that can be constructed with the help of the metric Γ , as such
sets have proven to be a rich source of examples of pluriregular sets, and in fact it was shown in [20] that the so-called composite
filled-in Julia sets generated by quadratic polynomial mappings form a dense subset of R.

Let P : CN → CN be a polynomial mapping. Since (R, Γ ) is a complete metric space, if L∞(P)> 1, then the mapping A{P}
defined by (3.4) has a unique fixed point J[P], by Banach’s Contraction Principle. This happens to be the (autonomous) filled-in
Julia set of P (see [18]) which can be defined as follows

J[P] :=
¦

z ∈ CN : (Pn(z))∞n=1 is bounded
©

,

where Pn denotes P composed with itself n times. The standard proof of Banach’s Contraction Principle implies that

lim
n→∞

Γ
�

(Pn)−1(E),J[P]
�

= 0, E ∈R.

Moreover, if a ∈ CN and R> 0 is big enough, then in view of (3.6)

J[P] =
∞
⋂

n=1

(Pn)−1
�

B(a, R)
�

. (4.1)

Note that the last equality implies the convergence of the inverse images of the ball to the filled-in Julia set also in the Hausdorff
metric.

The following result, [22, Lemma 4.5], enables us to generalize the notion of the autonomous filled-in Julia set.

Theorem 4.1 (Enhanced version of Banach’s Contraction Principle, [22]). Let (X , d) be a complete metric space and let (Hn)n≥1 be
a sequence of contractions of X with contraction ratios not greater than L < 1. If

sup
n≥1

d(Hn(x), x)<∞ (4.2)

for each x ∈ X , then there exists a unique point c in X such that the sequence (H1 ◦ ... ◦Hn)n≥1 converges pointwise to c.

Consider a sequence (Pn)∞n=1 of polynomial mappings Pn : CN → CN such that infn∈NL∞(Pn)> 1 and such that there exists a
common escape radius R> 0 for all Pn, n ∈ N, for which supn∈N ‖Pn‖B(0,R) <∞. Then the assumptions of the enhanced version of
Banach’s Contraction Principle for the sequence (A{Pn})

∞
n=1 are satisfied (for an argument justifying (4.2) see the proof of [22,

Theorem 4.6]) and we get the unique point J[(Pn)∞n=1] such that

lim
n→∞

Γ
�

(Pn ◦ ... ◦ P1)
−1(E), J[(Pn)∞n=1]

�

= 0, E ∈R.

If (Pn)∞n=1 is periodic, that is
∃m ∈ N ∀k ∈ N, j ∈ {0, ..., m− 1} : Pkm+ j = Pj ,

then J[(Pn(z))∞n=1] is the (autonomous) filled-in Julia set of Pm ◦ ... ◦ P1. However, if the sequence is not periodic, then we obtain
the non-autonomous filled-in Julia set of (Pn)∞n=1, i.e.

J[(Pn)
∞
n=1] =

¦

z ∈ CN : ((Pn ◦ ... ◦ P1)(z))
∞
n=1 is bounded

©

.

One can also show that every non-autonomous filled-in Julia set can be approximated by the autonomous ones (cf. [3]),
namely

lim
m→∞

Γ
�

J[(Pn)
∞
n=1],J[Pm ◦ ... ◦ P1]

�

= 0. (4.3)

It is also possible to consider a finite family F = {P1, ..., Pm} of polynomial mappings Pj : CN → CN with Łojasiewicz exponents
bigger than one and define the mappings

AF : R∗ 3 E 7→
m
⋃

j=1

P−1
j (E) ∈R∗ and R 3 E 7→ØAF (E) ∈R.

These mappings are both contractions and the fixed point of the second one is called the composite Julia set of {P1, ..., Pm}. Such
sets were extensively studied in [18], [19], [25], [1], but we will go into more detail in a special setting a little further on.

From now on we will consider a simpler situation, namely the case of regular polynomial mappings. In this case, the
Łojasiewicz exponent at infinity is equal to the degree of the mappings in question.

Before describing in detail a natural setting for composite Julia sets, it should be mentioned briefly that a more specialized
generalization of the non-autonomous filled-in Julia sets was proposed in [20, Proposition 1, Corollaries 2 & 3].

For a fixed integer k ≥ 2, consider P?k := {P ∈ Pk : P is regular}. It can be regarded as an open subset of the finite dimensional
vector space Pk (see [20]). Moreover, [20, Lemma 1] gives a continuous dependence

P?k 3 P 7→ r(P) ∈ (0,∞)
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of an escape radius r(P) on P. Let F be a compact subfamily of P?k . Because of the continuous dependence, we can choose a
common escape radius for all the mappings in this family, and in view of (3.7), we have

sup
P∈F
Γ
�

P−1(B(0, R)), B(0, R)
�

≤
1

Rk
sup
P∈F
||P||B(0,R). (4.4)

Note that the supremum on the right hand side is finite because of the compactness of F . If (Pn)∞n=1 ⊂ F , it satisfies the conditions
given above, hence we can consider its filled-in Julia set.

In this setting, we can define another type of Julia sets, namely two types of composite Julia sets. Recall that A{P} is a
similitude, and in particular a continuous mapping. Moreover (see [3, Proposition 4.2]),

P?k ×R 3 (P, K) 7→ P−1(K) ∈R

is continuous with respect to the product topology in the domain. It follows that for the compact family F , the mapping

AF : R∗ 3 K 7→
⋃

P∈F
P−1(K) ∈R∗

is also a contraction with ratio 1/k. We are now ready to define the partly filled-in composite Julia set of F as follows:

Jtr[F] =
⋂

m∈N

�

⋃

P1 ,...,Pm∈F
(Pm ◦ ... ◦ P1)

−1
�

B(0, R)
�

�

=
⋂

m∈N
Am
F

�

B(0, R)
�

, (4.5)

where R is once again a common escape radius for all the mappings from F . The partly filled-in composite Julia set is closely
related to the autonomous and non-autonomous filled-in Julia sets, namely (see [3, Theorem 5.2])

Jtr[F] =
⋃
�

J[(Pn)
∞
n=1] : (Pn)

∞
n=1 ∈ FN

	

. (4.6)

The subscript “tr” stands for the word “truncated” and is related to the truncated orbits of points staying in the ball B(0, R). The
partly filled-in composite Julia set is compact and pluriregular (cf. [22, proof of Theorem 4.6]) but not necessarily polynomially
convex, as was shown in [16, Example 2] and [26, Example 4.1]. Its polynomially convex hull J[F] is the fixed point of the
contraction

R 3 K 7→×AF (K) ∈R

and it is referred to as the (filled-in) composite Julia set generated by F .
It is known that filled-in composite Julia sets generated by finite families of quadratic polynomial mappings are dense in

(R, Γ ), see [20, Theorem 3]. In particular, the following result can be stated.

Proposition 4.2. Let E ∈R and ε > 0. Then there exists a finite family Fε ⊂ P?2 such that

E ⊂ AFε (E) and Γ (E, An
Fε
(E))< ε for n≥ 1.

In particular, Γ
�

E,J[Fε]
�

≤ ε.

Proof. See the proof of [20, Theorem 3].

Julia type sets are of interest for their own sake and the usual way to approximate them is by other sets which can, for
instance, be easier to plot on the computer (e.g. with use of formulas like (4.1) or (4.5), cf. [19] and [1]). We will recall here a
recent result where the composite Julia set of a compact family of polynomial mappings can be approximated by sets obtained by
using only one well chosen sequence of elements of this family.

Theorem 4.3 ([3, Corollary 7.2], cf. [1, Theorem 2 (c)] for finite families). Let F be a non-empty compact subset of P?k and
F0 = {πn : n ∈ N} – a dense countable subset of F . Let τ : N→ N be generated according to probabilities p1, p2 . . . > 0 such that
∑∞

n=1 pn = 1, i.e. the values τ( j) of τ are chosen at random, independently from each other, so that P [τ( j)= i] = pi for i, j ∈ N.
Then for any E ∈R,

lim
m→∞

Γ
�

J[F],
⋃

Em

�

= 0

with probability one, where Em =
¦

�

πτ(1) ◦ . . . ◦πτ(n)
�−1
(E) : n≥ m

©

.

A deterministic version of this theorem is also true and uses the notion of disjunctive sequences (see [3, Theorem 7.1] for
details).

Theorem 4.3 concerns the approximation of Julia type sets. Recently an interest has arisen in the opposite problem, namely in
the approximation of other compact sets by means of Julia type sets (see [8], especially the first paragraph of the introduction and
references given there). In particular, the authors of [30] wanted to approximate compact planar sets by filled-in Julia sets in the
Hausdorff metric. One way of achieving this aim was given in [30, Theorems 3.2 & 4.12], where it was proved that for a planar
set E ∈R and any ε > 0, there exists a polynomial P such that E ⊂ J[P] ⊂ E(ε). The authors did not address the correspondence
between the augmentation they used and the dilation they would need in order to be able to derive any conclusions about the
approximation in the Hausdorff metric (for more detailed study see also [8]).

Let us get back to Proposition 4.2 and show one of its consequences.

Dolomites Research Notes on Approximation ISSN 2035-6803



Klimek · Kosek 57

Corollary 4.4. Let E ∈R and ε > 0. Then there exist a finite family Fε ⊂ P?2 such that

E ⊂ Jtr[Fε] ⊂ J[Fε] ⊂ Eε.

In particular, χ(E,Jtr[Fε])≤ ε and χ(E,J[Fε])≤ ε.

Proof. Since the family {{VE < η} : η > 0} is a basis of neighbourhoods of E in CN (see [18, Corollary 1]), there exists η > 0
such that

{z ∈ CN : VE(z)< 2η} ⊂ Eε.

Take a finite family Gη from Proposition 4.2 for this fixed η. Since E ⊂ AGη(E), the sequence (Aj
Gη
(E))∞j=1 is increasing with

respect to inclusion of sets. Moreover, inequality Γ (E, Aj
Gη
(E))< η yields that each of these sets is contained in the η-augmentation

of E. In particular,
⋃∞

j=1 Aj
Gη
(E) is bounded.

Take now a common escape radius R for all the mappings from Gη which is large enough for the inclusion
⋃∞

j=1 Aj
Gη
(E) ⊂ B(0, R)

to be satisfied. If j, l ∈ N, then Aj+l
Gη
(E) ⊂ Al

Gη
(B(0, R)). In particular, E ⊂ Al

Gη
(B(0, R)) for all l ∈ N. Now, (4.5) implies E ⊂ Jtr[Gη],

and therefore also E ⊂ Jtr[Gη] ⊂ E(η) in view of the last inequality in Proposition 4.2. Since E(η) is polynomially convex, it
follows from the choice of η that

E ⊂ Jtr[Fε] ⊂ J[Fε] ⊂ E(η) ⊂ Eε

with Fε := Gη.

Let us finish this section by making some comparisons. The result from [30] concerns only planar sets, while the approximation
by composite Julia sets from [20] and its consequence, i.e. Corollary 4.4 above, is valid for sets in CN . In [30], planar sets are
approximated by filled-in Julia sets of polynomials and the degree of the chosen polynomial is bigger when its filled-in Julia set is
closer to the limit (with respect to the Hausdorff metric or to Γ ). On the other hand, in the approximation by composite Julia sets,
the degree of the polynomials can be chosen to be always 2, however the number of the polynomials in the family grows when
we get closer to the target set.

The approach to investigations of Julia sets, which is built around properties of the space (R, Γ ), allows to create classes of
canonical examples of analytic set-valued functions. One simply looks at the Julia sets generated by finite or countable sequences
of polynomial mappings as the values of such functions whereas the generating polynomials are treated as variables. Two kinds of
analytic dependence were shown, and in particular, Theorem 3.1(xii) was of use in the proofs. Most of the results were presented
in [20], [21], [22] and [23]. For a survey on this subject we refer the reader to [27].

5 Hölder continuity property and Łojasiewicz-Siciak inequality
Let us start with a simple observation that R is not a closed subset of (κ(CN ),χ). E.g. (B(0, 1/n))∞n=1 ⊂R and {0} /∈R (cf. [18,
p.2767]). However, we have the following property.

Proposition 5.1. If (En)∞n=1 ⊂R is convergent with respect to the Hausdorff metric to the set E :=
⋂∞

n=1 En ∈R, then

lim
n→∞

Γ (En, E) = 0.

Proof.
lim

n→∞
Γ (En, E) = lim

n→∞
||VE ||En

= 0

by continuity of VE and the fact that the augmentations form a basis of neighbourhoods of any set E ∈R ([18, Corollary 1]).

Consider a subfamily RHöl of R of all polynomially convex sets whose Green functions are Hölder continuous. All autonomous
filled-in Julia sets (for the one-dimensional case see [13, Theorem VIII.3.2 and the subsequent remarks] and in general [24,
Theorem 1.2]) and all composite Julia sets defined by finite families of polynomial mappings with Łojasiewicz exponents at
infinity bigger than one (see [25, Theorem 4.1]) or by compact families of regular polynomial mappings of degree k ≥ 2 (see, [23,

Theorem 7.3]) belong to RHöl. Furthermore, if F is a compact subset of P?k for some k ≥ 2 and E ∈RHöl, then also ØAF (E) ∈RHöl
(see [22, Theorem 3.5]).

In view of [20, Corollaries 2 & 3] we know that RHöl is not closed in (R, Γ ). Let us recall here the first of those corollaries.

Proposition 5.2. Consider (λn)∞n=1 ⊂ (4,∞) such that

∞
∑

n=1

logλn

2n
<∞ and lim sup

n→∞
(λ1λ2...λn)

1/n =∞.

Define
fλn

: C 3 z 7→ λnz(1− z) ∈ C and En =
�

fλn
◦ ... ◦ fλ1

�−1
([0, 1]).

Then (En)∞n=1 converges in (R, Γ ) to a set E ∈R \RHöl, while En ∈RHöl, n ∈ N.

Proof. See [20, Corollary 2]. For the last statement observe that Hölder continuity of VEn
in this proposition follows from the

Hölder continuity of V[0,1] and (3.3).
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Now, let f : Ω→ (W,‖ · ‖) be a mapping from a non-empty open set Ω ⊂ CN to a normed space and fix α ∈ (0, 1]. Recall that
if we put

Hölα( f ) := sup
§‖ f (x)− f (y)‖
‖x − y‖α

: x , y ∈ Ω, x 6= y
ª

,

then Hα(Ω, W ) :=
�

f ∈WΩ : Hölα( f )<∞
	

is a vector space and Hölα is a seminorm.
Define, for a fixed α ∈ (0, 1],

Rα :=
�

E ∈R : VE ∈ Hα
�

CN ,R
�	

and
Γα(E, F) := Γ (E, F) +Hölα(VE − VF ), E, F ∈Rα. (5.1)

Proposition 5.3. Fix α ∈ (0, 1]. Then (Rα, Γα) is a complete metric space.

Proof. Let (En)∞n=1 be a Cauchy sequence in (Rα, Γα). Then (En)∞n=1 is a Cauchy sequence in (R, Γ ) as well and in view of Theorem
3.1(i), it is convergent to E ∈R. The definition of Γ yields uniform convergence of VEn

to VE .
Since (En)∞n=1 is a Cauchy sequence, we also have

∀ε > 0 ∃l ∈ N ∀m, n≥ l ∀z 6= w :
|(VEn

− VEm
)(z)− (VEn

− VEm
)(w)|

||z −w||α
< ε.

Letting m→∞, we get
|(VEn

− VE)(z)− (VEn
− VE)(w)|

||z −w||α
≤ ε,

which implies that
|VE(z)− VE(w)|
||z −w||α

≤ ε +Hölα(VEn
)

and the right hand side is finite.

Note that Proposition 5.2 shows that Rα does not have to be closed in (R, Γ ) (we have [0,1] ∈ R1/2 and it follows that
En ∈R1/2 too, cf. e.g. [22, Theorem 3.5]). Observe also that RHöl =

⋃

α∈(0,1]Rα.
Let us recall that E ∈Rα if and only if the so called Hölder continuity property, (HCP) for short, holds (which was shown by

Błocki, see [38, Proposition 3.5]), i.e.
∃A> 0 ∀z ∈ CN : VE(z)≤ A(δE(z))

α . (5.2)

Moreover, it is enough to check this inequality for z close to E, e.g. such that δE(z)≤ 1.
We have the following direct consequence of Proposition 5.1 and (HCP).

Corollary 5.4. Let (En)∞n=1 ⊂R be convergent with respect to the Hausdorff metric to the set E :=
⋂∞

n=1 En ∈RHöl and let the rate of
convergence be χ(En, E) = εn. Then this sequence is convergent to the same limit with respect to Γ and there exist positive constants
A,α such that the rate of convergence is estimated by

Γ (En, E)≤ Aεαn . �

In particular, we can also consider the rate of convergence of the dilations.

Corollary 5.5. Fix E ∈RHöl. Then there exist positive constants A,α such that

Γ
�

E,cEε
�

= Γ
�

E, Eε
�

≤ Aεα. �

Let us now turn our attention to another property. Belghiti and Gendre in their Ph.D. dissertations (cf. [6] and the references
given there) considered the so called Łojasiewicz-Siciak inequality, which can be viewed as an opposite condition to (HCP), as it
reverses the direction of (5.2). Namely, we say that a compact set E satisfies the Łojasiewicz-Siciak inequality, (ŁS) for short, if

∃B,β > 0 : VE(z)≥ B (δE(z))
β if δE(z)≤ 1.

In this case, the assumption that z should be close to E cannot be removed because of the logarithmic growth of VE at infinity.
The Łojasiewicz-Siciak inequality is also equivalent to the fact that for every bounded neighbourhood U of E,

∃B(U),β(U)> 0 ∀z ∈ U : VE(z)≥ B(U) (δE(z))
β(U) . (5.3)

Furthermore, it implies polynomial connectivity of E (see [34, Proposition 2.1]).
Put RŁS := {E ∈ R : E satisfies (ŁS)}. Let us list a few examples of classes of sets belonging to RŁS. They include finite

unions of pairwise disjoint balls or polydiscs, pluriregular subsets of RN treated as subsets of CN (see [33, Theorem 1.1]), some
polynomially convex holomorphic polyhedra (see [34, Theorem 3.1]), planar filled-in Julia sets which have non-empty interior
(see [36]) and some planar Cantor type sets (see [7]). RŁS is not closed in (R, Γ ), which can be shown by the following example
in the complex plane:
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Example 5.1. Consider

Kn := B

�

−2,

√

√

4+
1
n2

�

∪ B

�

2,

√

√

4+
1
n2

�

⊂ C, n ∈ N.

Then Kn ∈RŁS for all n ∈ N, and the sequence (Kn)∞n=1 is convergent in (R, Γ ) to a set K ∈R \RŁS.

Proof. It was shown that Kn ∈RŁS in [33, Example 1]. Note that (Kn)∞n=1 is decreasing with respect to inclusion of sets and
∞
⋂

n=1

Kn = B (−2, 2)∪ B (2, 2) =: K .

The set K is polynomially convex and regular but does not satisfy (ŁS), which was shown by Siciak (see [7, Example 1.1]). We
have

lim
n→∞

Γ (Kn, K) = 0,

by Proposition 5.1.

We have the following counterparts of Corollaries 5.4 and 5.5.

Corollary 5.6. Let (En)∞n=1 ⊂R be decreasing with respect to inclusion and let E :=
⋂∞

n=1 En ∈RŁS. Let the rate of convergence with
respect to Γ be given by Γ (En, E) = εn. Then this sequence is convergent to the same limit with respect to the Hausdorff metric and
there exists positive constants B,β such that the rate of convergence is estimated by

χ(En, E)≤ Bεβn . �

In particular, we can also consider the rate of convergence of the augmentations.

Corollary 5.7. Fix E ∈RŁS. Then there exist positive constants B,β such that

χ
�

E, E(ε)
�

≤ Bεβ . �

We also have

Corollary 5.8. Let P : C→ C be a polynomial of degree k ≥ 2 such that its filled-in Julia set J[P] has a non-empty interior. Fix an
R> 0 such that J[P] ⊂ B(0, R). Then there exist positive constants B,β such that

χ
�

J[P], (Pn)−1
�

B(0, R)
�

�

≤ B
||P||β

∂ B(0,R)

(R(k− 1))βknβ
.

Proof. It was shown in [36] that J[P] satisfies (ŁS). The chosen R is an escape radius for P. It can be calculated directly or
deduced e.g. from [19, (1)] that

Γ
�

J[P], (Pn)−1
�

B(0, R)
�

�

≤
Γ
�

P−1
�

B(0, R)
�

, B(0, R)
�

kn−1(k− 1)
,

and from (3.7) that

Γ
�

P−1
�

B(0, R)
�

, B(0, R)
�

≤
||P||∂ B(0,R)

Rk
.

Let us now consider sets which satisfy both (HCP) and (ŁS). Note that Example 5.1 shows that RHöl ∩RŁS is not closed in
(R, Γ ). Namely, Kn ∈RHöl, since it is a connected infinite compact planar set (the Hölder continuity of the Green function follows
from the classic Leja’s Polynomial Lemma), for any n ∈ N.

We finish this section with an observation which is a direct consequence of the equivalent conditions for (HCP) and (ŁS),
given above as (5.2) and (5.3):

Proposition 5.9. If E, F ∈RHöl ∩RŁS, then there exists positive constants A, B,α,β such that

Γ (E, F)≤ A
�

χ(E, F)
�α

≤ B
�

Γ (E, F)
�β

. �

It would be natural to suspect that this proposition implies equivalence of the metrics Γ and χ restricted to RHöl ∩RŁS. This
however is not the case. To see this, consider the following example in C (cf. [18])
Example 5.2. Let En := {ei t : t ∈ [0, 2π− n−1]}, F := {z ∈ C : |z|= 1} and E := bF = B(0, 1). Then En, E ∈RHöl ∩RŁS, F /∈R.

Furthermore, (En)∞n=1 is convergent in (R, Γ ) to E, but in (κ(C),χ) it is convergent to F . Therefore this sequence is not
convergent with respect to the Hausdorff distance in RHöl ∩RŁS.

Proof. The Łojasiewicz-Siciak inequality implies polynomial convexity, hence F does not satisfy (ŁS).
Fix n ∈ N. The set En has Hölder continuous Green’s function, since it is an infinite compact connected subset of C (we use

once again the Leja Polynomial Lemma). Moreover, the Łojasiewicz-Siciak inequality holds for this set (it can be deduced e.g.
from [33, Theorem 1.2]).

Let us mention finally that both the Hölder Continuity Property and the Łojasiewicz-Siciak inequality were useful in [8,
Section 5], where the estimation of the rate of approximation of compact planar sets by filled-in Julia sets was approached.
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6 Final remarks and open problems
When studying different classes of sets in R∗ one could consider modifications of the pseudometric Γ that would reflect specific
properties of the class of sets being investigated.

For instance, in [31] and [12] Burns, Levenberg and Ma’u studied the class Π1 of lineally convex sets in R whose images
through C-linear functionals are polynomially convex in the plane. If E ∈ Π1, then the natural extremal function is

V (1)E (z) = sup{V`(E)(`(z)) : ` is C-affine and non-constant}, z ∈ CN .

They showed that the corresponding metric Γ 1(E, F) = ‖V (1)E −V (1)F ‖CN , E, F ∈ Π1, is dominated by Γ , and hence generates weaker
topology than that induced from (R, Γ ).

One way to generate a stronger topology than that given by Γ can be outlined as follows. Assume that X ⊂R∗ is non-empty
and is endowed with a pseudometric d. If either Γ or d furnish a metric on X , then also

Γd(E, F) := Γ (E, F) + d(E, F), E, F ∈ X , (6.1)

is a metric on X . Since the topology generated by Γd is finer that than induced from (R∗, Γ ), we will refer to Γd as the d-refinement
of Γ .

The metric defined in (5.1) is an example of a refinement of Γ . Another natural choice would be the χ-refinement of Γ on
R∗. Yet another possibility, this time on R, would be to use d(E, F) = χ(∂ E,∂ F) for E, F ∈R. This can be potentially useful in
studying conventional Julia sets in the complex plane. To use the terminology from this paper, such sets are the boundaries of
filled-in Julia sets, for a polynomial in the autonomous case or for a sequence of polynomials in the more general case. (For
background see e.g. [13]). At present, this refinement of Γ is not well understood. Incidentally, both refinements related to the
Hausdorff distance coincide if we restrict our attention only to convex sets (see [42]).

Rather than modifying Γ one could also consider modifications of its definition. A natural idea would be to replace the L∞

norm used in the definition of Γ (3.1) by another norm in Cb(CN ). For example, one could use an Lp-norm with p ∈ [1,∞) or, in
the case of p ∈ (0,1), the metric ( f , g) 7→

∫

CN | f − g|p. However, if E ∈R is fixed and N = 1,

⋃

0<p<∞

�

F ∈R :

∫

C
|VE(z)− VF (z)|

p dz <∞
�

⊂ {F ∈R : γ(F) = γ(E)} ,

which hints at the possibility that such classes of sets in R might be rather small.
It is also natural to speculate if there is a link between Γ (E, F) and the equilibrium measures on E and F . Since these measures

always have the total mass (2π)N , they can be normalized to become probability measures and there are many techniques for
comparing two probability distributions. Unfortunately it is usual to assume that the measures being compared are defined on
the same set. Moreover, the equilibrium measures are supported on the boundaries of the considered sets E, F . This makes the
situation even more difficult and at present it is unknown if any usable relationship connects the equilibrium measures and the
metric Γ .

Despite the progress that has been made, a lot of questions concerning the topology of the space of pluriregular sets are
still waiting for an answer. At the most basic level, specific sets which are not closed or open with respect to Γ , may have these
properties with respect to a refinement of Γ . The topological link between Γ and χ is also more complicated than it may seem.
For example, as we have seen in the previous section, the family of all polynomially convex sets with Hölder continuous Green
function is not closed in (R, Γ ) nor is it closed with respect to the Hausdorff metric. One could ask if the set is closed with
repect to Γχ or some other natural refinement of Γ . Then, there is the issue of compactness in (R, Γ ). The compact subsets of R
seem to play quite an important role in some constructions and their unions can be quite useful too (e.g. in investigations of
formula (4.6)). Some questions about such unions were answered in Theorem 3.1, in particular in (iii), (vi) and (ix). Note that
in particular (iii) deals with compactness in (R, Γ ) and with compactness in CN . In the latter case a set is compact if and only if
it is bounded and closed, but according to Theorem 3.1 (viii), this is not the case in (R, Γ ). Observe also that Part (iii) of the
theorem implies that if E ⊂R is compact then

⋃

E =
⋃

E =
⋃

E ,

where the closures are taken respectively in R and CN . If E is only relatively compact, then
⋃

E ⊂
⋃

E , but the opposite inclusion
does not hold in general. Moreover, if E is only bounded, then even the last inclusion does not need to hold either (see [3]).
Furthermore, the assumption about compactness of E in Theorem 3.1 (iii) cannot be replaced with the assumption that E is
closed and bounded (see [3]).
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