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Abstract

The prime purpose of this paper is to establish various approximation results of a g-analogue of Aldaz-
Kounchev-Render (q-AKR) operators. Firstly, we obtain the central moments and estimate the convergence
rate and Voronovskaja-type results for continuous functions via the modulus of continuity. Then, we
provide the results on A-statistical convergence i.e. the Korovkin-type Theorem and the rate of A-statistical
convergence of q-AKR operators. Finally, the rate of A-statistical convergence for Lipschitz-type functions
is also discussed.

1 Introduction and preliminaries

In the year 2009, Aldaz et al. [4] constructed generalized Bernstein-type polynomial operators and studied their shape preserving
behavior for spaces of monotone and convex functions.

Givenn € N, n > j > 1, (where j is fixed), and for any real valued continuous function f working on [0, 1], the operators
B,0,;(f;x) are defined as

1
= (n _ k(k—1)...(k—j+1)\7
B, (f;x)= xk(1—x)k ( . 1
no,(f3) ;(k) ( ) f( nn—1)...(n—j+1) 1
These operators are positive and linear, and also preserve the test functions e, and e;, where e;(x) = xi,i=0,1,2,... Cardenas-
Morales et al. [6] obtained the rate of convergence of the operators B, ;(.; x)(when j = 2) in terms of classical modulus
of continuity. As an application to their main result (Theorem 2.1), they also proved the asymptotic formula for B, ;(.; x)
(when j = 2,3) and stated as a conjecture for j > 4. Birou [5] was the first who attempted this conjecture for all positive integers
j = 1. Utilizing the moduli of continuity, Acu et al. [1] improved some convergence estimates given in [6, 9] for the operators
B, 0,(; x). Recently, the authors in [3] conducted a comparative study of approximation results between the classical Bernstein
operators and the AKR operators. Mainly they determined the class of functions for which the classical Bernstein operators
approximate better than the AKR operators and vice-versa.

Among several modifications of the Bernstein operators, the modification proposed by G. M. Phillips [19] has been studied
intensively in the literature. For n € N, an integer ¢ > 0 and a function f acting on [0, 1], the modified Bernstein operators are
defined as follows:

BIfi) =3 (0 (%) @
k=0

ST TT *
ST [Ta-e0r (1),
k=0 k- s=0 [Tl]
where the g-integer [k], and g-factorial [k],! are defined by

__ 4k
L ifg#1
—q

k, ifg=1,
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and
[kl.[k—1]..[1], ifk=1,2,---,

[k]"!:[k]!::{l, ifk=0.

For 0 < k < n, the g-binomial coefficient is given by

n [n]!
L), = et

The g-integers (0 < q < 1) based modification of the operators B, , ;(.; x) was proposed by Finta [9]. For x € [0,1]and f € C[0,1],

he defined .
q N - q [kllk—1]...[k—j+1]\7
Bl /3 = 00 0f (([n][n_ ) ) @

and proved that the above mentioned operators converge to its limit operators in the space C[0, 1]. Like the original operators
(1), these operators also preserve the test functions e, and e; and reduce to AKR operators for ¢ = 1.

As a generalization of the notion of ordinary convergence, statistical convergence came into existence. Steinhaus [20], (also
see Fast [8]) in 1951, introduced the concept of statistical convergence. The idea of A-statistical convergence (where A is
non-negative regular summability matrix), which is basically a generalization of statistical convergence and ordinary convergence,
was first initiated by Freedman and Sember [10]. Many researchers call it a natural generalization because if we assume A to be
Cesaro matrix of order one, then A-statistical convergence becomes statistical convergence. Also, if A is an identity matrix, then
A-statistical convergence converts into ordinary convergence. In [16], Kolk showed that if the non-negative and regular matrix A
fulfills the condition nlirgo max { a jn} = 0, then A-statistical convergence is stronger than the ordinary convergence.

Before going further, we provide some definitions related to statistical convergence.

Definition 1.1. Let K C N, then the asymptotic density of K is defined as

5(K) = lim Card({n <j:ne K})’

j—oo ]
where Card(X) denotes the cardinality of the set X.

Definition 1.2. Let x = (x,) be any sequence of numbers. We say x = (x,) is statistically convergent to a number L, if for
given e >0

Card({k Yxp—L| = e})
j—oo j

Definition 1.3. Assume A= (a;,); j,n € N be an infinite summability matrix, and x = (x,) be a sequence of numbers. Then A is
said to be regular if
limx =L = limAx =1,

where
oo

Ax = ((Ax);) = Zajkxk < o00,¥jEN.
k=1
Definition 1.4. A sequence x = (x,,) is said to be A-statistically convergent to L if for given any ¢ > 0

Jlil(l)lo Z a;, =0.

n:|xp—L|=e
This limit is designated by St, —limx = L.

Over the last two decades, approximation properties of various positive linear operators have been examined in the framework
of A-statistical convergence [13, 14, 12]. For instance, the authors in [18], discussed the rate of statistical convergence of a
general sequence of positive linear operators acting on a subspace of C[0, 1]. These results are obtained by the means of modulus
of continuity and Lipschitz functions. In [17], Liu proposed a modification of g-Bernstein operators and proved Korovkin-type
Theorem via A-statistical convergence. Further, he obtained the rate of A-statistical convergence and proved that the modified
operators approximate better than the g-Bernstein operators in a subinterval of [0, 1]. It is well known that g-type modifications
of positive linear operators provide better approximation results. So, we choose g-AKR operators for our investigation.
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2 Moments and Rate of Convergence

Lemma 2.1. [19] The g-Bernstein operators BI(.; x) verify the following identities:
() Bl(1;x)=1;
(i) Bl(t;x)=x;

x(1—x)
[n]

Lemma 2.2. For the operators B

2. N 2
(iii) Bi(t*;x)=x*+

q
n,0,j

L—1],
[n] ~

(i) Bl (c—xix) < X0 2,

e ._1 4 K 1_
(iii) BZ,o,j((t_x)4;x)SS(([][n] ]) " xEn]z X)).

Proof. (i) By considering the inequality proved in [2] (section 4.7), we can easily deduce that

(k] ([Klk—11...[k—j+11\7 _[j—1] _ .
OSE‘([n][n—u...[n—jH]) =Tpg nEiE @

Multiply eq.(4) by the basis function pg,k(x) and summing all the terms, we get the desired result.

(.; x), we have the following estimates:

(D Bjo;((t—x);x) <

(i) In view of Lemma 2.1, we can write

BZ’O’j(tZ; x)—xt= Bg,o’j(tz;x)—BZ(tz;x) +Bg(t2;x)—x2

Zn:[([k][k_l]”'[k_wrl])?_(@)2] ¢ ()4 XAZX)
[n][n—1]...[n—j+1] [n] Dok [n]

k=0

d [([k][k—l]...[k—j+1])}_[k]]

|\ [n][n—1]...[n—j+1] n]
[KIk=1]...k—j+11\  [k] x(1—x)
X[([n][n—l]...[n—jﬂl) +E]p3*(x)+ [n]
<x(1—x)
- [n]

Using the identity (a — b)? = a® — b2 — 2b(a — b) and part (i), we get

B ((t—x)ix) < x(1—x) 2x[j—1]

o [n] [n]
(iii) Taking into account the inequality (¢ + x)* < 8(t* + x*) and the estimation (see [21]) BI((t —x)*; x) = —Kxérlz]z x) , we
conclude that
1 4
S [kI[k—1]...[k—j+ 1]\
BZ’O’j((t_X)ﬂX)_;pg’kb{)(([n][n—l]...[n—j+1]) X)
1 4
S, [kllk—1]...[k—j+1]\7 &k
SSkZ(;p”’k(x)(([n][n—1]...[n—j+1]) _n)
n k 4
+8;pg)k(x)(;—x)
-1\ < ko
SS( o )kzz(;pg’k(x)+8;pzyk(x)(z—x)
(-1 Kx(l—x))
=s(("5) )
O

Dolomites Research Notes on Approximation ISSN 2035-6803



/O‘A\,\ Grewal - Rani 43

Lemma 2.3. The operators B! | .(.; x) satisfy the following inequalities:

n,0,j
0] Bn01(|(t—X)§n|;x) X(t ]x) 2x[[]n;1]
X(l—q"wx(l—x) 2x[j—1].
TS DT

- x(1—x) 2x[j—1] -11\" Kx(1—x)
e e JS(( ) )

x(1—q") (X(l —x)  x[j— 1])
+ + .
[n] (n] [n]
Proof. (i) For the proof of part (i), we use the following algebraic inequality:
x(1—q") |
[n]

Since the operators B’ n0,j (.; x) are positive and linear, therefore they are monotone also. Using Cauchy-Schwarz inequality
and Lemma 2.2 in eq. (5) we get

I(t—x)jls(t—x)z—i- t—x|. 5)

x(1—q )

[n] nO]
D o, ()
cx1-x)  2xfj—1] x(1—q"wx(1—x) 2x[j—1]
- [n] [n] [n] [n] [n]

By o (It —=x)2lx) < Bi o (£ —x)*5x) + (It —x];%)

<BZO}((t—x)2;x)+

(ii) In order to prove part (ii), multiply eq.(5) by |t — x|, we have
x(1—g")
[n]

Using the monotone property of the operators B? 0, (.; x) with Cauchy-Schwarz inequality, we have

1
Dy, ()
= \/B 0, ((t=x)% x)\/BHOJ((t—x) - %)

x(1- q)

+T nO]((t_x)z )

x(1—x) 2x[j—1] [i—11* Kx(l—x))
4 CIRTY JS(( B
x(1—q") (x(1—x) 2x[j—1]
[n] ( (] )

e —x|I(t —x)2] < [t —x|(t —x)* + |t —x|*.

B! (le—xli(c—x)?;x) < B, (1t — xI(c —x)%;x) +

+

O

Next, we compute the rate of convergence of the operators Bn o J( x) in terms of the modulus of continuity. For f € C[0,1] and
& > 0, the modulus of continuity of f, designated by w(f, §), and is given by

o(f,8) =sup {If ()~ f ()| : [t —x| < &; £,x €[0,1]}. ©)

Remark 1. If f € C[0,1] and & > 0. Then for any t,x € [0, 1], we have

(O = £ () < o, 6)(1+' 5’“)

Theorem 2.4. Suppose f is a continuous function on [0,1] and q := q,, q, € (0, 1) be any sequence such that q,, — 1 as n — oo.
Then

(1—-x) , 2x[j—1]
|B"0J(f;x)_f(x)|szw(f’¢x[n]qn " [n],, )
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Proof. Since f € C[0,1] and x € [0, 1]. Therefore by the virtue of linear and monotone properties of the operators B™ " ]( x),
we can write

Bro ;(f 5 x) = F (I < B (1F (€)= £ () ).
Applying Remark 1 for any arbitrary chosen § > 0
oo (f 5 ) = f ()] < Bnoj(lf(t)—f(X)l)' x)
<o(f,5)(1+ SBE"OJ(It x| x)). @
Using Cauchy-Schwarz inequality, we can write
BT (It —xD);x) < /BT (6= x)% ). ®
From eq.(7) and by Lemma 2.2, we get

IBI (f30) = F ()] < w(f, 5)(1+ =/BI (t—x)2);x))

(1—x) 2x[j—1]
5 1 X
= el )(“N [, i, )

<20(f,6,),

where

e |x(-x) 2xfj-1]
5:=6,, J N + T

Hence, the desired result is obtained. O
Theorem 2.5. Suppose that q := q,, q, € (0,1) and q, — 1 as n — oo. Then, for every x € [0,1] and f € C[0, 1], the following
inequality holds:

2

£
|03, (B (3 )= £ () = Dy, (0B (= xx)+—BZ"OJ((r—x)§n;x))(

[2],
<O(1)w(D2f ! )
V[l

where D, f is the q-derivative of f, for x # 0, defined by

f(g,x)—f(x)
x(q,—1)

Proof. Using Taylor’s formula in g-calculus [15] for the function f, we have

anf( ) -

2

f@)=f(x)+D,, f(x)(t—x)+ [2]

)
(t_x)sn +h2(t:qnﬁx): (9)

where the remainder term h,(t, q,, x) is given by

. CD2F-DEf()
2(6,4,, ) = T(t —x)
and 7 lies between x and t.
Operating Bq (s x) on both sides of eq.(9), we get

sz
BY" (f;x)— f(x)— Dy, fBI (t— xx)+[2] ,Bzﬂo,((r—x);;x)] B (Ihy(t, )]s x). (10)

In order to find an estimation of B™ (Ihz(t, Qn>X); x), we observe from Remark 1 that

n,0,j

02 7= 2 £ < (02 ,8) (1+ 221,

where 7 lies between x and t.
Hence, we may write

(D2 £,5) ARl

1
O BY (e —x)2 113x) + SBZ"OJ(M—x||(t—x)§n|;x)] an

w
anoj(th(t3 qn’x)|;x) <S—
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From the estimations obtained in Lemma 2.3, eq. (11) gives
w(D} f,6) [x(l —x)+2x[j—1]  x(1—q)
[2],,! [n],, [n],,

.dl—x)+2xU—1]+1{ x(1—x)+2x[j—1]
(], 5 [n,,

8 ([i—1]
(J [n]gn( [n]gn +Kx(1—x)))

N x(1—qy) (x(l —x)+2x[j— 1])]]
[nly, [nly, '

B (ha(t,q,, )5 x) <

By selecting 6§ = , and assuming the fact that 0 < ¢, <1 and x €[0,1], we get

n In
o (D2 .11t
B2 (ha(t. g, 1) < ( En )[[,f] (Gra0-1)+ (\ §+2U—11)
[ an nle
1 1 ) [—11" K
gonll Z”“‘”)X( (5 +Z))
1 1
+—(>+2[j—1] ]
[n]qin (4 )
o(p2rmg ) [ 4 1
= 2], | nl, (A +B;/A;) + 3 (4 ++/4))
[n:IQH
_ w(Dif’[nlqE)[(AﬁBn/E) L A+ VA) ]
N [n]qn [2]%' M[Z]Qn' ’
where 1
Aj = Z+2[j_1],
and
NGRS
he 8( ok, 4)'
This implies )
w(Djnf,[n]E) (A +B;/A) A+ /A)
Bl (a6 40 0 x) € = | 2, \/mtz]qn!]'
Si
(LoBB), B dE) g,
[Z]Qn! vV [n]qn[z]qn! ’
therefore by using eq.(10), the proof is completed. O

3 Rate of A-Statistical Convergence

Korovkin-type Theorem concerning the statistical convergence of positive linear operators was proved by Gadjiev and Orhan [11].
The credit of proving Korovkin-type Theorem via A-statistical convergence also goes to Gadjiev and Orhan, which is given as
follows:
Theorem 3.1. [11]Assume that L, : C[a,b] — C[a, b] be a sequence of positive linear operators and A= (a;,) be a non-negative
and regular summability matrix. If fori =0,1,2
Sty— lim ||L,e; —e;]| = 0.
n—oo
Then, for every function f € C[a,b]
Sty— lim ||L.f = f|| =0,
n—oo
where ||f || = sup{|f(x)| :x €[a,b]}.
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Theorem 3.2. Suppose A= (a;,) be a non-negative and regular summability matrix, then for every f € C[0,1]
Sty— lim |IBY, f — fIl =0. (12)

Proof. For the proof of this Theorem, it is enough, if we validate the hypothesis of Theorem 3.1. A simple calculation shows that,
fori=0,1

Sty— HILTEOHBZ?OJQ‘ —ell=0,

and for i = 2, consider
Bire; —esll = sup |Bl"(ey;x) — e5(x)
x€[0,1]
x(1—x 1
= sup x2+¥—x2§ .
x€[0,1] [n]q,, 4[n]q"
This implies
1
B e, —e,|| < ||Bine, —e,|| <
IBg €2 — €2ll < [1Bjne; — e 4,

For given any € > 0, we define the following sets:

S* = {n : |IB§’”OJ.62 —eyll = e}

=1in: >€r.
4|:n:|‘bl
Then, obviously S* € S and 0 < Z a;, < Zai"’ YjeN.
nes* nes
By using Definition 1.4, we get lim Zai" =0, which implies lim Z a;, =0.
jzee nes Jzee nes*

Hence

Sty— nlfgo”BZ:lo,jez —e|l=0.
Therefore, the hypothesis of the Theorem 3.1 is satisfied, so the conclusion implies the required proof. O

For comparing the rates of summation in the framework of classical summability, no single definition appears to have emerged
as the standard definition [16]. Although several definitions were available in the literature for this task. Duman et al. [7]
presented some more useful definitions to estimate the rate of convergence. One of them is defined with rates of a positive and
non-increasing sequence given in Definition 3.1, and another one is based on the concept of convergence in measure spaces in
Measure theory given by Definition 3.2. Below we list these definitions, and then we compute the rate of A-statistical convergence
for a sequence of operators Bfl’o’j(. ;%). In the following definitions, A= (a;,); j,n € N is a non-negative and regular summability
matrix and < p, > is a non-increasing sequence in [0, c0).

Definition 3.1. A sequence x = (x,) is said to be A-statistically convergent to L with rate O(p,), designated by x, — L =
StA_O(pn)) asn— oo,

if for given any € > 0,
1
lim — Z a;, =0.
Jzee pJ n:|x,—L|>e
Definition 3.2. A sequence x = (x,,) is said to be A-statistically convergent to L with rate O,,(p,), designated by x, — L =
StA_Om(pn)’ asn— oo,
if for given any € > 0
jl—lglo Z @jn = 0.
n:|x,—L|>ep,
Theorem 3.3. Consider A= (a;,) as a non-negative and regular summability matrix and < p, > be any sequence in [0, ©0) which
is non-increasing. Further assume that

o(f,8,;) = St,—0(p,), asn — 0o, (13)

where
1 2[j—1]
0, = + =,
T\ 4, [nd,,

(14

Then, for every function f € C[0,1]
By .f = fll = St,—O(p,), as n — oo.

n,0,j
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Proof. Since the operators Bz’”o’j(. ; x) are linear and monotone, therefore, for a continuous function f defined on [0, 1] and any
& > 0, Remark 1 yields

IBY%, (f5%) — £ (0] < B (If (0 — £ ()]s x)

< co(f,S)BZ:‘OJ (1 + |t;x|;x)

1
= w(f,5)(1+ ngj‘O’j(lt—xl;x)). (15)

Using Cauchy-Schwarz inequality, we can write

By (It —x;) < /By, - (£ —x)?; x). (16)

Combining eq.(15) and eq.(16), and by Lemma 2.2, we get

B, (30~ £ ()| < 007, 8) (14 5 /B, (€ —xPi0)
< o(f,5) (1 + %\j x([i]_x) + 2"[[11]_1]). a7

By taking supremum on both sides of eq.(17) for all x € [0, 1], we obtain

n B l 1 2[j—1]
IB%, fIISw(f75)(1+5 A, i, )

If we take
1 2[j—1

5:=5,,= L=t

’ 4[n],, ~ [n],

then

”BZ?()’]‘f _f“ < Zw(f, 5n,j)~
For given € > 0, let us define the following sets:

S, = {n : Bgfo’jf—fH > e}

S, = {n tw(f,0,;) = %}

Then, it is clear that S; C S,,

and 1 1
0<=>la, <= >a,,VjeN. (18)
pj nes; J nes,
Hence, the proof can be easily obtained by taking j — oo in eq.(18), using eq.(13) and Definition 3.1. O

Using the argument of Theorem 3.3 and Definition 3.2, the following result hold:

Corollary 3.4. Consider A= (a;,) as a non-negative and regular summability matrix and < p, > be any sequence in [0, 00) which
is non-increasing. Further assume that

w(f’én,j):StA_Om(pn)) asn— oo, (19)
where
1 2[j—1]
0, = + . (20)
v\ 4, [,

Then, for every function f € C[0,1]
1By, ;f —fll =Sty —O0n(p,), as n— oo.

n,0,j
Let f € C[0,1] and p € (0,1]. We say that f is a Lipschitz function of order p (0 < p < 1), if there exists a real number
A > 0 such that, for all t,,t, €[0,1]
I£(t) —f (£ < Aty — )7, 21

The class of all such functions is denoted by Lip,(p).

dn (.;x) for functions belonging to the

In the next Theorem, we derive the rate of A-statistical convergence of the operators B, ;

class Lip,(p).
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Theorem 3.5. Consider A= (a;,) as a non-negative and regular summability matrix and < p, > be any sequence in [0, 00) which
is non-increasing. If
0, =St,—0(p,), asn — oo, (22)

where &, ; is given by eq.(14). Then, for every function f € Lip,(p)

IBY, .f — fll =Sty —O0(p,),as n — co.

n,0,j

Proof. Suppose f € Lip,(p). Then in view of the eq.(21) and linear and monotone properties of the operators of BZIIO’ j(. ;Xx), we
have

BT (f5%) — £ ()] < B (1 () — F(x)]; %)

S)LBZ:[OJGLL—XW;X). 23)
. .. . . . 2 2 . .
Applying Holder’s inequality by taking p = —,q = 2 , and using Lemma 2.2, we obtain
P —_

5
Bl (16 = x1Psx) < (Bl (6= )% x))

I3
1— 2x[j—17)?
s(x( x) | 2xLJ ]) : (24)
[n]Qn [n]‘h
Combining eq.(23) and eq.(24), we get
P
x(1—x) 2x[j—1])\?
1B, (f53) = f (x)] Sl( + :
o [n],, [n,,
This implies
1By, f — Il < A8,
For given € > 0, let us define the following sets:
S1={n:1BY, f —fll= e},
€
SZ = {Tl . (5n’j)p > X}
Then, it is obvious that S; C S,, and for the given sequence < p, >, we have
1 1 .
0<=>la,<= > a;,,VjeN (25)
pj nes; p] neSy
We conclude that the proof is over by taking j — oo in eq.(25), using eq.(22) and Definition 3.1. O

Using the concept of convergence in measure from Measure theory and following the argument of Theorem 3.5, we can easily
prove the next result.

Corollary 3.6. Consider A= (a;,) as a non-negative and regular summability matrix and < p, > be any sequence in [0, 00) which
is non-increasing. If
0, =8ty—0y,(p,), asn— o0, (26)

where 0, ; is given by eq.(14). Then for every function f € Lip,(p)

IB%, f — f1l = Sts—Op(p,) as n — oo.

4 Conclusion

Recently, Aldaz et al. constructed an intriguing Bernstein-type polynomial operators known as AKR operators. Due to their
construction, it is not easy to find the exact values of moments and central moments of these operators. As a consequence, it is
difficult to derive the fundamental approximation results of these operators.

As it is known that the g-positive linear operators possess better approximation results. Therefore we investigated the approxima-
tion properties of g-analogue of these operators in the setting of A-statistical convergence.

We determined an upper bound for the central moments and then established the Korovkin-type Theorem and statistical rate
of convergence of these operators using A-statistical convergence. Also, we have included rate of A-statistical convergence of
Lipschitz-type function spaces in our investigation.
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The results of this article can be helpful for various approximation techniques like difference approximation, simultaneous

approximation, and Bézier approximation related to Bernstein-type operators.
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