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Abstract

The Laguerre functions lαn,τ, n= 0,1, . . . , are constructed from generalized Laguerre polynomials. The
functions lαn,τ depend on two parameters: the scale τ > 0 and the order of generalization α > −1, and
form an orthonormal basis in L2[0,∞). Let the spectrum of a square matrix A lie in the open left half-plane.
Then the matrix exponential H(t) = eAt , t > 0, belongs to L2[0,∞). Hence the matrix exponential H
can be expanded in a series H =

∑∞
n=0 Sn,τ,α lαn,τ. An estimate of the norm





H−
∑N

n=0 Sn,τ,α lαn,τ







L2[0,∞)
is proposed. Finding the minimum of this estimate over τ and α is discussed. Numerical examples show
that the optimal α is often almost 0, which essentially simplifies the problem.

1 Introduction

An approximate calculation of the matrix exponential H(t) = eAt , t > 0, is of constant importance [10, 11, 13, 15, 20, 21] at
least for solving linear differential equations

ẋ(t) = Ax(t) + f (t).

It is well-known that the solution of the equation satisfying the initial condition x(0) = x0 can be expressed in terms of the matrix
exponential:

x(t) = eAt x0 +

∫ t

0

eA(t−s) f (s) ds. (*)

In a similar way, the nonlinear equation
ẋ(t) = Ax(t) + f

�

t, x(t)
�

is often reduced to the Volterra integral equation

x(t) = eAt x0 +

∫ t

0

eA(t−s) f
�

s, x(s)
�

ds. (**)

If we want to calculate solutions using these formulas (especially for many different free terms f ), we need to know eAt for many
values of t. Therefore, it is desirable to have a compact approximation of the matrix exponential H(t) = eAt in the form of a
function depending on t.

We distinguish several variants of the problem of calculating the matrix exponential. First, one can calculate eA or eAt for a
finite number of t ’s. Second, one can try to obtain eAt in the form of a formula depending on the parameter t; the usual tools for
this variant are the Jordan or Schur decompositions. Third, one can restrict himself to the calculation of eAt b or dH eAt b (as a
function of t or for discrete values of t), where b and d are column vectors (the knowledge of eAt b or dH eAt b is enough for many
applications). Fourth, one can try to construct an approximation for the matrix function t 7→ eAt that is simple and therefore
convenient for further use.

We discuss the last problem. We deal with the problem of approximate representation of H(t) = eAt , t > 0, in the form of
a formula depending on the parameter t. The matrix A is assumed to be stable, i. e. the eigenvalues of A lie in the open left
half-plane. We adhere two requirements: the approximation must be sufficiently accurate and the calculation of the approximation
at any t can be performed quickly. Regarding the second requirement, we note that the exact representation of H (based on the
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Jordan decomposition) in the form of a formula may be very cumbersome if M is large, here M ×M is the size of the matrix A
(each of M2 elements of the matrix function H is a linear combination of M functions of the form t 7→ t j eλk t); therefore, it is
inconvenient for large M .

We use the approximation

HN ,τ,α(t) =
N
∑

n=0

Sn,τ,α lαn,τ(t) (***)

(depending on the parameters τ and α, see their discussion below), which is a linear combination of N (instead of M) scalar
functions lαn,τ with not very large N . Here lαn,τ are known scalar functions, called the Laguerre functions, and Sn,τ,α are constant
matrices, which are rational function of the matrix A (maybe multiplied by one and the same matrix (τ1−2A)−α/2, where 1 is the
identity matrix), see Propositions 4.1 and 4.2. Using the proposed approximation requires fewer arithmetic operations and is
therefore more convenient than using exact H. The calculation of the coefficients Sn,τ,α is rather fast provided τ and α are given.

Sequence (***) converges to H for any τ and α, but the rate of convergence and hence the number N in (***) that provides
high accuracy depends on τ and α. The aim of this paper is to estimate the accuracy of this approximation and use it for finding
near-optimal τ and α. Numerical experiments show that for N = 10 or N = 30 such an approximation may be quite satisfactory.

Our method of estimating the accuracy requires the knowledge of the eigendecomposition A= T DT−1 of A (we assume that
it can be found by QR-algorithm). Of course, in such a case one can calculate eAt precisely by the formula eAt = TeDt T−1. But we
suppose that eAt can be used in further calculations like (*) or (**) for many different f ’s. Using the shorter formula (***) rather
than eAt = TeDt T−1 will save time.

Let us describe the contents of the paper more specifically. The generalized Laguerre polynomials are the functions

Lαn (t) =
t−αet

n!

�

tn+αe−t
�(n)

, α > −1, t ≥ 0, n= 0, 1, . . . .

We call Laguerre functions the modified Laguerre polynomials:

lαn,τ(t) =

√

√ n!
Γ (n+α+ 1)

τ
α+1

2 t
α
2 e−τt/2 Lαn (τt), t ≥ 0, n= 0,1, . . . ,

The Laguerre functions depend on two parameters: the order of generalization α > −1 and the scale τ > 0. The most important
and simple case is when α= 0.

It is known that lαn,τ form an orthonormal basis in L2[0,∞). Therefore the matrix exponential (impulse response)

H(t) = eAt , t > 0,

can be expanded in the Laguerre series

H =
∞
∑

n=0

Sn,τ,α lαn,τ

with matrix coefficients Sn,τ,α. The coefficient Sn,τ,α can be interpreted (Proposition 4.2) as the result of the substitution of A in
the function λ 7→ sn,τ,α,λ, where

sn,τ,α,λ =

∫ ∞

0

eλt lαn,τ(t) d t.

Since the matrix exponential H is a linear combination of functions of the form t 7→ t j eλk t (where λk are eigenvalues of A),
which resemble lαn,τ, it is natural to expect that the Laguerre series converges rather fast and hence its truncation or partial sum

HN ,τ,α =
N
∑

n=0

Sn,τ,α lαn,τ

approximates H quite well.
The task of this paper is estimating the accuracy ‖H−HN ,τ,α‖L2

and choosing τ and α that provide the best estimate. The
idea of the paper is as follows. We describe (Theorem 5.2) the estimate of ‖H−HN ,τ,α‖L2

in terms of the quantities

ϕ(N ,τ,α) =
M
∑

k=1

ζ(N ,τ,α,λk),

ψ(N ,τ,α) =max
k
ζ(N ,τ,α,λk),

where λk, k = 1, 2 . . . , M , are eigenvalues of A, and

ζ(N ,τ,α,λ) =

∫ ∞

0

�

�

�eλt −
N
∑

n=0

sn,τ,α,λ lαn,τ(t)
�

�

�

2
d t.
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We recommend to choose τ and α so that ϕ(N ,τ,α) be minimal (alternatively, ψ(N ,τ,α) could be minimised). Numerical
experiments show that the optimal α is often close to 0. Optimization with respect to τ reduces N in (***), which speeds up
further calculations.

The most popular algorithm of calculating eA is the scaling and squaring method, see, e. g., [2, 8, 14, 19, 27, 30]. But this
approach is not suitable for our aims, because we would like to have eAt in the form of a function depending on t.

There are many papers devoted to the approximation of impulse responses and matrix exponential by the truncated Laguerre
series and the optimal choice of τ and α, see, e. g., [3, 4, 5, 22, 24, 26, 28, 29, 33] and references therein. It is natural to compare
the present paper with them. In papers [3, 5, 24, 26, 33] the problem of approximation of a scalar impulse response (in our
notation it corresponds to the function t 7→ dH eAt b) by a truncated Laguerre series is considered; we use in Proposition 6.1 the
main idea of these papers.

Paper [29] discusses the approximation of the vector function t 7→ eAt b using the Laguerre polynomials, but it uses the
different expansion

eAt ≈
N
∑

n=0

sn,τ,α,t lαn,τ(A)

(here the coefficients sn,τ,α,t are scalar, while in formula (5) below the similar coefficients Sn,τ,α are matrix); the convenience of
this approach is that lαn,τ(A) can be calculated recursively.

The topic of paper [22] is closest to the present one. It is devoted to the approximation of the matrix exponential t 7→ eAt by the
truncated Laguerre series. In [22] only ordinary Laguerre functions (i. e. with α = 0) are considered. The optimization over τ is
also discussed, but in different notation (as a preliminary scaling of A): the goal consists in minimization of



(2A+τ1)(2A−τ1)−1


,
which leads to fast asymptotic decay of Sn,τ,0, see Corollary 7.2.

In [28] the matrix exponential t 7→ eAt is approximated by the truncated Laguerre series depending on both τ and α; the
parameters τ and α, which give the fastest convergence, are found from numerical experiments; the results obtained show that
the optimal value of α can be greater than 10.

The paper is organized as follows. Sections 2 and 3 are devoted to definitions and notation. In Section 4, we derive some
formulas for Laguerre coefficients. In Section 5, we describe the main estimate. In Section 6, we recall [3, 4, 5] formulas for
calculating the derivative of ζ with respect to τ. They simplify the search for the minimum with respect to τ only. The problem
of finding minimum over τ only arises, for example, when we restrict ourselves to the case α= 0; some simplified formulas for
the case α = 0 are collected in Section 7. In Section 8, we present the recommended algorithm of finding the optimal τ and α. In
Section 9, we describe the results of some numerical experiments.

We use ‘Wolfram Mathematica’ [36] for our computer calculations.

2 The definition of Laguerre functions

In this section, we recall some definitions.
The functions

Lαn (t) =
t−αet

n!

�

tn+αe−t
�(n)
=

n
∑

k=0

(−1)k
�

n+α
n− k

�

tk

k!
, t ≥ 0, α > −1, n= 0, 1, . . . .

are called [1, p. 775], [9, p. 31], [16, p. 71] generalized Laguerre polynomials. The special cases

Ln(t) =
et

n!

�

tne−t
�(n)

, t ≥ 0, n= 0,1, . . . .

of these functions are called (ordinary) Laguerre polynomials. Actually, Lαn is a polynomial of degree n. It is well-known [32,
Theorem 5.7.1], [18, p. 88], [23, § 8] that the functions Lαn form an orthogonal basis in L2[0,∞) with the weight function
t 7→ tαe−t :

∫ ∞

0

tαe−t Lαn (t) Lαm(t) d t =
Γ (n+α+ 1)

n!
δnm, n, m= 0,1, . . . ,

where δnm is the Kronecker symbol. We note that the ordinary polynomials Ln are normalized, but the generalized ones Lαn ,
α 6= 0, are not.

Let τ > 0 be a given number. It plays a role of a time scale. We call the family of functions

lαn,τ(t) =

√

√ n!
Γ (n+α+ 1)

τ
α+1

2 t
α
2 e−τt/2 Lαn (τt)

=

√

√ τn!
Γ (n+α+ 1)

e−τt/2
n
∑

k=0

(−1)k
�

n+α
n− k

�

(τt)k+α/2

k!
, n= 0, 1, . . . .

(1)
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the (generalized) Laguerre functions. In particular,

ln,τ(t) = l0
n,τ(t) =

p
τ e−τt/2 Ln(τt), t ≥ 0, n= 0,1, . . . .

Evidently, the Laguerre functions lαn,τ form an orthonormal basis in L2[0,∞) (without weight):

∫ ∞

0

lαn,τ(t) l
α
m,τ(t) d t = δnm, t ≥ 0, n, m= 0, 1, . . . .

3 Laguerre series for H
In this section, we introduce some notation.

Let M be a positive integer. We denote by CM×M the linear space of all matrices of the size M ×M ; the symbol 1 ∈ CM×M

denotes the identity matrix.
For a matrix C = {Ci j} ∈ CM×M , we denote by ‖C‖2→2 the norm induced by the Euclidean norm ‖·‖2 on CM and by

‖C‖F =

√

√

√

√

M
∑

i=1

M
∑

j=1

|Ci j |2

the Frobenius norm [11, p. 71]. It is easy to show that

‖A‖2→2 ≤ ‖A‖F ,

‖AB‖F ≤ ‖A‖2→2 · ‖B‖F ,

‖AB‖F ≤ ‖A‖F · ‖B‖2→2,

‖Ax‖2 ≤ ‖A‖F · ‖x‖2.

By default, we use for matrices C ∈ CM×M the Frobenius norm. We denote by σ(C) the spectrum (the set of all eigenvalues) of a
square matrix C .

Let A∈ CM×M be a given matrix and U ⊆ C be an open set that contains the spectrum σ(A) of the matrix A, and let f : U → C
be a holomorphic function. The matrix f (A) is defined [13, 25] by the formula

f (A) =
1

2πi

∫

Γ

f (λ) (λ1− A)−1 dλ,

where Γ is contained in U and surrounds σ(A). The most important example of a function f for applications is the function
λ 7→ eλt . The result of its action on A is denoted by the symbol eAt . It is well-known that the matrix exponential possesses the
following properties:

eA(t+s) = eAt eAs,
�

eAt
�′
= AeAt , eA·0 = 1.

We recall that eigenvalues and eigenvectors of A can be calculated [36] with high backward stability by the QR-algorithm [11,
13, 35].

Proposition 3.1 ([6, p. 27]). Let
β =max{Reλ : λ ∈ σ(A) }.

Then for any γ > β there exists K such that
‖eAt‖ ≤ K eγt , t ≥ 0.

We recall [7, ch. VII, § 1, Theorem 5], [17, ch. 1, § 5] that for any square matrix A,

f (A) =
m
∑

k=1

wk−1
∑

j=0

d j f
dλ j
(λk)

N j
k

j!
, (2)

where λk are eigenvalues of A, m is a number of distinct eigenvalues λk, wk are their multiplicities, and Nk are spectral nilpotents;
in particular, N 0

k = Pk are spectral projectors. If all eigenvalues are simple, then

f (A) =
M
∑

k=1

f (λk)Pk.

For the exponential function λ 7→ eλt formula (2) takes the form

eAt =
m
∑

k=1

wk−1
∑

j=0

t j eλk t
N j

k

j!
. (3)
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In particular, if all eigenvalues are simple, then

eAt =
M
∑

k=1

eλk t Pk.

Let A ∈ CM×M be a given matrix. We assume that A is stable, i. e. the eigenvalues of A lie in the open left half-plane. We
discuss the expansion of the function

H(t) = eAt , t > 0,

in the series of Laguerre functions. We call H the matrix exponential of A or the impulse response of the differential equation

ẋ(t) = Ax(t) + f (t).

We recall that the generalized Laguerre functions (1) form an orthonormal basis in L2[0,∞); here the scale parameter τ > 0
and the order of generalization α > −1 can be taken arbitrarily. Therefore the matrix exponential H can be represented in the
form of the Laguerre series

H =
∞
∑

n=0

Sn,τ,α lαn,τ,

where the Laguerre coefficients

Sn,τ,α =

∫ ∞

0

H(t) lαn,τ(t) d t (4)

are matrices. Since the matrix exponential H is a linear combination of functions of the form t 7→ t j eλk t , it is natural to expect
that the series converges quite quickly and hence its N -truncation

HN ,τ,α(t) =
N
∑

n=0

Sn,τ,α lαn,τ(t) (5)

with relatively small N approximates H well enough.
The aim of this paper is to estimate the quantity

‖H−HN ,τ,α‖L2[0,∞) =

√

√

√

∫ ∞

0



H(t)−HN ,τ,α(t)




2

F d t,

where ‖·‖F is the Frobenius norm, and to give recommendations on the optimal choice of τ and α based on it.

4 The Laguerre coefficients of hλ
In the simplest case, when the matrix A has the size 1× 1, the problem of construction of approximation (5) is reduced to the
calculation of Laguerre coefficients sn,τ,α,λ of the function t 7→ eλt ; we do it in Proposition 4.1. Then we describe the expression
of Sn,τ,α in terms of sn,τ,α,λ (Proposition 4.2).

For Reλ < 0 (here and below Re means the real part of a complex number), we consider the auxiliary function

hλ(t) = eλt , t > 0.

It is straightforward to verify that

‖hλ‖L2[0,∞) =
1

p
−2 Reλ

.

Our interest in the function hλ is explained by the following. If λ is an eigenvalue of A (recall that Reλ < 0) and v is the
corresponding normalized eigenvector, then the function

xλ(t) =H(t)v

can be represented as
xλ(t) = hλ(t)v.

Let us first perform some calculations with the functions hλ. They can be interpreted as the approximation of the matrix
exponential H by the truncated Laguerre series (5) when A is a matrix of the size 1× 1 whose only element equals λ.

We denote by sn,τ,α,λ the Laguerre coefficients of the function hλ in the orthonormal basis lαn,τ:

sn,τ,α,λ =

∫ ∞

0

hλ(t) l
α
n,τ(t) d t, Reλ < 0. (6)

Clearly, sn,τ,α,λ are real for real λ. Therefore, from the Schwartz reflection principle for holomorphic functions [12, theorem
7.5.2], it follows that

sn,τ,α,λ = sn,τ,α,λ̄, (7)

where the bar means the complex conjugate. Representation (7) is useful for symbolic calculation of derivatives.

Dolomites Research Notes on Approximation ISSN 2035-6803



Khoroshikh · Kurbatov 6

Proposition 4.1. Let Reλ < 0. Then

sn,τ,α,λ =
Γ (α/2+ 1)
(τ/2−λ)α/2+1

τ
α+1

2

�

n+α
n

�

√

√ n!
Γ (n+α+ 1) 2F1

�

−n,α/2+ 1,α+ 1,τ/(τ/2−λ)
�

, (8)

where 2F1 is the hypergeometric function. In particular,

sn,τ,0,λ = −
2
p
τ(2λ+τ)n

(2λ−τ)n+1
, n= 0,1, . . . .

Remark 1. We note that the function z 7→ 2F1

�

−n,α/2+1,α+1, z
�

is a polynomial of degree n, since [16, p. 10] its first argument
−n is a negative integer. Thus it is calculated quickly and accurately.

Proof. We begin with the formula [31, formula (16)]
∫ ∞

0

tβ e−σt Lαn (τt) Lβk (σt) d t =
�

n+α
n− k

��

k+ β
k

�

τk Γ (β + 1)
σβ+k+1 2F1

�

−n+ k,β + k+ 1,α+ k+ 1,τ/σ
�

.

We have (see (1) and note that Lβ0 (t) = 1 for all t ≥ 0 and
�

α/2
0

�

= 1)

sn,τ,α,λ =

∫ ∞

0

eλt

√

√ n!
Γ (n+α+ 1)

τ
α+1

2 t
α
2 e−τt/2 Lαn (τt) d t

=

√

√ n!
Γ (n+α+ 1)

τ
α+1

2

∫ ∞

0

e(λ−τ/2)t t
α
2 Lαn (τt) d t

=

√

√ n!
Γ (n+α+ 1)

τ
α+1

2

∫ ∞

0

t
α
2 e(λ−τ/2)t Lαn (τt) Lα/20

�

(τ/2−λ)t
�

d t

=

√

√ n!
Γ (n+α+ 1)

τ
α+1

2

�

n+α
n

�

Γ (α/2+ 1)
(τ/2−λ)α/2+1

× 2F1

�

−n,α/2+ 1,α+ 1,τ/(τ/2−λ)
�

.

Remark 2. In a similar way one can derive the formula for the Laguerre coefficients of the functions t 7→ t j eλt which correspond
to generalized eigenvectors of A:

qn,τ,α,λ =

∫ ∞

0

t j eλt lαn,τ(t) d t =

√

√ n!
Γ (n+α+ 1)

τ
α+1

2

�

n+α
n

�

Γ (α/2+ j + 1)
(τ/2−λ)α/2+1 2F1

�

−n,α/2+ j + 1,α+ 1,τ/(τ/2−λ)
�

.

Proposition 4.2. Let the spectrum of A lie in the open left half-plane. Then the coefficient Sn,τ,α is the function λ 7→ sn,τ,α,λ of A.

Proof. Let n be a non-negative integer, τ > 0, and α > −1 be fixed. For brevity, we set f (λ) = sn,τ,α,λ. From Proposition 4.1 it is
seen that f is holomorphic in the open left half-plane Reλ < 0. We recall that

sn,τ,α,λ =

∫ ∞

0

hλ(t) l
α
n,τ(t) d t =

∫ ∞

0

eλt lαn,τ(t) d t.

From this formula, it is clear that

∂ sn,τ,α,λ

∂ λ
=

∫ ∞

0

t eλt lαn,τ(t) d t,
∂ jsn,τ,α,λ

∂ λ j
=

∫ ∞

0

t j eλt lαn,τ(t) d t.

From (3) and (4), it follows that

Sn,τ,α =

∫ ∞

0

eAt lαn,τ(t) d t

=

∫ ∞

0

m
∑

k=1

wk−1
∑

j=0

t j eλk t
N j

k

j!
lαn,τ(t) d t

=
m
∑

k=1

wk−1
∑

j=0

N j
k

j!

∫ ∞

0

t j eλk t lαn,τ(t) d t

=
m
∑

k=1

wk−1
∑

j=0

N j
k

j!

∂ jsn,τ,α,λk

∂ λ j
,

which, by (2), equals the function λ 7→ sn,τ,α,λ of A.
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Let τ and α be given. Then Propositions 4.1 and 4.2 (see also Corollary 7.2 below) propose the way to calculate the coefficients
Sn,τ,α:

Sn,τ,α = Γ (α/2+ 1)(τ1/2− A)−α/2−1 τ
α+1

2

�

n+α
n

�

√

√ n!
Γ (n+α+ 1) 2F1

�

−n,α/2+ 1,α+ 1,τ(τ1/2− A)−1
�

.

We do not discuss this calculation in detail in this paper. We only note that by Remark 1 2F1

�

−n,α/2+ 1,α+ 1,τ(τ1/2−A)−1
�

is
a special polynomial in τ(τ1/2− A)−1 of degree n; therefore, it would be convenient to calculate powers of τ(τ1/2− A)−1 a
priori. The other matrix that should be calculated in advance is the power (τ1/2− A)−α/2−1. Having found Sn,τ,α, we obtain the
approximation

H(t)≈
N
∑

n=0

Sn,τ,α lαn,τ(t).

5 The estimate of accuracy

In this section, we assume that α > −1 and τ > 0 are given.
In order for the truncated Laguerre series (5) approximate the matrix exponential H well enough, first of all, the truncated

Laguerre series

hN ,τ,α,λ =
N
∑

n=0

sn,τ,α,λ lαn,τ

should approximate the function hλ for allλ ∈ σ(A). In this section, we discuss the inverse problem: how to estimate


H−HN ,τ,α





L2

in terms of


hλk
− hN ,τ,α,λk





L2
, where λk runs over the eigenvalues of A.

For Reλ < 0 and a natural number N , we denote by ζ(N ,τ,α,λ) the square of the accuracy of the approximation of the
function hλ by its N -truncated Laguerre series:

ζ(N ,τ,α,λ) =

∫ ∞

0

�

�

�eλt −
N
∑

n=0

sn,τ,α,λ lαn,τ(t)
�

�

�

2
d t. (9)

Clearly, we can rewrite this formula as

ζ(N ,τ,α,λ) =




hλ −
N
∑

n=0

sn,τ,α,λ lαn,τ







2

L2

=






∞
∑

n=N+1

sn,τ,α,λ ln,τ







2

L2

=
∞
∑

n=N+1

|sn,τ,α,λ|2.

(10)

Proposition 5.1. Let A∈ CM×M be a diagonal matrix with diagonal elements λk, Reλk < 0, k = 1,2, . . . , M. Then for the number

‖H−HN ,τ,α‖L2
=

√

√

√

∫ ∞

0



H(t)−HN ,τ,α(t)




2

F d t,

where ‖·‖F is the Frobenius norm on Cn×n, we have

‖H−HN ,τ,α‖L2
=

√

√

√

M
∑

k=1

ζ(N ,τ,α,λk)≤
r

M max
k
ζ(N ,τ,α,λk),

where λk are the eigenvalues of A and the function ζ is defined by (9).

Proof. By assumption, the matrix A has the form

A=











λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λM











.

Therefore,

H(t) =











hλ1
(t) 0 . . . 0

0 hλ2
(t) . . . 0

...
...

. . .
...

0 0 . . . hλM
(t)
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and

HN ,τ,α(t) =











∑N
n=0 sn,τ,α,λ1

lαn,τ(t) 0 . . . 0
0

∑N
n=0 sn,τ,α,λ2

lαn,τ(t) . . . 0
...

...
. . .

...
0 0 . . .

∑N
n=0 sn,τ,α,λM

lαn,τ(t)











.

Hence, by the definition of the Frobenius norm,



H(t)−HN ,τ,α(t)




2

F =
M
∑

k=1

�

�

�hλk
(t)−

N
∑

n=0

sn,τ,α,λk
lαn,τ(t)

�

�

�

2
.

Consequently, (recall that Reλk < 0)
√

√

√

∫ ∞

0



H(t)−HN ,τ,α(t)




2

F d t =

√

√

√

∫ ∞

0

M
∑

k=1

�

�

�hλk
(t)−

N
∑

n=0

sn,τ,α,λk
lαn,τ(t)

�

�

�

2
d t

=

√

√

√

M
∑

k=1

∫ ∞

0

�

�

�hλk
(t)−

N
∑

n=0

sn,τ,α,λk
lαn,τ(t)

�

�

�

2
d t

=

√

√

√

M
∑

k=1

ζ(N ,τ,α,λk).

Now let us suppose that the matrix A is diagonalizable; this means that there exists an invertible matrix T and a diagonal
matrix D such that

A= T DT−1.

In such a case, the diagonal elements of D are the eigenvalues of A and the columns of T are the corresponding eigenvectors.
Without loss of generality we can assume that the columns of T have unit Euclidian norm. The matrix D can be interpreted as the
Jordan form of the matrix A; thus, a diagonalizable matrix has (complex) Jordan blocks of the size 1× 1 only. It is clear that for a
diagonalizable matrix A,

H(t) = eAt = TeDt T−1, t > 0,

HN ,τ,α(t) =
N
∑

n=0

TSn,τ,α,D T−1 lαn,τ(t), t > 0.

Here Sn,τ,α,D are matrices (4) constructed by the matrix exponential HD(t) = eDt of D, but not by the matrix exponential H(t) = eAt

of A.
Recall that we use the Frobenius norm in the space CM×M .

Theorem 5.2. Let A∈ CM×M and λk, k = 1,2, . . . , M, be eigenvalues of A. Then
r

max
k
ζ(N ,τ,α,λk)≤ ‖H−HN ,τ,α‖L2[0,∞) (11)

and (provided that A is diagonalizable)

‖H−HN ,τ,α‖L2[0,∞) ≤ c(T )

√

√

√

M
∑

k=1

ζ(N ,τ,α,λk)≤ c(T )
r

M max
k
ζ(N ,τ,α,λk), (12)

where c(T ) = ‖T‖2→2 · ‖T−1‖2→2 is the condition number [13, p. 63] of T .

Proof. Let λ be an eigenvalue of A and v be the corresponding normalized eigenvector. Since H(t) and Sn,τ,α,λ are respectively
the functions λ 7→ hλ(t) and λ 7→ sn,τ,α,λ of A (Proposition 4.2), v is also the eigenvector of H(t) and Sn,τ,α, and it corresponds to
the eigenvalues hλ(t) and sn,τ,α,λ:

H(t)v = hλ(t)v,

HN ,τ,α(t)v =
�

N
∑

n=0

Sn,τ,α lαn,τ(t)
�

v =
�

N
∑

n=0

sn,τ,α,λ lαn,τ(t)
�

v.
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Therefore,


H−HN ,τ,α





L2
≥


(H−HN ,τ,α)v




L2

=

√

√

√

∫ ∞

0





�

H(t)−HN ,τ,α(t)
�

v




2
d t

=

√

√

√

∫ ∞

0







�

hλ(t)−
N
∑

n=0

sn,τ,α,λ lαn,τ(t)
�

v






2
d t

=

√

√

√

∫ ∞

0

�

�

�hλ(t)−
N
∑

n=0

sn,τ,α,λ(t) lαn,τ

�

�

�

2
· ‖v‖2 d t

=

√

√

√

∫ ∞

0

�

�

�hλ(t)−
N
∑

n=0

sn,τ,α,λ(t) lαn,τ

�

�

�

2
d t

=
Æ

ζ(N ,τ,α,λ).

From this inequality, it follows estimate (11).
Estimate (12) follows from Proposition 5.1 and the inequality

‖T DT−1‖F ≤ ‖T‖2→2 · ‖D‖F · ‖T−1‖2→2 = c(T ) · ‖D‖F .

6 Derivatives with respect to τ

The derivatives of some of the involved functions with respect to τ have simple representations. This can help to find extreme
points. In this section, we present relevant statements.

Proposition 6.1 (see [3, 4, 5]). We have

∂ lαn,τ

∂ τ
(t) = dn+1 lαn+1,τ(t)− dn lαn−1,τ(t), n= 0, 1, . . . ,

where lα−1,τ(t) = 0 and

d0 = 0, dn =

p

n(n+α)
2τ

.

In particular, for α= 0,

dn =
n

2τ
.

Proof. The proof follows from (1) and the well-known [32, formulas (5.1.14) and (5.1.10)] formulas

∂ Lαn
∂ t
= −Lα+1

n−1 ,

(2n+ 1+α− t)Lαn = (n+ 1)Lαn+1 + (n+α)L
α
n−1.

Corollary 6.2. For Laguerre coefficients (8), we have

∂ sn,τ,α,λ

∂ τ
= dn+1 sn+1,τ,α,λ − dn sn−1,τ,α,λ, n= 0, 1, . . . .

Proof. It follows directly from (6) and Proposition 6.1.

Corollary 6.3. For function (9), we have

∂ ζ(N ,τ,α,λ)
∂ τ

= −dN+1

�

sN+1,τ,α,λ sN ,τ,α,λ̄ + sN+1,τ,α,λ̄ sN ,τ,α,λ

�

= −2dN+1 Re
�

sN+1,τ,α,λ sN ,τ,α,λ̄

�

,

where the bar over λ means the complex conjugate of λ.

Proof. We make use of representation (10) and formula (7):

ζ(N ,τ,α,λ) =
∞
∑

n=N+1

|sn,τ,α,λ|2 =
∞
∑

n=N+1

sn,τ,α,λ sn,τ,α,λ =
∞
∑

n=N+1

sn,τ,α,λ sn,τ,α,λ̄.
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Differentiating the last formula, we obtain

∂ ζ(N ,τ,α,λ)
∂ τ

=
∞
∑

n=N+1

�∂ sn,τ,α,λ

∂ τ
sn,τ,α,λ̄ + sn,τ,α,λ

∂ sn,τ,α,λ̄

∂ τ

�

.

Then from Corollary 6.2, it follows

∂ ζ(N ,τ,α,λ)
∂ τ

=
∞
∑

n=N+1

�

�

dn+1 sn+1,τ,α,λ − dn sn−1,τ,α,λ

�

sn,τ,α,λ̄ + sn,τ,α,λ

�

dn+1 sn+1,τ,α,λ̄ − dn sn−1,τ,α,λ̄

�

�

=
∞
∑

n=N+1

�

dn+1 sn+1,τ,α,λ sn,τ,α,λ̄ − dn sn,τ,α,λ̄ sn−1,τ,α,λ + dn+1 sn+1,τ,α,λ̄ sn,τ,α,λ − dn sn,τ,α,λ sn−1,τ,α,λ̄

�

.

After canceling we obtain the desired representation.

7 The case α= 0

Our numerical experiments (see Section 9) show that often the optimal value of α is close to 0. For this reason, we treated the
case of α= 0 as a special one in the previous exposition. In this section, we collect some additional formulas related to α= 0.
These formulas and Corollary 6.3 allow one to organize calculations for the case α= 0 substantially simpler and faster than for
the general case. Thus, taking α equal to 0 (though the optimal α is only close to 0), we can take a larger number N of terms in
the truncated Laguerre series (5) and thereby compensate for the small loss of accuracy caused by a nonoptimal value of α.

Proposition 7.1. Let Reλ < 0. Then the Laguerre coefficients sn,τ,0,λ can be calculated recursively:

s0,τ,0,λ = −
2
p
τ

2λ−τ
,

sn+1,τ,0,λ =
2λ+τ
2λ−τ

sn,τ,0,λ.

Proof. It follows from Proposition 4.1.

Corollary 7.2. Let the spectrum of A lie in the left half-plane. Then the Laguerre coefficients Sn,τ,0 can be calculated recursively:

S0,τ,0 = −2
p
τ(2A−τ1)−1,

Sn+1,τ,0 = (2A+τ1)(2A−τ1)−1 Sn,τ,0.

Proof. The proof follows from Propositions 7.1 and 4.2.

It is convenient to use Corollary 7.2 for calculating Sn,τ,0 instead of formula (8) and Proposition 4.2 in the general case α 6= 0.

Corollary 7.3. Let Reλ < 0. Then

ζ(N ,τ, 0,λ) =
4τ

|2λ−τ|2
·

�

�

�

2λ+τ
2λ−τ

�

�

�

2N+2

1−
�

�

�

2λ+τ
2λ−τ

�

�

�

2

=
4τ

|2λ−τ|2 − |2λ+τ|2

�

�

�

2λ+τ
2λ−τ

�

�

�

2N+2
.

Proof. The proof follows from formula (10) and Proposition 7.1, and the formula for the sum of the geometric series.

8 The optimal choice of τ and α

Clearly, τ and α influence the rate of convergence of the series H =
∑∞

n=0 Sn,τ,α lαn,τ and, consequently, the accuracy of approxima-
tion (5) for a given N . In this section, we propose an algorithm for the near-optimal choice of τ and α.

Let a stable matrix A be given. By means of the Jordan decomposition, we calculate eigenvalues and eigenvectors of A.
Typically, at least due to rounding errors, the spectrum of A is simple, moreover, all eigenvalues λk are distinct. If the spectrum of
A is not simple, the proposed algorithm for choosing τ and α also works, but less can be said about the approximation accuracy.

We take a number N ∈ N. (For example, we take N = 10.)
We consider the function

ϕ(N ,τ,α) =
M
∑

k=1

ζ(N ,τ,α,λk),

where λk are the eigenvalues of A and ζ is defined by (9).
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First, we consider the case α= 0. By Corollary 6.3, we have

∂ ζ(N ,τ, 0,λ)
∂ τ

= −2dN+1 Re(sN+1,τ,0,λ sN ,τ,0,λ̄).

From Proposition 4.1 we know that

sn,τ,0,λ = −
2
p
τ(2λ+τ)n

(2λ−τ)n+1
, n= 0,1, . . . .

Therefore,
∂ ζ(N ,τ, 0,λ)

∂ τ
= −2dN+1 Re

�2
p
τ(2λ+τ)N+1

(2λ−τ)N+2

2
p
τ(2λ̄+τ)N

(2λ̄−τ)N+1

�

.

Finally, we arrive at
∂ ϕ(N ,τ, 0)

∂ τ
= −2dN+1

M
∑

k=1

Re
�2
p
τ(2λk +τ)N+1

(2λk −τ)N+2

2
p
τ(2λ̄k +τ)N

(2λ̄k −τ)N+1

�

.

Numerical experiments (see Fig. 5) show that the function τ 7→ ϕ(N ,τ, 0) is convex. Hence the function τ 7→ ϕ(N ,τ, 0) has a
unique minimum. We find it by solving the equation

∂ ϕ(N ,τ, 0)
∂ τ

= 0

for τ (in ‘Mathematica’ [36] it is done by the command FindRoot; this command works iteratively; we take for the initial value
τ= 1). Thus, we find the optimal τ for the case α= 0. Let us denote the optimal τ by τ0. After that we calculate ϕ(N ,τ0, 0)
using Corollary 7.3 and the definition of ϕ.

Then we calculate symbolically ϕ(N ,τ,α) using formulas (8) and (10). Of course, the resulting formula is rather cumbersome.
We calculate (in ‘Mathematica’ [36] this is done by the command FindMinimum)

ϕmin(N) = min
τ>0,α>−1

ϕ(N ,τ,α).

We take only N ≤ 12, because the calculations are notedly slow for greater N . We take the found point of minimum (τ1,α1) as
the optimal values of τ and α. We use ϕmin for the estimates of ‖H−HN ,τ,α‖L2[0,∞) according to Theorem 5.2; for the same aim,
we also calculate

ψ(N ,τ1,α1) = max
λk∈σ(A)

ζ(N ,τ1,α1,λk)

for the found τ1 and α1.
Our numerical experiments (see Section 9) show that the pair τ0 and α0 = 0 is often almost optimal. So, the consideration of

α 6= 0 is not always necessary.
The proposed algorithm for finding α and τ is quite complicated and its application takes some time. If one wants to construct

approximation (5) quickly, one can take rough values α= 0 and τ= ‖A‖/2. The reason for such a choice of τ is as follows. We
know that the spectrum σ(A) of A is contained both in the circle of radius ‖A‖ centered at zero and in the left half-plane. Thus,
‖A‖/2 can be considered as the center of σ(A).

9 Numerical experiments

In this section, we present three numerical examples.

Example 9.1. We consider the discrete model of a transmission line shown in Fig 1. We assume that the line consists of n = 150
sections. Thus we have 150 unknown currents IC and 150 unknown voltages UL . The parameters are as follows: C = C0/n,
L = L0/n, R= R0/n, G = G0/n, where C0 = 10, L0 = 50, R0 = 170, G0 = 160. The state variable [34] description of the circuit
has the form ẋ(t) = Ax(t) + f (t) with a matrix A of the size 300× 300. The spectrum of −A is shown in Fig. 2.

First, we consider the case of the simplest choice of α and τ. We set α= 0. We calculate ‖A‖1→1 = 33.2, where ‖A‖1→1 is the
norm of the matrix A induced by the norm ‖x‖1 = |x1|+ |x2|+ . . .+ |xM | on CM . Then we take the heuristic (simplified) value
τ∗ = ‖A‖1→1/2 = 16.6. Such a quick choice of α and τ allows to apply formulas from Corollary 7.2 to construct approximation (5)
immediately; we consider two cases: N = 10 and N = 30 in the truncated Laguerre series (5). Using Theorem 5.2 we obtain the
estimates (we recall that to obtain the estimates, it is necessary to calculate the eigendecomposition and c(T ) = 28.358)

‖H−H10,τ∗ ,0‖L2[0,∞) ≥
Æ

ψ(10,τ∗, 0) = 0.00024,

‖H−H10,τ∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(10,τ∗, 0) = 0.0476,

‖H−H30,τ∗ ,0‖L2[0,∞) ≥
Æ

ψ(30,τ∗, 0) = 9.27 · 10−10,

‖H−H30,τ∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(30,τ∗, 0) = 1.44 · 10−6.
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Figure 1: A discrete model of a transmission line

Second, we take α= 0 and N = 10. Then we calculate the minimum of ϕ over τ; as the initial value of τ (for the iteratively
finding the minimum) we take τ= 1. We obtain the following results (left Fig. 2). The optimal τ is τ0 = 19.196 (it is shown in
the left Fig. 2 as a small square). According to Theorem 5.2 we have

‖H−H10,τ0 ,0‖L2[0,∞) ≥
Æ

ψ(10,τ0, 0) = 0.000192,

‖H−H10,τ0 ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(10,τ0, 0) = 0.0294.

After that, we repeat the same experiment with N = 30. We obtain τ0 = 19.3 and

‖H−H30,τ0 ,0‖L2[0,∞) ≥
Æ

ψ(30,τ0, 0) = 2.07 · 10−10,

‖H−H30,τ0 ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(30,τ0, 0) = 2.47 · 10−8.

Third, we return to N = 10, take as initial values the found τ0 = 19.2 and α = 0, and find the minimum of ϕ(N ,τ,α) over τ
and α. We obtain the following results (right Fig. 2). The optimal τ is τ1 = 19.201; the optimal α is α1 = 0.0000239. According
to Theorem 5.2 we have

‖H−H10,τ1 ,α1
‖L2[0,∞) ≥

Æ

ψ(10,τ1,α1) = 0.000193,

‖H−H10,τ1 ,α1
‖L2[0,∞) ≤ c(T )

Æ

ϕ(10,τ1,α1) = 0.0294.

Thus, we have practically the same result as for α= 0.
To show the actual convergence rate and the difference between the Frobenius norm and the usual norm, we calculate the

coefficients Sn,τ,α according to Propositions 4.1, 4.2 and Corollary 7.2 for two cases: τ0 = 19.196, α0 = 0 and τ1 = 19.201,
α1 = 0.0000239. Then we calculate the norms of the coefficients Sn,τ,α. The results for these two cases coincide to within 6
significant digits. Therefore, we present the results only for the first case, see Table 1. We see that the difference between the
Frobenius norm ‖·‖F and the norm ‖·‖2→2 induced by the Euclidean norm on CM is not high.

Table 1: The norms of the coefficients Sn,19.2,0

n 0 1 2 3 4 5 6 7 8 9
‖Sn,19.2,0‖F 4.54 2.28 1.13 0.378 0.171 0.114 0.0435 0.0177 0.0127 0.00538
‖Sn,19.2,0‖2→2 0.351 0.199 0.135 0.0494 0.0214 0.017 0.00702 0.00267 0.00211 0.000979

n 10 11 12 13 14 15 16 17
‖Sn,19.2,0‖F 0.00195 0.00146 0.000679 0.000227 0.000168 0.0000861 2.79× 10−5 1.94× 10−5

‖Sn,19.2,0‖2→2 0.000334 0.000257 0.000134 0.0000417 0.0000308 0.000018 5.22× 10−6 3.62× 10−6

n 18 19 20 21 22 23
‖Sn,19.2,0‖F 1.09× 10−5 3.56× 10−6 2.23× 10−6 1.37× 10−6 4.7× 10−7 2.55× 10−7

‖Sn,19.2,0‖2→2 2.38× 10−6 6.92× 10−7 4.18× 10−7 3.1× 10−7 1.02× 10−7 4.72× 10−8

n 24 25 26 27 28 29
‖Sn,19.2,0‖F 1.71× 10−7 6.28× 10−8 2.92× 10−8 2.12× 10−8 8.44× 10−9 3.38× 10−9

‖Sn,19.2,0‖2→2 3.96× 10−8 1.47× 10−8 5.23× 10−9 4.99× 10−9 2.09× 10−9 6.36× 10−10
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Figure 2: The points show the spectrum of the matrix −A from example 9.1, the small squares are the found τ. In the right figure the minimum
is taken over τ and α; in the left figure the minimum is taken only over τ with α= 0

Example 9.2. We consider the matrix

A= −











aM−1 aM−2 . . . a1 a0

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0











− 1.1











1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 1











of the size M ×M with M = 500, where ai are random numbers uniformly distributed in [0, 1]. The matrix A is a type of so-called
companion matrix that occurs in differential equations [13, p. 528]. The spectrum of A is close to a circumference of radius 1 (to
make the matrix stable, we subtract 1.1 · 1), see Fig 3.

First, we consider the case of the simplest choice of α and τ. We set α= 0. We calculate ‖A‖1→1 = 3.1, where ‖A‖1→1 is the
norm of the matrix A induced by the norm ‖x‖1 = |x1|+ |x2|+ . . .+ |xM | on CM . Then we take the heuristic (simplified) value
τ∗ = ‖A‖1→1/2 = 1.55. Such a quick choice of α and τ allows to apply formulas from Corollary 7.2 to construct approximation (5)
immediately; we consider two cases: N = 10 and N = 30 in the truncated Laguerre series (5). Using Theorem 5.2 we obtain the
estimates (we recall that to obtain the estimates, it is necessary to calculate the eigendecomposition; in this case c(T ) = 44.54)

‖H−H10,τ∗ ,0‖L2[0,∞) ≥
Æ

ψ(10,τ∗, 0) = 0.253,

‖H−H10,τ∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(10,τ∗, 0) = 32.76,

‖H−H30,τ∗ ,0‖L2[0,∞) ≥
Æ

ψ(30,τ∗, 0) = 0.00393,

‖H−H30,τ∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(30,τ∗, 0) = 0.233.

Second, we set α= 0. Since we know the form of the spectrum, now we take another heuristic value τ∗∗ = 1. We consider
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τ=0.90614, α=0, φ =1.9301× 10-1, N=10
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τ=0.90614, α=1.09× 10-5, φ =1.9301× 10-1, N=10

Figure 3: The points show the spectrum of the matrix −A from example 9.2, the small squares are the found τ. In the right figure the minimum
is taken over τ and α; in the left figure the minimum is taken only over τ with α= 0. The results coincide within 5 significant digits

two cases: N = 10 and N = 30 in the truncated Laguerre series (5). Using Theorem 5.2 we obtain the estimates

‖H−H10,τ∗∗ ,0‖L2[0,∞) ≥
Æ

ψ(10,τ∗∗, 0) = 0.0705,

‖H−H10,τ∗∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(10,τ∗∗, 0) = 9.54,

‖H−H30,τ∗∗ ,0‖L2[0,∞) ≥
Æ

ψ(30,τ∗∗, 0) = 0.000107,

‖H−H30,τ∗∗ ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(30,τ∗∗, 0) = 0.0065.

Third, we take α= 0 and N = 10. Then we calculate the minimum of ϕ over τ; as the initial value of τ we take τ= 1. We
obtain the following results (left Fig. 3). The optimal τ is τ0 = 0.906 (it is shown in the left Fig. 3 as a small square). According
to Theorem 5.2 we have

‖H−H10,τ0 ,0‖L2[0,∞) ≥
Æ

ψ(10,τ0, 0) = 0.048,

‖H−H10,τ0 ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(10,τ0, 0) = 8.6.

After that, we repeat the same experiment with N = 30. We obtain τ0 = 0.875 and

‖H−H30,τ0 ,0‖L2[0,∞) ≥
Æ

ψ(30,τ0, 0) = 0.0000246,

‖H−H30,τ0 ,0‖L2[0,∞) ≤ c(T )
Æ

ϕ(30,τ0, 0) = 0.0027.

Fourth, we return to N = 10, take as initial values the found τ0 = 19.2 and α= 0, and find the minimum of ϕ(N ,τ,α) over
τ and α. We obtain the following results (right Fig. 3). The optimal τ is τ1 = 0.906; the optimal α is α1 = 0.000011. According
to Theorem 5.2 we have

‖H−H10,τ1 ,α1
‖L2[0,∞) ≥

Æ

ψ(10,τ1,α1) = 0.048,

‖H−H10,τ1 ,α1
‖L2[0,∞) ≤ c(T )

Æ

ϕ(10,τ1,α1) = 8.6.

Thus, we have practically the same result as for α= 0.

Example 9.3. In Examples 9.1 and 9.2 the minimum of ϕ(N ,τ,α) is attained almost at α = 0. We present here another example
of the same kind. Since the point of minimum in our estimate depends only on the spectrum of A, we do not present a matrix A
itself and work only with its possible spectrum.

We take 3000 random complex numbers; their real parts have the Maxwell distribution with σ = 4 (the probability density
for value x in the Maxwell distribution is proportional to x2e−x2/(2σ2) for x > 0, and is zero for x < 0; the use of the Maxwell
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distribution here is not related to any special application, we just want to have a random distribution in the complex left half-plane)
and imaginary parts have the normal distribution with the mean value µ= 0 and the variance σ2 = 1. We interpret these points
as a possible spectrum of −A; we present them in Fig. 4. The results of calculation are as follows.

5 10 15 20

-3

-2

-1

0

1

2

3

τ=4.14, α=0, φ =8.78 × 10-6, N=50

5 10 15 20

-3

-2

-1

0

1

2

3

τ=4.47, α=-3.91 × 10-3, φ =1.26 × 10-1, N=10

Figure 4: The points from Example 9.3, the small squares are the found τ. In the right figure the minimum is taken over τ and α; in the left
figure the minimum is taken only over τ with α= 0. Note that in the right fig. N = 10, but in the left fig. N = 50

.

First we take N = 10 and α = 0. Starting from the initial point τ = 1, we find that the minimum of ϕ(10,τ, 0) over τ is
attained at τ0 = 4.50 and

Æ

ϕ(10,τ0, 0) = 0.1269,
Æ

ψ(10,τ0, 0) = 0.1040.

The experiment with N = 30 and α= 0 gives τ0 = 3.97 and
Æ

ϕ(30,τ0, 0) = 0.00085,
Æ

ψ(30,τ0, 0) = 0.00067.

The experiment with N = 50 and α= 0 gives τ0 = 4.14 and
Æ

ϕ(30,τ0, 0) = 8.77 · 10−6,
Æ

ψ(30,τ0, 0) = 6.87 · 10−6.

Then again we take N = 10 and find the minimum of ϕ(N ,τ,α) over τ and α (we begin iterations from the found τ0 = 4.50
and α= 0). Now the optimal τ is τ1 = 4.47 and the optimal α is α1 = −0.0039. For the estimates from Theorem 5.2 we have

Æ

ϕ(10,τ1,α1) = 0.1259,
Æ

ψ(10,τ1,α1) = 0.1027.

Fig. 5 shows that the function
p
ϕ is rather smooth and convex. Thus, the problem of finding of its minimum can be solved

by standard tools.
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