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Abstract

The one-dimensional pseudo-Leja sequences, presented as an alternative to Leja sequences in [5],
offer good interpolation nodes for approximating holomorphic functions. We propose a definition for
multidimensional pseudo-Leja sequences related to a compact set K in the complex space Cp, which
extends the concept of the one-dimensional version and the multidimensional Leja sequences. We show
that these sequences can be used to calculate the transfinite diameter of K, suggesting their potential
suitability for multivariate polynomial interpolation. We also present a relation to the pluricomplex
Green function associated to K . Subsequently, we demonstrate that intertwining pseudo Leja sequences
results in another pseudo Leja sequence. Additionally, we provide a method for computing pseudo Leja
sequences using discrete meshes.

1 Introduction

We are interested in the computation of goods points for approximation by multivariate polynomial interpolation. Here, by good
points, we mean arrays of interpolation nodes in a regular ( see below) compact set K for which the corresponding sequence of
Lagrange interpolation polynomials of any holomorphic function f on a neighbourhood of K , converges uniformly to f on K . In
the univariate case, a characterisation of such points is very well known ([7], [8], [18]). In contrast, in the multivariate case, no
characterisation is known and very few examples of such good points are currently available. The only general example is given by
arrays of Fekete points (Fekete points for K ⊂ Cp are points which maximizes the (modulus) of the Vandermonde determinant of
a given order, see below). Unfortunately, these points are impossible to determine explicitly and even the numerical computation
of their discrete version is complicated, so that they are essentially of theoretical interest. Apart from the Fekete points, the sole
examples of good points are furnished by the intertwining of univariate good points ([5], [4], [23]) and special remarkable
configurations such as the famous Padua points in the unit square of R2 ( [10], [13], [14]). The interest of other configurations
is supported by numerical experiments (see e.g. [1], [12]).

In the univariate case, while the nature of good points is completely understood from the theoretical point of view, the
computation of such points for an arbitrary regular compact set is far from being easy. A way of constructing univariate good
points were introduced in [5] with the notion of pseudo Leja sequences. Such a sequence is defined recursively as follows. The
first point ξ0 ∈ K is chosen arbitrarily and, if the first j points ξ0, . . . ,ξ j−1 are already obtained, then ξ j is chosen in K to ensure
that

M j

j−1
∏

i=0

|ξ j − ξi | ≥max
z∈K

j−1
∏

i=0

|z − ξi |. (1)

Here (M j) is a sequence of real numbers M j ≥ 1, j ≥ 1 which is required to be of sub-exponential growth, that is limd→+∞ M1/d
d = 1.

The classical Leja points correspond to the special case, M j = 1, j ≥ 1. The point is that the possibility M j > 1 alleviates the
computation of the points without weakening the approximation quality of the Leja points : it is shown in [5, Theorem 1, page 56]
that they are good points (for reasonable compact sets) in the sense above. The strong result that, on a set of positive logarithmic
capacity, the Lebesgue constants of one-dimensional pseudo Leja points with bounded sequence (M j) are subexponential has
been recently established in [25].

It is readily seen that the product in (1) can be replaced by the (modulus) of a Vandermonde determinant and this gives the
way to the extension of the definition to the higher dimensional case. The study of this generalisation is the subject of the present
paper. The precise definition of a multivariate pseudo Leja sequence is given in Section 2 . Although we are not able to show that
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our multivariate pseudo Leja points are good points (in the multivariate case, this is not even known for ordinary Leja sequence),
we prove that they permit to recapture the multivariate transfinite diameter of K , which, in turn, by deep results due to Berman,
Boucksom and Nyström ([3, Theorem A, page 3 ]) and Bloom ([9, Corollary 4.5, page 1563]), implies that they permit to recover
the multivariate equilibrium measure and the pluri-complex Green function for a regular compact set K . This is usually regarded
as an indicator that the points should actually be good in the above sense, especially because these conditions can be equivalent
in the univariate case (refer to [24, Theorem 1.1 and Proposition2.1], [8, Theorem 1.5, page 446]).

In Section 5, we will briefly explain how to compute pseudo-Leja points, showing that discrete Leja points can be seen as
examples of pseudo-Leja points.

We will also prove an interesting stability property of multivariate pseudo Leja sequences. Roughly speaking, by intertwining,
in some specific way, the points of a pseudo Leja sequence for K1 ⊂ Cp1 and that of a pseudo Leja sequence for K2 ⊂ Cp2 , we
obtain a pseudo Leja sequence for the product K1 × K2, see Section 4.

For the convenience of the reader, we will now recall standard notations and basic definitions on multivariate interpolation.
Multi-indices will be ordered according to the graded lexicographic order, so that α≺ β if |α|< |β | or |α| = |β | and the left-most
non zero element of α− β is negative. We arrange the elements of Np in an increasing sequence κ= κ(p) (with respect to ≺),

κ= κ(p) : N→ Np. (2)

Thus, when p = 2, we have

κ(0) = (0,0)≺ κ(1) = (0,1)≺ κ(2) = (1,0)≺ κ(3) = (0,2)

≺ κ(4) = (1, 1)≺ κ(5) = (2, 0)≺ κ(6) = (0, 3)≺ . . . .

The monomials of p complex variables will be denoted as follows

eN (z) = zκ(N) = zα1
1 · · · z

αp
p , κ(N) = (α1, . . . ,αp). (3)

We will use the space of polynomials spanned by the first N monomials :

PN = span{ei : i = 0, . . . , N − 1}, N ≥ 1.

The dimension of the classical space of polynomial of total degree not bigger than d is of dimension

hd =
�

p+ d
d

�

,

thus
N = hd − 1 =⇒ PN = span{z→ zα : |α| ≤ d}.

The Vandermonde determinant of a set of the points ξ0, . . . ,ξq in Cp is defined as

VDM(ξ0, . . . ,ξq) = det [eN (ξM )]0≤M ,N≤q . (4)

In particular, VDM(ξ0) = 1. Observe that its modulus is independent of the ordering of the points. The Vandermonde determinant
is a polynomial in the coordinates of the points ξ j , thus a polynomial in p(q+ 1) variables. As such, its degree for q = hd − 1 is
given by

ld =
d
∑

i=1

i(hi − hi−1) = p
�

p+ d
p+ 1

�

. (5)

Given a set of N points, ΩN = {ζN1, . . . ,ζNN} ⊂ Cp, with a non-zero Vandermonde determinant, we can form the Fundamental
Lagrange Interpolation Polynomials (FLIP)

l(N)j (z) =
VDM(ζN1, . . . ,ζN( j−1), z,ζN( j+1) . . . ,ζNN )

VDM(ζN1, . . . ,ζNN )
, j = 1, . . . , N . (6)

Observe that l(N)j is an element of PN . For a function f defined at the points in ΩN ,

LΩN
f (z) =

N
∑

j=1

f (ζN j)l
(N)
j (z) (7)

is the Lagrange Interpolation Polynomial (LIP) of f in PN at the points of ΩN . In particular,

f ∈ PN =⇒ f = LΩN
f (z). (8)
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In the whole paper the compact sets K considered will be assumed to be (polynomially) determining. This means that no
nonzero polynomial vanishes on K . Equivalently, K is not included in an algebraic set. This property can also be expressed in
terms of Vandermonde determinants. Namely, setting

Vj(K) = max
ξ0 ,...,ξ j−1∈K

|VDM(ξ0, . . . ,ξ j−1)|, j ≥ 1, (9)

then K is determining if and only if no Vj(K) vanishes. The sufficiency follows from an application of (8). To see the converse,
suppose Vj−1(K) 6= 0 for 1 ≤ j < N but VN (K) = 0 and let {ξ0, . . .ξN−1} ⊂ K such that VDM(ξ0, . . .ξN−1) 6= 0. The polynomial
QN (z) = VDM(ξ0, . . . ,ξN−1, z) vanishes on K but is not the zero polynomial since its zκ(N) coefficient is not null so that K is not
determining.

If it is necessary to specify the dimension of the ambient space, we will add a superscript to the above objects thus writing for
instance κ(p)(N), P (p)N , and so on.

For survey on the actual state of knowledge on multivariate polynomial interpolation we refer to [7].

2 Pseudo Leja sequences

Definition 2.1. Let K be a determining compact subset in Cp. We say that L = (ξ j) is a pseudo Leja sequence in K if there
exists a sequence of real numbers (M j) j≥1 ⊂ [1,+∞) satisfying:

M j |VDM(ξ0, . . . ,ξ j−1,ξ j)| ≥max
z∈K
|VDM(ξ0, . . . ,ξ j−1, z)| for any j ≥ 1, (10)

with the growth condition,
lim

d→+∞
( max

hd−1≤ j<hd
M j)

1/d = 1. (11)

We will write that L is a pseudo Leja sequence of Edrei growth (M j) j≥1.

In the case p = 1, this definition coincides with that given in [5]. A Leja sequence is a pseudo Leja sequence of Edrei growth
1. The fact that K is determining immediately implies the existence of pseudo Leja sequences with non vanishing Vandermonde
determinant. Observe that we may with very limited loss of generality, assume that (M j) is non-decreasing and, in that case, (11)
reduces to a somewhat less clumsy condition.

Observe that if (ξ j) is a pseudo Leja sequence for K then

|VDM(ξ0, . . . ,ξ j−1,ξ j)|> 0, for all j. (12)

This follows from the same reasoning sketched in the introduction : if j was the smallest integer for which |VDM(ξ0, . . . ,ξ j−1, z)| = 0
on K then P(z) = VDM(ξ0, . . . ,ξ j−1, z) would be a non zero polynomial vanishing on K thus contradicting the fact that it is
determining. The non vanishing of the Vandermonde determinant, implies, see (7), the following proposition.

Proposition 2.1. Let (ξi) a pseudo Leja sequence as above. Lagrange interpolation at ΩN = {ξ0, . . . ,ξN}, N ∈ N, is always possible.

We immediately draw of a consequence of the growth condition that will be used in the proof of our main theorem below.

Lemma 2.2. If {M j} j≥1 is a sequence of real numbers satisfying Property (11) from the definition above, then

lim
d→+∞

�

hd−1
∏

j=1

M j

�1/ld = 1,

where ld is defined in (5).

Proof. Notice that

1≤
hd−1
∏

j=1

M j ≤ ( max
j=1,...,hd−1

M j)
hd and

hd

ld
=

1
d

�

p+ 1
p

�

.

Choose the smallest j(d) such that
max

j=1,...,hd−1
M j = max

h j(d)−1≤ j<h j(d)
M j .

Since it is a non-decreasing sequence of integers, ( j(d))d≥1 tends to +∞ or is eventually constant. We examine both cases.
If j(d)→∞, then, by (11),

lim
d→+∞

( max
h j(d)−1≤ j<h j(d)

M j)
1/ j(d) = 1,

hence, since 0< j(d)≤ d,
lim

d→+∞
( max

h j(d)−1≤ j<h j(d)
M j)

1/d = 1.

If j(d) is eventually constant, the conclusion is even simpler since (M j) is then bounded and hd/ld → 0.
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We now state our main theoretical result and a consequence. A similar result was obtained in [20] and [8] for Leja sequences.
The method of proving Theorem 2.3 is in fact not different from that of Leja sequences except that here we take into consideration
the Edrei growth of the pseudo Leja sequence. Its proof is postponed to the next section where we will recall the technical points
that we will need.

Theorem 2.3. Let K ⊂ Cp be a determining compact set. If (ξ j) j≥0 ⊂ K is a pseudo Leja sequence of Edrei growth (Mi) j≥1, then

lim
d→+∞

|VDM(ξ0, . . . ,ξhd−1)|1/ld = D(K), (13)

where D(K) denotes the multivariate transfinite diameter.

Thanks to Berman and Boucksom outstanding result which first appeared in the preprint [2, Theorem 1.1] and later was
presented as a consequence of a more general convergence result in [3, Theorem A] with Nystrm̈, we can derive the following.

Theorem 2.4. Let K ⊂ Cp be a determining compact set. If (ξ j) j≥0 ⊂ K is a pseudo Leja sequence, then the normalised counting

measures h−1
d

∑hd−1
j=0 [ξ j] converge to the equilibrium measure of K in the weak-* sense.

Here [ξ] refers to the Dirac measure at ξ of total mass 1.
Setting

Pk(ξ) =
VDM(ξ0, . . . ,ξk−1,ξ)

VDM(ξ0, . . . ,ξk−1)
, (14)

we will see that

lim
d→∞

�

hd−1
∏

k=0

‖Pk‖K

�1/ld = D(K), (15)

and, by a strong result of Bloom ([6, Corollary 4.5]), we will obtain the following.

Theorem 2.5. Let K be a polynomially convex regular compact subset of Cp. Then

GK(z) = lim sup
N→+∞

1
|κ(N)|

log
� |PN (z)|
‖PN‖K

�

, z ∈ Cp \ K , (16)

where GK denotes the pluri-complex Green function of K.

For the notions of pluricomplex potential theory used in the above statement (regularity, Green function, equilibrium measure),
we refer the reader to [21].

Observe that in the case where K would be non determining, a pseudo Leja sequence would be eventually arbitrary (as soon
as Vj(K) = 0), and Theorem 2.3 would be trivially true (with D(K) = 0).

3 Transfinite diameter and proof of Theorem 2.3

We will recall in details the objects and results related to the transfinite diameter. We follow the presentation given in [8]. As
usual, K denotes a determining compact set in Cp. We will write Vj instead of Vj(K), see (9), when there is no ambiguity. We
define the d-th order transfinite diameter of K , denoted by Dd(K) = Dd , as

Dd = V 1/ld
hd

.

Fekete proved in [17] that the limit (as d →∞) of the sequence Dd , denoted as D(K), exists for any compact set K ⊂ C. Later in
[22], Leja introduced the name transfinite diameter and posed the problem of its existence in the multivariate case. A positive
answer to his problem was given by Zaharjuta in the celebrated paper [26] where it also shown a remarkable connection with
certain polynomials of minimal norm that we will now describe.

A monic polynomial is a polynomial whose leading term with respect to ≺ is equal to 1. Thus a monic polynomial of leading
term ei is of the form

P(z) = ei(z) +
∑

0≤ j<i

c j e j(z), c j ∈ C, i ∈ N. (17)

We will indicate such a form in writing lead(P) = ei . We define the i-th Chebyshev constant τi of K as

τi = inf
�

‖P‖1/|κ(i)|
K : lead(P) = ei

	

. (18)

Given θ = (θ1, . . . ,θp) in the standard p-simplex Σ,

Σ=
�

θ ∈ Rp :
p
∑

i=1

θi = 1, θi ≥ 0, i = 1, . . . , p
	

,

the limit
τ(K ,θ ) = limsup

j→+∞, κ( j)|κ( j)|→θ

τ j (19)
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is called the directional Chebyshev constant of K in the θ -direction. Now, if we denote by Td , the geometric mean of Chebyshev
constants for a given degree,

Td =
�

∏

|κ(i)|=d

τi

�1/(hd−hd−1), (20)

the fundamental result of Zaharjuta can be stated as follows.

Theorem 3.1. [26, Theorem 1] The sequence Td converges as d →∞ and we have

lim
d→∞

Td = exp

�

1
ω(Σ)

∫

Σ

log(τ(K ,θ )) dω(θ )

�

= D(K) (21)

where ω denotes the Lebesgue surface measure on the hyperplane {θ = (θ1, . . . ,θp) ∈ Rp :
∑p

j=1 θ j = 1}.

We will need a “mean modification" of the above.

Corollary 3.2. We have

lim
d→∞

�

d
∏

j=1

T r j
j

�1/ld = D(K) (22)

where r j = j(h j − h j−1) for j ≥ 1.

The corollary follows from Theorem 3.1 by applying the following classical lemma of Cesaro type (for which we omit the
proof) with ud = log(Td) and θd, j = r j/ld .

Lemma 3.3. Let (ud) be a sequence of real numbers converging to A. Consider an array of non negative numbers θd, j , d, j ∈ N?

satisfying

lim
d→+∞

max
j=1....,d

θd, j = 0 and
d
∑

j=1

θd, j = 1, d ∈ N.

Then the sequence

sd =
d
∑

j=1

θd, ju j , d ∈ N,

also converges to A.

We have now assembled the material required in our proof of Theorem 2.3.

Proof of Theorem 2.3. Set Lk = |VDM(ξ0, . . . ,ξk−1)| for all k ≥ 1. In view of (9) and (12), we have

0< Lk ≤ Vk, k ∈ N. (23)

Recall that the polynomial Pk defined in (14) is given by

Pk(ξ) =
VDM(ξ0, . . . ,ξk−1,ξ)

VDM(ξ0, . . . ,ξk−1)
= ek(ξ) +

∑

0≤ j<k

c j e j(ξ), (24)

Observe that Pk is a monic polynomial with

leadPk = ek, deg(Pk) = deg(ek) = κ(k).

By definition of a pseudo Leja sequence, we have

|Pk(ξk)|=
Lk+1

Lk
≥

M−1
k maxξ∈K VDM(ξ0, . . . ,ξk−1,ξ)

VDM(ξ0, . . . ,ξk−1)
≥ M−1

k ‖Pk‖K .

Hence by definition of τk, see (18), we have

Lk+1

Lk
≥ M−1

k ‖Pk‖K ≥ M−1
k τ

|κ(k)|
k . (25)

By using (23) and iterating the above inequality, we deduce that, for d ≥ 0

Vhd
≥ Lhd

=
Lhd

Lhd−1
×

Lhd−1

Lhd−2
× · · · ×

L2

L1
(26)

≥
�

hd−1
∏

j=1

M j

�−1�
hd−1
∏

j=1

τ
|κ( j)|
j

�

. (27)
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We may re-arrange the terms in the last product above taking into account the definition of Ti in (20) as follows :

hd−1
∏

j=1

τ
[κ( j)|
j =

d
∏

i=1

�

hi−1
∏

j=hi−1

τ j

�i
=

d
∏

i=1

T i(hi−hi−1)
i .

Now, taking the ld -roots in (27), we obtain

(Vhd
)1/ld ≥ (Lhd

)1/ld ≥
�

hd−1
∏

j=1

M j

�−1/ld �
d
∏

i=1

T i(hi−hi−1)
i

�1/ld
. (28)

Now, passing to the limit and using Corollary 3.2 and Lemma 2.2, we obtain

lim
d→∞

(Lhd
)1/ld = D(K).

In order to prove Relation (15), we proceed as follows. From Inequalities (25) and (28), we get

�

hd−1
∏

j=1

M j

��

d
∏

i=1

T i(hi−hi−1)
i

�

≤
hd−1
∏

k=0

‖Pk‖K ≤ Vhd
.

Then, we take the ld−roots and pass to the limit as d →∞ which leads to (15).

Remark 1. Due to inequalities (23) and (25) from the above proof, we obtain a stronger version of Theorem 2.3, namely

D(K) = lim
k→+∞

L
1/ld(k)
k , where d(k) = |κ(k)|. (29)

4 Intertwining pseudo Leja sequences

We show how to construct a pseudo Leja sequence on Cp = Cp1 ×Cp2 out of two pseudo Leja sequences on Cpi , i = 1, 2. To this
aim, we use a natural process introduced by Calvi that generalises a method introduced by Biermann in the case pi = 1, see
[15]. As indicated in the introduction, in this section, when necessary, we use a superscript to indicate the ground spaces for the
related object, so that e(p)j denotes the j-th monomial on Cp and so on.

We will use
ϕ : N 3 j 7−→ ϕ( j) =

�

ϕ1( j),ϕ2( j)
�

∈ N2 (30)

satisfying, see the introduction for the definition of κ,

κ(p)( j) =
�

κ(p1)
�

ϕ1( j)
�

,κ(p2)
�

ϕ2( j)
��

, j ∈ N. (31)

Definition 4.1. Let A= (a j) j∈N ⊂ Cp1 and B = (b j) j∈N ⊂ Cp2 two sequences of points. The intertwining sequence of A and B is
the sequence Ω= (ω j) j∈N of points in Cp, p = p1 + p2, denoted by A⊕ B and defined by

ω j =
�

aϕ1( j), bϕ2( j))
�

, j ∈ N. (32)

The important point for our purpose is that we can easily express the vandermondian for an intertwining sequence Ω = A⊕ B
in terms of the factor sequences A and B. This is specified below.

We say that X = (x0, . . . , xN−1) is completely ordered unisolvent if

VDM(x0, . . . , x i−1) 6= 0, for all i = 1, . . . , N . (33)

Every section (ξ j : j = 0, . . . , N − 1) of a pseudo Leja sequence (ξ j) j∈N is completely ordered unisolvent (the compact sets being
assumed determining). In view of [15, Theorem 3.3], the notion of completely ordered unisolvent array is stable by intertwining.

Given a sequence X = (x j) j∈N, we set X j = (x0, . . . , x j−1). The following result is a consequence of [15, Proposition 2.5].

Proposition 4.1. Let X = (x0, . . . , xN−1) be a completely ordered unisolvent array. We have

VDM(x0, . . . , xN−1) =
N−1
∏

j=0

(e j − LX j
e j)(x j) (34)

where LX j
is the Lagrange interpolation operator at the points X j = (x0, . . . , x j−1) with the convention that LX0

f = 0 and e j is the
j-th monomial, see (3).

Proof. The proof follows the reasoning used to prove [15, Proposition 2.5].

The next proposition follows from [15, Theorem 4.2].
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Proposition 4.2. Let A, B and Ω= A⊕ B as above. If Ω j is completely ordered unisolvent then we have
�

e(p)j − LΩ j
e(p)j

�

(z) =
�

e(p1)
ϕ1( j)
− LAϕ1( j)

e(p1)
ϕ1( j)

�

(z1) ·
�

e(p2)
ϕ2( j)
− LBϕ2( j)

e(p2)
ϕ2( j)

�

(z2) (35)

for all z = (z1, z2) ∈ Cp1 ×Cp2 and for all j ∈ N.

We now combine Proposition 4.1 and Proposition 4.2 to deduce the following result. Observe that it involves three forms of
vandermondians, with variables ωi in Cp, ai in Cp1 , and bi in Cp2 .

Theorem 4.3. Let A, B and Ω= A⊕ B as above. If, for all j ∈ N?, A j and B j are completely ordered unisolvent arrays, then for all
j ∈ N?, we have

VDM(ω0, . . . ,ω j−1, z) = Pj(z) · VDM(ω0, . . . ,ω j−1), (36)

where, for z = (z1, z2),

Pj(z) = (e
(p)
j − LΩ j

e(p)j )(z) (37)

=
�

e(p1)
ϕ1( j)
− LAϕ1( j)

e(p1)
ϕ1( j)

�

(z1) ·
�

e(p2)
ϕ2( j)
− LBϕ2( j)

e(p2)
ϕ2( j)

�

(z2). (38)

Hence, if ϕi( j)> 0 for i = 1,2,

Pj(z) =
VDM(a0, . . . , aϕ1( j)−1, z1)

VDM(a0, . . . , aϕ1( j)−1)
·

VDM(b0, . . . , bϕ2( j)−1, z2)

VDM(b0, . . . , bϕ2( j)−1)
. (39)

While if, say, ϕ1( j)> 0 and ϕ2( j) = 0,

Pj(z) =
VDM(a0, . . . , aϕ1( j)−1, z1)

VDM(a0, . . . , aϕ1( j)−1)
. (40)

Now, we state the main result of this section.

Theorem 4.4. Let Ki , i = 1, 2, be a determining compact subset in Cpi . Let A= (a j) j∈N ⊂ K1, B = (b j) j∈N ⊂ K2 and Ω= A⊕ B. The
following assertions are equivalent:

1. Ω is a pseudo Leja sequence for K = K1 × K2.

2. A and B are pseudo Leja sequences for K1 and K2 respectively.

Proof. We prove (1) =⇒ (2). Supposing that Ω is a pseudo Leja sequence for K of Edrei growth (M j) j≥1. We prove that A is a
pseudo Leja sequence for K1. Let i ∈ N and N ∈ N such that ϕ(N) = (i, 0). From the definition of a pseudo Leja sequence, we
have

MN |VDM(ω0, . . . ,ωN−1,ωN )| ≥max
z∈K
|VDM(ω0, . . . ,ωN−1, z)|.

Applying Theorem 4.3 to both sides of the above inequality, we obtain

MN |PN (ωN )| ≥max
z∈K
|PN (z)|.

Since ωN = (ai , b0), in view of (40), the above inequality reduces to

MN |VDM(a0, . . . , ai−1, ai)| ≥ max
z1∈K1

|VDM(a0, . . . , ai−1, z1)|.

Therefore, the sequence A will satisfy the inequality property of a pseudo Leja sequence on condition that the growth sequence

M ′
i = MN , ϕ(N) = (i, 0)

satisfies the Edrei growth condition in (11), that is

lim
d→+∞

max
hd−1≤ j<hd

(M ′
j )

1/d = 1,

where hs = h(p1)
s is the dimension of the space of polynomial of degree s on the ground space of A, that is Cp1 . Let d ≥ 1 and let

Mi = M ′
i = max

h
(p1)
d−1≤ j<h

(p1)
d

M ′
j .

As previously, we consider the number N = N(i) such that ϕ(N) = (i, 0). Therefore, κ(p)(N) = (κ(p1)(i), 0) and |κ(p)(N)| =
|κ(p1)(i)|= d. It follows that N ∈ {h(p)d−1, . . . , h(p)d − 1} and hence

Mi ≤ max
h(p)d−1≤ j<h(p)d

M j .
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Taking the 1/d root and passing to the limit as d →∞, we obtain the result, taking into account that Mi ≥ 1, thanks to the
growth condition of pseudo Leja sequences. Thus, A is a pseudo Leja sequence of Edrei growth (M ′

i )i≥1. Of course, the same
reasoning shows that B is also a pseudo Leja sequence for K2.

We now prove (2) =⇒ (1). We assume that A is a pseudo Leja sequence for K1 of Edrei growth (M ′
j ) j≥1 and B is a pseudo

Leja sequence for K2 of Edrei growth (M ′′
j ) j≥1. We show that Ω= A⊕ B is a pseudo Leja sequence for K .

Fix j ∈ N?. If ϕi( j)> 0, i = 1,2, from Theorem 4.3, we have

|VDM(ω0, . . . ,ω j−1,ω j)|= |Pj(ω j)| · |VDM(ω0, . . . ,ω j−1)|,

where

Pj(ω j) =
VDM(a0, . . . , aϕ1( j)−1, aϕ1( j))

VDM(a0, . . . , aϕ1( j)−1)
·

VDM(b0, . . . , bϕ2( j)−1, bϕ2( j))

VDM(b0, . . . , bϕ2( j)−1)
.

In view of (40), one readily check that the above formula remains true when ϕi( j) = 0, i = 1 or 2. Using the hypothesis that the
factor sequences are pseudo Leja sequences, we have

M ′
ϕ1( j)

M ′′
ϕ2( j)
|Pj(ω j)| ≥ max

z1∈K1

|
VDM(a0, . . . , aϕ1( j)−1, z1)

VDM(a0, . . . , aϕ1( j)−1)
| ·max

z2∈K2

|
VDM(b0, . . . , bϕ2( j)−1, z2)

VDM(b0, . . . , bϕ2( j)−1)
|

=max
z∈K
|Pj(z)|.

Therefore,
M j |VDM(ω0, . . . ,ω j)| ≥max

z∈K
|Pj(z)VDM(ω0, . . . ,ω j−1)|=max

z∈K
|VDM(ω0, . . . ,ω j−1, z)|

where M j = M ′
ϕ1( j)

M ′′
ϕ2( j)

with the convention that M ′
0 = M ′′

0 = 1. It remains to prove that

lim
d→+∞

max
h(p)d−1≤ j<h(p)d

M1/d
j = 1. (41)

Fix d ≥ 1. Let jd ∈ {h
(p)
d−1, . . . , h(p)d − 1} such that

M jd = max
h(p)d−1≤i<h(p)d

M j .

From the definition of ϕ, see (2), we have

κ(p)( j) =
�

κ(p1)(ϕ1( j)),κ
(p2)(ϕ2( j))

�

(42)

=⇒ d = |κ(p)( j)|= |κ(p1)(ϕ1( j))|+ |κ(p2)(ϕ2( j))|. (43)

Let δi(d) = |κ(pi )(ϕi( jd))| for i = 1, 2. Now we have

M1/d
jd
=
�

(M ′
ϕ1( jd )

)1/|δ1(d)|
�|δ1(d)|/d

×
�

(M ′′
ϕ2( jd )

)1/|δ2(d)|
�|δ2(d)|/d

.

We consider two cases. If say δ1(d) is bounded then, in view of (43), δ2(d)/d → 1, and (41) follows from the fact that
δ1(d)/d → 0 and that, B being a pseudo Leja sequence, M ′′ satisfies the required growth condition. Since, by (43), both δi(d)/d
cannot be bounded, it remains only to the study the case for which they are unbounded hence, since they are increasing, tending
to∞. In that case, (41) follows from the fact that M ′ and M ′′ satisfies the Edrei growth condition and that δi(d)/d is bounded
by 1, i = 1,2.

Theorem 4.4 is a generalisation of Irigoyen’s recent result in [19, Theorem 1 ] about the intertwining of Leja sequences when
p1 = p2 = 1. It is well known that the intertwining of two good univariate sequences of interpolation points (good in the sense
given in the introduction) is also good for the interpolation of holomorphic functions in C2. This property was first proved by
Siciak in [23] but can also be found in [4], [5] where different proofs are proposed.

5 Computing pseudo Leja points

In practice, we compute finitely many points, even the first few points, see below, of a pseudo Leja sequences. Such a computation
is based on the following observation which shows how to obtain pseudo Leja points on K as Leja points for a finite subset of K .

Proposition 5.1. Let A a finite subset of K ∈ Cp that is determining for the space of polynomials of degree ≤ d (hence Card(A)≥
hd = h(p)d ). We define inductively hd points as follows.

1. We choose arbitrarily ξ0 ∈ A and,

2. for each d ∈ N, we compute recursively the points ξhd−1
, . . . ,ξhd−2 and ξhd−1 from A such that

|VDM(ξ0, . . . ,ξN−1,ξN )|=max
ξ∈A
|VDM(ξ0, . . . ,ξN−1,ξ)|, (44)

for hd−1 ≤ N < hd .
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Then the points ξ j forms the first hd points of a pseudo Leja sequences for K of (constant) Edrei growth MA where

MA =max{1/‖P‖A, ‖P‖K = 1, deg(P)≤ d}.

These points are called discrete Leja points for A.

Proof. Observe that the finiteness of MA follows from the facts that A is determining for the space of polynomials of degree ≤ d
and that the set of polynomials of bounded degree d and sup norm not bigger than 1 on K is compact. This being said, the claim
follows immediately from the observation that for every hd−1 ≤ N < hd , the function

ξ 7−→ |VDM(ξ1, . . . ,ξN−1,ξ)|

is a polynomial of n complex variables and of degree at most d so that, by definition of MA,

max
ξ∈K
|VDM(ξ1, . . . ,ξN−1,ξ)| ≤ MA max

ξ∈A
|VDM(ξ1, . . . ,ξN−1,ξ).

In practice, the smaller the constant MA the better the points. In general, it is not easy to select a mesh A with low constant
MA and low cardinality. The best algorithm currently available to compute discrete Leja points is provided in [11]. In short, it
is as follows. If we write A= {a1, . . . , aM} (M > hd) and if P = {P1, . . . , Phd

} is an ordered polynomial basis then applying the
standard LU factorisation with row pivoting to the following rectangular Vandermonde matrix

V (a1, . . . , aM ;P) = [Pj(ai)]1≤i≤M ,1≤ j≤hd
. (45)

produces a permutation vector σ whose first hd components are the indices of the first hd Leja points in A. During this process,
the matrix V (a1, . . . , aM ;P) is progressively modified by operations on the rows and the pivot row is always selected from the
candidates with the largest absolute value in the first column of the submatrix of interest. Observe, due to the large dimension of
the determinant involved, one can currently compute points only for low degrees, say d = 10 for p = 2.

Finally, we mention a (theoretical) method, based on the same idea as the above proposition, using the concept of (weakly)
admissible mesh (for K) introduced in [16] which consists of a sequence of sets (Ad)d ∈ N, such that Ad ⊂ K is determining for
the space of polynomials of degree ≤ d and both MAd

and the cardinality of Ad grows subexponentially as d →∞. The proof is
immediate and is omitted.

Proposition 5.2. Let K a determining compact set in Cp. and (Ad)d∈N an admissible mesh for K. A pseuso-Leja sequence (ξN )N∈N
for K of Edrei growth M N with

M N = MAd
, hd−1 ≤ N < hd ,

is obtained as follows :

1. ξ0 ∈ A0 and,

2. for each d ∈ N, we compute recursively the points ξhd−1
, . . . ,ξhd−2 and ξhd−1 from Ad such that

|VDM(ξ0, . . . ,ξN−1,ξN )|=max
ξ∈Ad
|VDM(ξ0, . . . ,ξN−1,ξ)|. (46)
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