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Abstract

In this study, we propose an extended form of the Legendre-based Appell polynomial families and examine
their essential analytical properties. By employing the quasi-monomial approach, we establish the
corresponding recurrence relations, multiplicative and derivative operators, together with the governing
differential equations. Moreover, we formulate both the series and determinant representations for
this newly constructed class of polynomials. Within this framework, we also introduce the generalized
Legendre-Hermite Appell polynomials and derive their specific results. As special cases, the Legendre-
Hermite-Bernoulli, Legendre-Hermite-Euler, and Legendre-Hermite-Genocchi polynomials are obtained,
and their algebraic as well as operational features are analyzed. The findings presented herein enhance
the theoretical development of special polynomial sequences and expand their potential applications in
mathematical physics and differential equation analysis.

1 Introduction and preliminary results

Special polynomials occupy a central role in mathematical analysis, combinatorics, and mathematical physics due to their
wide-ranging structural and operational properties. They often arise as solutions to differential, difference, or integral equations
and serve as fundamental tools in approximation theory, orthogonal expansions, and numerical analysis. Families such as Hermite,
Laguerre, Legendre, Bernoulli, and Euler polynomials exhibit deep interconnections through generating functions, recurrence
relations, and operational frameworks, thereby providing a unified approach to diverse mathematical and physical problems (see
[1, 6,9, 10, 11, 8]).

Appell polynomials constitute one of the most significant subclasses of special polynomials, distinguished by their defining
property that the derivative of each polynomial in the sequence is proportional to the preceding one. This differential property
endows them with elegant algebraic and analytical characteristics, enabling their application in areas such as differential equations,
combinatorial enumeration, and probability theory. Through their generating functions and operational formulations, Appell
sequences offer a versatile foundation for constructing and generalizing other polynomial families, thereby enriching the theory
of special functions and their practical applications. The family of Appell polynomial sequences [2] arises extensively across
various domains of applied mathematics, theoretical physics, approximation theory, and related analytical disciplines. These
polynomial sequences are characterized by the following exponential generating function:

+00 n
AG 0= A =D A, Ay = A4,(0), W
n=0 :

where A(t) is an analytic function at t = 0, expressed as:

A(t) = Z An%, Ay #0, A; (i=0,1,2,---) being real coefficients. 2)
n=0 )

9Department of Electrical Engineering, Prince Mohammad Bin Fahd University, PO Box 1664, Al Khobar 31952, Saudi Arabia, Email: wkhanl@pmu.edu.sa
b*Symbiosis  Institute  of  Technology =~ PUNE, Symbiosis  International (Deemed) University, Pune, India, Email: shahid-
wanil77@gmail.com, shahid.wani@sitpune.edu.in

“*Section of Mathematics, UniNettuno University, Corso Vittorio Emanuele II, 39, 00186 Rome, Italy, Email: clemente.cesarano@uninettunouniversity.net
dDepartment of Mathematics and Computer Science, Faculty of Informatics and Sciences, University of Oradea, 410087 Oradea, Romania, Email: geor-
gia_oros_ro@yahoo.co.uk

¢Department of Humanities and Sciences, Sri Indu College of Engineering and Technology, Hyderabad, India, Email: ganiejavid111@gmail.com



/OA,\ Khan - Wani - Cesarano - Oros - Ganie 147

S.No. Name of polynomials Q(t) Generating function Series definition
(oo} n n
L Bernoulli = (FH)et= Z;)Bn(x)% B,(x)= kZEJ (})Bix"*
n= -
(o]
polynomials (H5)=> Bn;—’;
n=0
and numbers [22] B,(:=B,(0) =B,(1))
2 2 f_o " & Ex 1)k
IL. Euler a1 (et = 2 E () Ei(x) :kzz)(k)z_(x_ 3)
n= -
[ee]
polynomials ezzfﬂ =3 En%
n=0
and numbers [23] E,:=2"E, (%)
5 5 (oo} n n
IIL. Genocchi 2 (Ey)et= %Gn(x)% G,(x) = I;)(Z)ka”’k
oo
polynomials % =>.G, ;—|
n=1
and numbers [13, 14] G, :=G,(0)
Table 1: Certain members belonging to the Appell family
n 0 1 2 3 4
1 1 1
E, 1 0 -1 0 5
G, 01 -1 0 1
Table 2: First few values of B,,, E,, and G,
The Appell polynomials A, (x) are explicitly given by the series expansion [12]:
n
n ’
A= (k)An,k Xk, A(x) = n Ay (). 3)

k=0

By appropriately selecting A(t), various members of the Appell polynomial family can be derived. These are listed in Table 1
below:

For the purpose of simplifying subsequent calculations, we list the initial numerical values of the Bernoulli numbers B,,
Euler numbers E,, and Genocchi numbers G, in Table 2. These fundamental sequences frequently arise in the study of special
functions, series expansions, and number-theoretic identities, and their early terms are crucial for verifying analytical results and
constructing explicit examples. The corresponding values are tabulated as follows:

Note 1. From the preceding table, it can be observed that the polynomial sequence G,(x) possesses degree n— 1, in contrast
to the other Appell polynomial families, each of which has degree n. Consequently, G,(x) does not fall within the category of
strongly Appell polynomial sequences (for a detailed discussion, see [23]).

Special polynomial systems involving two variables occupy a central position in mathematical physics, providing efficient
analytical frameworks for solving diverse classes of partial differential equations frequently encountered in physical and engineering
models. The 2-variable general polynomials (2VgP) denoted by V,(x, y) are specified by generating relation [19]:

V(= D M), o) = 1) @
n=0 :
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where ¥(y, t) has (at least the formal) series expansion
V(0= 00, (B #0, k>1). ®)
k=0 :

The two-variable Legendre polynomials, denoted by S,(x, y) and first introduced in [3], represent a natural and profound
extension of the classical univariate Legendre polynomials. These polynomials encapsulate a rich algebraic and analytical
structure, enabling a deeper understanding of multivariate orthogonal systems. Unlike their one-variable counterparts, the
two-variable Legendre polynomials possess intricate recurrence relations, differential properties, and generating functions that
reveal subtle interdependencies between the variables x and y. Their utility spans a wide range of mathematical and physical
applications, including potential theory, where they aid in solving Laplace’s equation in higher dimensions, and wave propagation
problems, where they provide convenient bases for representing solutions in two-dimensional domains. The study of S,(x, y) not
only enriches the theory of special functions but also offers powerful tools for tackling complex, multivariate problems in applied
mathematics and mathematical physics.

Recently Wani et al. [7] studied a hybrid family of Legendre-Sheffer polynomials, represented by sS,(x, y), which is defined
through the generating function

oo

A expHOI (—x(HOP) = D 58,66 0) . ©

n=0
When H(t) = t, in equation (6) yields the hybrid Legendre-Appell polynomials (LeAP), defined by

+00

tn
Q(t) & Co(2tv/—x) = ZosAn(x,y)E, %)
or, equivalently,
A & Co—xt?) = Q1) &P =3 A, (x, 1), ®
n!

where C,(x) denotes the 0" order Bessel Tricomi function [5]. The n'"-order Tricomi functions C,(x) are defined as

( 1)k k
Ca() = Z k'(n+k)' ©
We also note that .
exp(—aﬁ;l) = Co(ax), 5;”{1} = %, (10)

is the inverse differential operator.
The Legendre-Appell polynomials s.A,(x, y) satisfies the series expansion:

n/2
& A ()"

sA(x,y)=n! ZW 1D
The 2-variable Legendre-Appell polynomials s.A,(x, y) are also defined by the following operational rule:
A =en (0 ) (A0 a2

By appropriately choosing .A(t), various members of the hybrid LeAP family can be derived. These are summarized in Table 3:

Note 2: Considering the observation made in Note 1, it follows that the hybrid LeGP G, (x,y) does not strongly belong to the
class of hybrid LeAP s.A4,(x,y).

The notion of the monomiality principle originates from the pioneering work of Steffensen (1941) [15], who first formulated
it through the framework of poweroids-an early operator-based approach to defining generalized polynomial systems. This
foundational concept was later extended and systematized by Dattoli [16, 3, 4], whose contributions greatly advanced the
operational treatment of special and orthogonal polynomials, thereby enriching the theoretical understanding and applications of
such sequences in mathematical analysis and physics.

Within this principle, a pair of linear operators, denoted by M and P, are introduced to act as the multiplicative and
derivative operators, respectively, for a polynomial sequence q,(x),y. These operators are constructed so as to satisfy the
defining operational relations that emulate the behavior of monomials, namely:

qn+l(x) :M\{qn(x)}7 (13)

Dolomites Research Notes on Approximation ISSN 2035-6803



/OA,\ Khan - Wani - Cesarano - Oros - Ganie 149

S. Name of hybrid A(t) Generating function Series definition
No. polynomials

o0 , [n/2] ;
I. Hybrid Legendre-Bernoulli (75 )e Co(—xt?) = > sB,(x,¥)5  sB,(x,y)=n! Y. Bupr)x
n=0 k=0

-1 (n—2k)1 (kD)2
polynomials
- 2 2 2 < e ) g ot
II.  Hybrid Legendre-Euler 2 (FH)ec(—=xt) =Y E ()5 sE(ay)=n'Y By
n=0 k=0
polynomials
; : 2t 2t 2 = o Al g (y)xk
II.  Hybrid Legendre-Genocchi 25 (Z5)e* Co(—xt?) =Y. sG,(x,¥)5 G, (x,y)=n! Y TSy
n=0 k=0
polynomials
Table 3: Certain members belonging to the HLeAP family
and
n g (x) = P{g,(x)}. as

A polynomial sequence that meets these conditions is termed a quasi-monomial set. Additionally, it must obey the fundamental
commutation relation:
[P, M]=PM—-MP =1, (15)
which is consistent with the structure of the Weyl algebra.

For a quasi-monomial sequence g,(x), .y its properties are fully determined by the operators M and P. In particular, the
following hold:

(i) The polynomials g, (x) satisfy the differential relation:
MP{g,(x)} = n g,(x), (16)

provided appropriate differential forms of A and P exist.

(ii) An explicit expression for g, (x) is:

g, () = M" {1}, a7
with the initial condition g,(x) = 1.
(iii) Its exponential generating function is:
— ad t"
M1} = .00 (Il <o0), (s
o n!

which follows directly from (17). See [16, 18, 17] for additional details.

These operational techniques have broad applicability in areas such as classical optics, quantum theory, and mathematical
physics, providing effective tools for studying polynomial families.

Motivated by this framework, we introduce a new class of generalized Legendre-based Appell polynomials (gLeAP), denoted
by |, sA, (x,y,z). Section 2 develops this generalization, establishing core properties including recurrence relations, operator
forms, and differential equations. Section 3 presents series expansions and determinant representations. Section 4 examines
significant subfamilies and their features, followed by concluding remarks and future perspectives.

2 The new generalization of Legendre and Legendre-based Appell polynomials

This section presents an extended generalization of the gLeAP, denoted by | 5.4, (x, y,2). The analysis includes the establishment
of their series form, quasi-monomial framework, operational identities, and the associated differential equations. The formulation
begins with the gLeP ySn(x, ¥,2), defined in view of relations (4) and (7) as
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xt o t+2) — N ﬂ _
€ ‘I’(J”t)co( zt )_Z)}Sn(x:yﬁz)n': (ySO(X’y’Z)_]-)' (19)
n=0 )

Simplifying the left-hand side of equation (19) using equations (5) and (9) yields the following series representation for

gLeP y,S,(x,y,2):
N (n
N RN () A AR}
m=0

We now derive the quasi-monomial identities for gLeP, denoted as 1,S,(x, y,2).

(20)

Theorem 2.1. The newly defined gLeP ,S,(x,y,2) satisfies quasi-monomial properties under the following multiplicative and

derivative operators:

M, p=x+ M +2nD?,
¥(y,Dx)
and
P gleP — ﬁx’
respectively.

Proof. Differentiating equation (19) with respect to t, we obtain

S " V(5,0 &2, gnong2n!
S L Y,2)— = xe*'W(y, t)Co(—2t2) + —=2—=e""W(y, t)Cy(—2t2) + — | ¥ W(y, t).
23S (0, 2) 0 = e U, O0Go(oat) + e Wy 0C(—2t?) (ZO D
Thus,
=) e \I/l(_y,t) 0 Z"+12(Tl+1)t2”+1
S .0, y,2)— = (x+ )ex‘\ll(y t)C (—zt2)+( — | Y(y, 1).
yen+1l s ) ) 0 5
HZ(; n! Y(y,t) HZ:O: ([n+1]1)2
Using equation (19), we have
< - U (y, 1)) t" [ aE™2n+ 1) |,
;ysnﬂ(xd,z); = (x + Ty.0) );ysn(xd,z); + (HZ_O: T )¢ T(y, t).

Differentiating equation (23) with respect to z, we get

® ¢n T (y,0)\ = ¢n & ¢n
ZDZJ/SrHl(x:y:Z); = (X + )ZDZJJSH(X:.Y:Z); +2nZyS,,(x,y,z);.
: n=0 : n=0 :

pary U(y,t)
Consequently
D, {e"w(y, t)Co(—2t*)} = te™ W (y, )Co(—2t>),
and \f'p((y):’tt)) posses power series expansion in t with ¥(y, t) being the invertible series of t.

Applying the inverse operator D;1 to equation (24), we get

N "< ¥ (y,1) "
Zy‘sn-#l(x’y»z); = Z (X + W:t) + an;l) ySn(X,y,Z)n—!-
n=0 n=0

Using equations (25) and (26), we get

N "< ¥'(y,D,) - "
E S (6, y,2)— = E (x+—A+2nD S, (x,y,2)—.
YEn+1\Ats s yen\tsJs
n=0 " n! n=0 Lp(y:Dx) # n!

By comparing with equation (13), we deduce the operator identity (21).
Similarly, by using equation (25) in (19), we obtain

[ee) tn oo tn
D, ;ysn(xd,z); = ;ysnfl(X,y,Z)m-

Matching the coefficients of equal powers of t on both sides of (27), we find
D, {yS,,(x,y,z)} =ny,S,1(x,y,2), n=1

Hence, in view of (14) and (29), we obtain the assertion (22).

@1

(22)

(23)

24

(25)

(26)

27)

(28)

(29)
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Theorem 2.2. The gLeP ,S,(x,y,z) satisfies the following differential equation:

~ V(y,D)~ BN
(xDx + (y—’AX)Dx + 2nDz_1Dx - n) ySu(x,y,2) =0. (30)
¥(y, D)

Proof. By substituting equations (21) and (22) into (16), we get

~  U(y,D)~ S
(XDX + (y—A)DX + 2nDZ_1Dx) 18u(x,y,2) =1 ,S,(x, ¥,2). 3D
¥(y,D,)
Upon solving the above equation, we get the assertion (30) |

Remark 1. Since ),(x,y) = 1, it follows from the monomiality principle (17) that

V(D) o~
Sa(x,y,2) = (x + —="=+2nD, 1) {1}, olx,y)=1).
y<n 2 0
U(y, D)
Furthermore, using equations (17), (19), and (21), we can write
— O tn
exp (M, .p) {1} = e W(y, t)C(—2t?) = ZOySn(x,y,Z)a. (32)

We now extend the construction to introduce a generalized form of gLeAP. To obtain its generating function, we employ
the exponential generating framework of Appell polynomials. Substituting x in the left-hand side of (1) by the multiplicative
operator ySn(x,y,z) from (21), we obtain ysAn(x,y,z):

oo

—~ t"
A(t)exp (Myy.p) {1} = ZoysAn(x,y,z)n—!. (33)
Using equation (21), we obtain two equivalent forms:
\p/(y)ﬁx) "_1) — tn
A(t)exp| x + ————+2nD 1} = A, (x,y,2)—. (34)
(1) p( W0py T2 W= 2 s Ay

Applying relation (33) to the left-hand side of (34), we derive the generating function for the gLeAP | sA,(x, y,%) as follows:

[ee]

ARy, OC(-26) = D s A6, . 2) (35)

n=0 :

where - ) - )
AO =D aam, @#0 ¥1.0=D )G, Yo 0. (36)

k=0 : k=0 :

3 Series representation and determinant form

Hybrid classes of special polynomials occupy a fundamental position in mathematical analysis owing to their rich algebraic
and structural properties. Their series representation offers explicit analytical expressions and recurrence relations that prove
instrumental in addressing various differential and functional equations. Meanwhile, the determinant form provides a concise
and elegant algebraic framework for exploring their combinatorial and operational features. This representation facilitates the
examination of orthogonality, symmetry, and transformation identities, while also establishing a connection between classical
and modern polynomial families. Such formulations extend their utility to applications in mathematical physics, computational
modeling, and engineering analysis. Moreover, the determinant structure serves as a powerful tool for efficiently computing
higher-order coefficients. Hybrid polynomial systems are further recognized for their importance in approximation theory and
numerical computation. Collectively, these attributes underscore their substantial contribution to both theoretical development
and applied mathematical research.

Theorem 3.1. The three-variable gLeAP | sA,(x,y,z) can be expressed through the following series representation:

< n
ySAn(x:y7z):Z(k)Ak ySnfk(x:yzz): (37)
k=0

where A, is defined by equation (2).
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Proof. From equation (33), we can express

Z sA(x, y,z)— —A(t)zys (x, y,z)—. (38)

By substituting the expansion (1) of .A(t) into the left-hand side of (38) and equating coefficients of identical powers of t on
both sides, we obtain the result stated in (37). O

Theorem 3.2. The gLeAP N sA,(x,y,2) has the following determinant representation

1 3800,y,2) 3S00,y,2) .. 3Sia(x,y,2) ySr(lm)(x,y,z)
b P B e Bus B,
| © Po O (7B (1)Bur
ysAn,q(x,y,z) = (B 0 0 Bo (";l)ﬁP3 (;)ﬁrﬁz , 39)
0 0 0 Bo (nfl)/jl

where Z:io ySn(x,y,z)% =X U(y, t)Co(—2t?), A}t) Zk Oﬂk o Bo#O0.

Proof. Using the series representation of —— 5 as follows:

A(t

LA Zﬁkk,

using the generation function (19), we get

Xt\IJ(y, t)Co(—2t )— (Zﬁk ')(ZysAn(x,y;Z);_:).

k=0 n=0
Hence
[ee] t” oo tk (oo} t”
DS y.2) o = (Zﬁkg) (ZysAn(x,y,z)n—!).
n=0 k=0 n=0
Applying the Cauchy product, we have
oo oo n
t" n t"
Z)}Sn(x’y;z)_ 22 ( )ljk SAn—k(x;.yyz)_'
- n! — £ \ [ v n!
n=0 n=0 k=0

By comparing the coefficients of £ frorn the polynomial equation, we get

. n
ysn(x:y’z)zz(k)ﬁk yS'Anfk()“y’Z): HENO‘

k=0

So, we obtain the system of equations as follows:
ySO(x,y,z) =P ysAo(X,y,Z),

yS1(x,y,2) = ySAl(xsy’z)+ﬁl ys-Ao(x:)”z):

2
yS:5,7,5) = By s A, 3,2) + (] JBr s A 2,5) + By s A 1,5),

n—1
$Sa )= Bo s a ()4 (M )8y s Ara(r s 4o By s o3,

n
ySn(X,)’,Z) = /50 ySAn(x5.y:Z)+ (1)/51 ySAnfl(X’y!Z)—i_"'Jrﬂn yS'AO(X!y’Z)'
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Applying Cramers’ rule, we get

Bo 0 0 ySo(x,¥,2)

ﬁl ﬁO 0 ysl(X,y»Z)

ﬁZ (f)/jl 0 ySZ(X7y:Z)

B3 (3)/32 0 y$3(x,y,z)

Bra (T(T;)ﬂnz ( /53 ysnfl(xsy:z)

_ ﬂn ’; /jn—l nil /51 ySm(xnyZ)
ySAn(X’y,Z)_ [9’0 0 0 0
By Bo 0 0
B (DA o 0
B ()Bs o 0
ﬁnfl (n;l)ﬁn72 ﬂO 0
ﬁn (rll)ﬁn—l (nzl)ﬂl ﬁO

By taking the transpose in the last equation, we have

[30 ﬂl /?n—l [jn
0 ﬁO (nll)/jn—z (T)ﬁn—l
. 1 0 0 ( 1 )ﬂn—3 (2)/5n—2
ysAn(X,yyz)—W . . . . .
0 0 Bo (,")B:
ySO(x:y:Z) y31(xy}',z) ySnfl(x’y:Z) ysn(x’y:z)
Thus, simple row operations are used to finish the proof. O

4 Applications

This study extends recent work by generalizing three-variable Legendre-based Appell polynomials. In particular, setting ¥(y, t) =
e’ in the generating function (33) yields the Legendre-Hermite-Appell polynomials (LeHAP) _,.A,(x, ¥,2), defined by a specific
generating function:

oo tn
A(t)exr+}’tzco(—zt2) = Z(; SHAn(x,y,z)E. (40)
In other words, we note that
~ . 92
snA(X,y,2) =exp (DZ lm){HAn(x,y)}- (41)
Theorem 4.1. The LeHAP are defined by the series:
(n
suAi(,y,28) =Y (k)Ak sHi(x,¥,2). (42)
k=0
Proof. In view of (40), we have
oo tn oo t“
2o, = A D sy, 2 43)

By incorporating the series expansion of A(t) in preceeding expression and equating the coefficients of same exponents of t on
both sides, we arrive at (42). O

We now proceed to establish the determinant representation of ¢,,.4,(x, y,%), employing a method analogous to that used in
[20, 21], with reference to equation (40). "
Theorem 4.2. The determinant representation of LeHAP _4.A,(x,Y,2) of degree n is

1
SHAO(X:J’,Z) = -
Bo
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1 SHI(X:y’Z) st(X,.)’,Z) SHn—l(X:.y’z) SHn(X:y’z)
Bo B B B B
| 0 Po e (B (B
sﬂAn(X,y,Z) = (ﬁo)"ﬂ 0 0 Bo (n;l)[jrk3 (g)ﬁni2 , 44)
0 0 0 Pog ()R

1 = (n
=—— =0,1,2,...
/jn -AO (kl (k)Akﬂn—k)’ n > Ly 4 >

where B, # 0, By = ALO and gH,(x,y,2), n=0,1,2,---, are the LeHP.

Proof. By substituting the series representation of the newly defined generalization of the LeHP into the generating function
corresponding to the LeHAP, we derive the following relation:

oo tn oo tn
A 2ol 1,27 = D s 1) (45)
On multiplication of
1 ot
— = -, 46
0 ; P 46)
of the preceeding expression, we find
oo [" (o] tk oo ["
ZOSHn(X:y’Z)E=;ﬁkmzos7{-’4n(x:y’z)a' (47)
By utilizing the Cauchy product in (47), it follows that
—(n
B 3 = n— B 3 . 48
sHa(x,y,2) ;(k)ﬁk snA (%, y,2) (48)

“This relation yields a system of n linear equations involving the unknowns A,(x, y,z), where n =0,1,2,---.

To determine the solution through Cramer’s rule, it is observed that the denominator corresponds to the determinant of a
lower triangular matrix, whose determinant evaluates to (8,)"*". By transposing the numerator and substituting the i™ row with
the (i + 1)™ position for i = 1,2, --- ,n— 1, the required expression is obtained. O

Next, we establish the multiplicative and derivative operators associated with _;,.A,(x,y,z). The result is stated in the
following theorem.

Theorem 4.3. The generalized LeHAP family satisfies the following multiplicative and derivative operator relations:

N '(D
M:x+A(AX) ++2n(y +D;1), 49)
A(D,)
and
P=p, (50)
respectively.

Proof. Utilizing the derivative with respect to t on both sides of equation (40), we find

(<]

Z swen (i y,z)% - él((tt)) A Co(—2t2) + x A(D)e™ 7 Cy(—=262) + 2y LA(D)e P Co(=2%)
n=0 ]
) Z"2nt2n-1 N et )
2 T ) Ao -
0 t—" A/(t) 2 2
T (x +—= " 2n}')A(t)ext+yt Co(—2t7)
HZ=OS " n! A(t)
1) Z"+12(n + 1)t2n+1 e
' (Zo: ([n+1]1)2 )A(t)e , -
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By using equation (40), we get
= t" A'(t) - "
;SHAJ'&I(XLYJZ)E = (.X' + A(t) + Zny) ;SHAH(}C:}/’Z)E
il zn+12(n+ 1)t2n+1 2
+ ———— JA(t)e*, 53
(ZO T 1P (t)e (53)
On differentiating both sides of the last equation with respect to z, we obtain:
o t" A'(t) o t"
;DZSHAHl(x,y,z)E = (x + 20 + 2ny) HZ(;DZSHAH(X,)/,Z)E
[ee] t”
+2nZ(;SHAn(x,y,z)a. 54
Consequently
D { A Cy(—2t?) |} = A0 Co(—2t?). (55)
Applying ﬁz‘l to both sides of the above equation, we get
ad " A'(t) ~ £n
ZOJSHA”H(X’},’Z)E = Z_(): (x + Tt) +2n (y +D; )) SHAn(x,y,z)a. (56)
By using equations (55) and (56), we get
=3 " ) A/(ﬁx) ~ "
ZOSHAH_H(X,)/,Z)E = Z(; (X + TAX) +2n (y + Dz ) SH’A“(X’y’Z)E' (57)
In view of (13) and (57), we get the assertion (49).
Similarly, by using equations (55) in (40), we obtain
. el " ol "
Dx {ZOSHAH(X’J/’Z)E} = le’HAn—l(xiy:z) (n_ ]_)l . (58)
Matching the coefficients of equal powers of ¢ on both sides of (58), we find
f)x {SHAn(x5y’z)}=nS’HAn—l(x»y:Z), n=1l. (59)
Hence, in view of (14) and (59), we obtain the assertion (50). O
Remark 2. By using (17), the generalized LeHAP have the following explicit representations:
suAx, y,2) = M"{1}, (60)
A'(D,) )
An(x,y,z)z(x+ —=++2n(y +D.! ) {1}. (61)
sH .A(DX) ( )
Theorem 4.4. The following differential equation for _4,A,(x, y,2) holds true:
~  AD e
(xDx + A((AX) +2n(y+D;')D, — n) suA(x,y,2)=0. (62)
Proof. Using (49) and (50) in (16), we get
~ A, S
(xDx + (A )Dx +2n (y +DZ_1)DX) s, y,2) =0 4y A, y,2). (63)
A(D,)
Upon the simplification, we get the assertion (62). O
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5 Examples

The Appell polynomial family, characterized by a parameter function .A(t), serves as a foundational framework for generating
solutions to a variety of differential equations. Distinct selections of .A(t) yield different subclasses of polynomials, thereby
offering remarkable adaptability in mathematical modeling and analytical studies. This inherent flexibility underscores their
importance in diverse scientific domains such as physics, engineering, and computational analysis.

Table 1 provides a systematic overview of their generating functions, series formulations, and corresponding numerical
evaluations. The generating functions offer compact power series representations that facilitate symbolic manipulation and
theoretical derivations, while the series definitions furnish explicit expressions essential for analytical computations and numerical
implementation. The inclusion of numerical values enhances practical comprehension and supports real-world applications.

Due to their rich structural properties and wide applicability, Appell polynomials have found significant use in probability
theory, quantum mechanics, and signal processing. Their ability to adapt to complex analytical frameworks renders them an
indispensable tool for solving intricate mathematical problems and advancing modern scientific research.

“As a result, different members of _,,.A,(x, y,z) appear as Legendre-Hermite-based Bernoulli polynomials _,,5,(x, y,2),
Legendre-Hermite-Euler polynomials _;,€,(x, ¥,2), and Legendre-Hermite-Genocchi polynomials _;,G,(x, y,z). The following
expressions can be used to cast these polynomials":

[ee]

t * 2 2 t"
etje e (—=2t?) = ;SHBn(x,y,z)n—!, (64)
Le"”ytzc (—ztz)zi E,(x z)t—n (65)
et +1 0 LM PE
and
2t ey 2y _ N t"
et )—HZ:;SHgn(x,y,z)a. (66)

For instance the Legendre-Hermite-based Bernoulli polynomials _,13,(x, y, %), Legendre-Hermite-Euler polynomials _,,&,(x, y,2),
and Legendre-Hermite-Genocchi polynomials _;,G,(x, y,2) are defined by the following operational identities:

~ . 02

SHBn(x’.y:Z)=exp(D;lm){HBn(x’y)}: (67)
~ . 02

SHEn(x:y:Z):exp(Dglﬁ){Hgn(X:y)}' (68)

and
2

~ . 0
11Ga(x,7,5) = exp (D;l ){Hgn(x,y)}. ©9)

J0x2
The polynomials can be explored using the monomiality principle, explicit expressions, differential equations, and determinant

forms-revealing their structure, interrelations, and connections to linear algebra and broader mathematical frameworks.
Furthermore, in view of expressions (44), the polynomials _,,B,(x,¥,2), ;#&,(x,¥,2) and

s#9a(x,y,2) satisfy the following determinant representations:

1 SHl(x’y’Z) SHZ(x’y’Z) .SHn—l(X,}’:Z) an(x,_y,Z)
50 61 52 e 5}1—1 671
2 n—1 n
SHBH(X: _)/,Z) = (_1)n 0 60 (1)51 o ( 1 )5’1*2 (1)51171 )
0 0 50 e (n;1)5n_3 (2)5,1_2
0 0 0 8o ('1)8

(70)
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1 SHl(x’y’z) SHZ(x’y’Z) Sanl(xi.yfz) SHn(x,y,Z)
50 51 52 e 671—1 5n
2 n—1 n
sﬂgn(x: Y, Z) = (_1)n 0 50 (1)51 o ( 1 )5’1*2 (1)6n71 ,
0 0 60 . (n;1)5n_3 (2)5’1_2
0 0 0 8o (118,
(71)
and
1 'SHl(x’y’Z) SHZ(X’y’Z) an—l(X,J/:Z) SHH(X,y,z)
60 61 62 e 511—1 6;1
2 n—1 n
oGy = | 0 % Ma o (e (D6 |
0 0 50 - (n;1)6n73 (2)5"72
0 0 0 5o (ni1)51
(72)

6 Concluding remarks

In this study, we have introduced and rigorously analyzed a new extension of the Legendre and Legendre-associated Appell
polynomial families. By employing a comprehensive approach, we have established their fundamental characteristics, including
recurrence relations, operational structures involving multiplicative and derivative operators, and the governing differential
equations derived through the framework of quasi-monomiality. The construction of both the series expansion and determinant
formulation underscores the algebraic depth and intrinsic structure of this newly proposed class of polynomials. Moreover, the
introduction of the generalized Legendre-Hermite Appell polynomials, together with their notable special cases corresponding to
the Bernoulli-, Euler-, and Genocch-type sequences, considerably expands the theoretical foundation of special functions and their
interconnections. Collectively, these findings contribute to a deeper understanding of polynomial systems and their analytical
significance within the domains of mathematical physics and differential equations.

Prospective investigations may focus on the orthogonality properties and integral transform representations of these polyno-
mials to elucidate their structural and analytical behavior further. Establishing connections with fractional calculus and advanced
special function theory could yield innovative outcomes with potential applications in approximation theory, signal processing, and
mathematical modeling. In addition, extending the present framework to the context of g-calculus and number-theoretic settings
may reveal new algebraic and combinatorial attributes. The computational and numerical exploration of these polynomials also
represents a promising avenue for future research, particularly in enhancing their practical relevance to scientific computation,
modeling techniques, and engineering-based simulations.
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