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Abstract

In this paper, we present a new three-parameter semi-classical Laguerre matrix weight function and
explore the associated sequence of matrix orthogonal polynomials. We derive explicit expressions for
the corresponding three-term recurrence relations, both in terms of their scalar counterparts and scalar
Hankel determinants. Finally, we analyze the asymptotic behavior of the recurrence coefficients with
respect to the variables t and n.

1 Introduction

One of the most important properties of orthogonal polynomials is the three-term recurrence relation [1, 2, 3]. Let W be a matrix
weight function defined on the real line for which all the moments

wn =

∫

xnW (x)dx

exist. Here and throughout, the integral is understood entrywise, so that wn is itself a matrix given by

wn =
�

∫

xnWi j(x)dx
�

i, j
.

It is well known [4, subsection 2.1] that: if det�n 6= 0, n ∈ N, where �n = (wk+ j)nk, j=0 is the Hankel-block matrix

�n =











w0 w1 · · · wn

w1 w2 · · · wn+1
...

...
. . .

...
wn wn+1 · · · w2n











, n ∈ N,

then there exist two sequences
�

PL
n (x)

	

n∈N and
�

PR
n (x)

	

n∈N of, respectively, left and right orthonormal polynomials such that
∫

PL
n (x)W (x)x

mdx = δnmH−1
n , left orthogonality,

∫

xmW (x)PR
n (x)dx = δnmH−1

n , right orthogonality,

for m = 0,1, . . . , n and n ∈ N, where Hn is, for each n ∈ N, a nonsingular matrix and δnm is the Kronecker delta. The left and
right three-term recurrence relations then take the following forms:

x PL
n = α

L
n PL

n+1 + β
L
n PL

n + γ
L
n PL

n−1,

x PR
n = PR

n+1α
R
n + PR

n β
R
n + PR

n−1γ
R
n ,

with initial conditions PL
−1 = PR

−1 = 0 and PL
0 = PR

0 = I. In particular, when W is symmetric, then PR
n = (P

L
n )

T [5].
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In [6, 8, 7, 9], orthogonal polynomials associated with the semi-classical scalar Laguerre weight function

Wλ(x , t) = xλe−x2+t x , x ∈ R+, (1)

on the half-line (0,+∞), with parameters λ > −1 and t ∈ R, were studied. These papers investigate the recurrence coefficients
of semi-classical Laguerre polynomials and reveal deep connections to integrable systems, particularly to the Painlevé equations.
They establish that these recurrence coefficients satisfy fourth Painlevé and discrete Painlevé equations, linking the structure of
these polynomials to rich mathematical frameworks such as Wronskian representations, Chazy systems, Dyson’s Coulomb fluid
for large n asymptotics and large t asymptotics. The studies collectively bridge orthogonal polynomial theory with nonlinear
integrable systems, emphasizing the role of semi-classical weights in revealing hidden structures in recurrence relations.

As the theory progressed, researchers extended the scalar theory of orthogonal polynomials to the matrix one. In that way
a comprehensive theory of matrix-valued orthogonal polynomials has been developed from different perspectives and found
applications in several areas of mathematics and mathematical physics. One remarkable outcome of this development was
the appearance of Painlevé equations. They arise naturally in the study of semi-classical weights. In [10], the authors focus
on semiclassical Laguerre-type matrix weights and investigate the recurrence coefficients of the associated matrix orthogonal
polynomials. They show that these coefficients satisfy integrable systems such as the Toda lattice and Painlevé III equations,
highlighting the rich integrable structure inherent to the matrix setting. Building upon this foundation, [4] develops a Riemann-
Hilbert framework for matrix Laguerre biorthogonal polynomials and derives nonlinear matrix equations for their recurrence
coefficients, resulting in a matrix extension of the discrete Painlevé IV equation. These advances inspire us to study the recurrence
coefficients from a different perspective, specifically focusing on their asymptotic behavior.

Motivated by the construction of new families of matrix orthogonal polynomials of Hermite, Laguerre, and Jacobi type [12, 11],
as well as by the analysis of the three-term recurrence relations associated with semi-classical scalar weights [9, 8], we propose a
new family of semi-classical matrix Laguerre weight. Building on these foundations, we investigate the corresponding three-term
recurrence relations for the associated matrix orthogonal polynomials.

The applications of orthogonal polynomials are numerous and growing, spanning both the use of polynomials of fixed degree
and the asymptotic analysis of the n-th orthogonal polynomial, pn, as n→∞. In the scalar setting, a thorough overview of
asymptotic results and their applications is presented by Lubinsky [13]. This theory has been powerfully extended to the matrix
case. The asymptotic behavior of matrix orthogonal polynomials, which is the focus of this work, and its applications are explored
in depth in the literature, see for instance [18, 14, 15, 17, 20, 19, 16, 21].

This paper is organized as follows. In Section 2, we review some key results from the literature that are used throughout the
paper. In Section 3, we introduce a semi-classical Laguerre matrix weight function along with the associated sequence of matrix
orthogonal polynomials. Additionally, we derive an explicit expression for the corresponding three-term recurrence relation in
terms of scalar quantities. Sections 4 and 5 are dedicated to the study of the asymptotic behavior of the three-term recurrence
relation, with respect to the variables t and n, respectively.

2 Scalar semi-classical Laguerre Orthogonal Polynomials

In this section, we recall some known results on scalar semi-classical Laguerre polynomials available in the literature.
We consider the monic orthogonal polynomials pn(x , t), for n ∈ N, with respect to the semi-classical Laguerre weight (1).

These polynomials satisfy the three term recurrence relation.

x pn(x , t) = pn+1(x , t) + an(t)pn(x , t) + bn(t)pn−1(x , t). (2)

The following properties of scalar semi-classical Laguerre polynomials, as presented in [8], will be required.
Clarkson and Jordaan [8, Theorem 4.6] proved the following result.

Theorem 2.1. The sequence of monic polynomials {pn(x , t)}n∈N are orthogonal with respect to the semi-classical Laguerre weight (1)
such that

∫ +∞

0

pn(x , t)pm(x , t)Wλ(x , t) d x = δnm µ
λ
0 (t)

n
∏

k=1

bk(t), (3)

where the zero-order moment µλ0 (t) is given by

µλ0 (t) =











Γ (λ+1)exp( 1
8 t2)

2(λ+1)/2 D−λ−1

�

− 1
2

p
2t
�

if λ /∈ N

1
2

p
π dm

dtm

�

exp
�

1
4 t2
� �

1+ erf
�

1
2 t
��	

if λ= m ∈ N

with Dv(ζ) the parabolic cylinder function and erf(z) the Gauss error function [22].
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For convenience, we denote the constant of orthogonality by:

Nn(t) =

∫ +∞

0

(pn(x , t))2 Wλ(x , t) d x = µλ0 (t)
n
∏

k=1

bk(t).

Clarkson and Jordaan [8, Theorem 4.9] further proved the following theorem.

Theorem 2.2. The recurrence coefficients an(t) and bn(t) in (2), associated with monic orthogonal polynomials with respect to the
semi-classical Laguerre weight (1) are given by

an(t) =
d
dt

ln
∆n+1(t)
∆n(t)

, bn(t) =
d2

dt2
ln∆n(t),

when ∆n(t) is the Hankel determinant given by

∆n(t) =

�

�

�

�

�

�

�

�

�

µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

...
. . .

...
µn−1 µn · · · µ2n−2

�

�

�

�

�

�

�

�

�

, n ∈ N,

where µn is the moment of order n. See [8, Theorem 2.1] for more details.

These explicit expressions for scalar coefficients provide a foundation for deriving recursion coefficients in the matrix case.
Moreover, from [8, Lemma 5.3], we have the following asymptotic expansions As t −→∞:

an(t) =
t
2
+
λ

t
+

2λ(2n−λ+ 1)
t3

+O
�

t−5
�

bn(t) =
n
2
−

nλ
t2
−

6nλ(n−λ)
t4

+O
�

t−6
�

.
(4)

Finally, from [9, Theorem 1.6]

an(t) =

√

√2n
3
+

t
6
+

t2 + 12(1+λ)

24
p

6n
−

t4 + 24t2(1+λ)− 48
�

6λ2 − 6λ− 5
�

2304
p

6n3/2

+
t
�

9λ2 − 2
�

144n2
+

t6 + 36t4(1+λ) + 144t2
�

66λ2 + 6λ− 13
�

− 1728
�

8λ3 + 6λ2 − 5λ− 3
�

110592
p

6n5/2

+
t
�

t2
�

27λ2 − 7
�

− 12
�

9λ3 + 9λ2 − 2λ− 2
��

1728n3
+O

�

n−7/2
�

,

bn(t) =
n
6
+

t
p

n

6
p

6
+

t2 + 6λ
72

+
t
�

t2 + 12λ
�

288
p

6n
+

2− 9λ2

144n
−

t
�

t4 + 24λt2 + 3168λ2 − 816
�

27648
p

6n3/2

+
t2
�

7− 27λ2
�

+ 4λ
�

9λ2 − 2
�

1152n2
+

t
�

t6 + 36λt4 − 144t2
�

246λ2 − 61
�

+ 1728λ
�

64λ2 − 17
��

1327104
p

6n5/2
+O

�

n−3
�

.

(5)

These expansions will be instrumental in deriving the asymptotic results presented in the final sections.

3 Matrix Semi-Classical Laguerre Weight

Inspired by the work of Durán [12, 11], we introduce the following new non-scalar weight:

Wλ
a (x , t) = xλe−x2+t x

�

1+ a2 x2 ax
ax 1

�

, a ∈ R. (6)

In this section, we present a new family of matrix polynomials and establish their orthogonality with respect to the matrix
weight (6) (see Theorem 3.1). We also derive explicit expressions for the recursion coefficients in terms of a scalar Hankel
determinant (see Theorem 3.2), as well as for the matrix recursion coefficients in terms of the corresponding scalar ones (see
Corollary 3.3).

3.1 Matrix semi-classical Laguerre orthogonal polynomials

We propose the following family of matrix polynomials, {Pn(x , t)}n∈N of semi-classical Laguerre type constructed using scalar
semi-classical Laguerre polynomials {pn(x , t)}n∈N:

Pn(x , t) =





pn(x , t) −aan(t)pn(x , t)− abn(t)pn−1(x , t)

−a bn(t)pn−1(x , t) (a2 bn(t) + 1)pn(x , t) + a2an−1(t)bn(t)pn−1(x , t) + a2 bn−1(t)bn(t)pn−2(x , t)



 , n≥ 0

(7)

where an(t), bn(t) are defined in Theorem 2.2 and a ∈ R. Observe that deg(Pn) = n.
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3.1.1 Orthogonality relation

Theorem 3.1. For n ∈ N, the matrix polynomials {Pn}n∈N already introduced in (7) are orthogonal on (0,+∞) with respect to the
matrix weight function Wλ

a (x , t) (6), such that:
∫ +∞

0

Pn(x , t)Wλ
a (x , t) (Pm(x , t))T d x = δnmH−1

n (t),

where the matrix H−1
n (t) is given by:

H−1
n (t) =

�

µλ0 (t)
�

1+ a2 bn+1(t)
�∏n

k=1 bk(t) 0
0 (1+ abn(t))µλ0 (t)

∏n
k=1 bk(t)

�

.

Proof. The proof follows from the orthogonality properties of the scalar Laguerre polynomials and the structure of Pn. In fact,

Pn(x , t)Wλ
a (x , t) (Pm(x , t))T = xλet x−x2





pn(x , t)pm(x , t) + a2pn+1(x , t)pm+1(x , t) −abm(t)pm−1(x , t)pn(x , t) + apm(x , t)pn+1(x , t)

−a bn(t)pn−1(x , t)pm(x , t) + apn(x , t)pm+1(x , t) pn(x , t)pm(x , t) + a2 bn(t)bm(t)pm−1(x , t)pn−1(x , t)



 (8)

For m /∈ {n− 1, n, n+ 1}, by relation (3), it is clear that
∫ +∞

0

Pn(x , t)Wλ
a (x , t) (Pm(x , t))T dx =

�

0 0
0 0

�

.

For m= n, we obtain
∫ +∞

0

Pn(x , t)Wλ
a (x , t) (Pn(x , t))T dx =

�

Nn(t) + a2Nn+1(t) 0
0 Nn(t) + a2 (bn(t))

2 Nn−1(t)

�

.

Then, we replace Nn(t) from Theorem 2.1.
For m= n+ 1, we find that the (1, 1), (2, 2) and (1, 2) entries of (8) are zero. The nullity of the (2, 1) entry follows from the

identity:

Nn(t) = bn(t)Nn−1(t).

In fact,

bn(t)Nn−1(t) = bn(t)

∫ +∞

0

(Pn−1(x , t))2 Wλ
a (x , t) d x

=

∫ +∞

0

�

Pn+1(x , t) + an(t)Pn(x , t) + bn(t)Pn−1(x , t)
�

Wλ
a (x , t) Pn−1(x , t)d x

=

∫ +∞

0

x Pn(x , t)Wλ
a (x , t) Pn−1(x , t)d x

=

∫ +∞

0

pn(x , t)Wλ
a (x , t)

�

x Pn−1(x , t)
�

d x

=

∫ +∞

0

Pn(x , t)Wλ
a (x , t)

�

Pn(x , t) + an−1(t)Pn−1(x , t) + bn−1(t)Pn−2(x , t)
�

d x =Nn(t).

Finally, for m= n− 1, a similar argument leads to:
∫ +∞

0

Pn(x , t)Wλ
a (x , t) (Pn−1(x , t))T dx =

�

0 0
0 0

�

.

3.1.2 Three-term Recursion Relation

Our main objective is to obtain explicit expressions for the coefficients in the recurrence relation satisfied by the semi-classical
Laguerre matrix polynomials.
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Theorem 3.2. The sequence of matrix Laguerre semi-classical orthogonal polynomials
�

Pn(x , t)
	

n∈N defined in(7) satisfies the
following matrix three terms recurrence relation,

xPn(x , t) = αn(t)Pn+1(x , t) + βn(t)Pn(x , t) + γn(t)Pn−1(x , t),

where

αn(t) =













1 a
d
dt ln

∆n+2(t)
∆n+1(t)

a2 d2

dt2
ln∆n+1(t)+1

0
a2 d2

dt2
ln∆n(t)+1

a2 d2

dt2
ln∆n+1(t)+1













,

βn(t) =













d
dt ln

∆n+1(t)
∆n(t)

+a2 d
dt ln

∆n+2(t)
∆n+1(t)

d2

dt2
ln∆n+1(t)

1+a2 d2

dt2
ln∆n+1(t)

−a
d2

dt2
ln ∆n(t)
∆n+1(t)

1+a2 d2

dt2
ln∆n(t)

−a
d2

dt2
ln ∆n(t)
∆n+1(t)

1+a2 d2

dt2
ln∆n+1(t)

an+a2 d2

dt2
ln∆n(t)an−1

1+a2 d2

dt2
ln∆n(t)













,

γn(t) =













1+a2 d2

dt2
ln∆n+1(t)

a2+ 1
d2
dt2

ln∆n(t)

0

a d2

dt2
ln∆n(t)

�

d
dt ln

∆n+1(t)
∆n+2(t)

�

1+a2 d2

dt2
ln∆n(t)

d2

dt2 ln∆n(t)













.

when ∆n(t) is defined in Theorem 2.2.

Proof. from Theorem 3.1, we deduce the recursion relation:

xPn(x , t) = αn(t)Pn+1(x , t) + βn(t)Pn(x , t) + γn(t)Pn−1(x , t),

where

αn(t) =

∫ +∞

0

xPn(x , t)Wλ
a (x , t) (Pn+1(x , t))T dx Hn+1,

βn(t) =

∫ +∞

0

xPn(x , t)Wλ
a (x , t) (Pn(x , t))T dx Hn,

γn(t) =

∫ +∞

0

xPn(x , t)Wλ
a (x , t) (Pn−1(x , t))T dx Hn−1.

Now, a straightforward calculation leads to

αn(t) =







1 a an+1(t)−an(t)
1+a2 bn+1(t)

0 a2 bn(t)+1
1+a2 bn+1(t)






, βn(t) =









an(t)+a2an+1(t)bn+1(t)
1+a2 bn+1(t)

−a bn(t)−bn+1(t)
1+a2 bn(t)

−a bn(t)−bn+1(t)
1+a2 bn+1(t)

an(t)+a2 bn(t)an−1(t)
1+a2 bn(t)









, γn(t) =







bn(t)
1+a2 bn+1(t)
1+a2 bn(t)

0

a bn(t)
an(t)−an−1(t)

1+a2 bn(t)
bn(t)






.

Considering the expressions

an(t) =
d
dt

ln
∆n+1(t)
∆n(t)

, bn(t) =
d2

dt2
ln∆n(t),

the result follows.

Remark 1. The sequence {Pn(x , t)}n∈N isn’t monic, from it’s expression (7) we get the leading coefficient:

An(t) =

�

1 −a d
dt ln ∆n+1(t)

∆n(t)

0 a2 d2

dt2 ln∆n(t) + 1

�

.

Hence, we can define the monic semi-classical Laguerre matrix polynomials {Pn(x , t)}n∈N such that:

Pn(x , t) = (An(t))
−1 Pn(x , t).

This new sequence satisfies a three terms recurence relation

xPn(x , t) = Pn+1(x , t) + β̃n(t)Pn(x , t) + γ̃n(t)Pn−1(x , t),

where β̃n(t) = (An(t))
−1 βn(t)An(t) and γ̃n(t) = (An(t))

−1 γn(t)An−1(t).
The sequence of matrix orthogonal polynomials can be expressed in terms of scalar semi-classical Laguerre polynomials,

which facilitates the derivation of certain results.

Dolomites Research Notes on Approximation ISSN 2035-6803



Fradi 16

3.1.3 Representation in Terms of Scalar Polynomials

The matrix orthogonal polynomials {Pn(x , t)}n∈N could be expressed as a linear combination of scalar ones such that:

Pn(x , t) = An(t) pn(x , t) + Bn(t) pn−1(x , t) + Cn(t) pn−2(x , t), n ∈ N,

where

An(t) =

�

1 −aan(t)
0 a2 bn(t) + 1

�

, Bn(t) =

�

0 −abn(t)
−abn(t) a2 bn(t)an−1(t)

�

, Cn(t) =

�

0 0
0 a2 bn(t)bn−1(t)

�

.

We can easily see that the monic ones, Pn(x , t) satisfies

Pn(x , t) = I Pn(x , t) + eBn(t)Pn−1(x , t) + eCn(t)Pn−2(x , t), n ∈ N,

where I denotes the identity matrix and

eBn(t) =





− a2an(t)bn(t)
1+a2 bn(t)

−abn(t) +
a3an−1(t)an(t)bn(t)

1+a2 bn(t)

− abn(t)
1+a2 bn(t)

a2an−1(t)bn(t)
1+a2 bn(t)



 , eCn(t) =







0
a3an(t)bn−1(t)bn(t)

1+ a2 bn(t)

0
a2 bn−1(t)bn(t)

1+ a2 bn(t)






. (9)

Which allows us to express the three terms recurrence relation β̃n(t) and γ̃n(t) in terms of these coefficients eBn(t) and eCn(t)
such that

β̃n(t) = an(t) I+eBn(t)− eBn+1(t), γ̃n(t) = bn(t) I+eBn(t)an−1(t) + eCn(t)− eCn+1(t)− β̃n(t)eBn(t). (10)

These relations facilitate the computation of the asymptotic expansion in the next sections.

Corollary 3.3. The monic semi-classical Laguerre matrix polynomials
�

Pn(x , t)
	

n∈N satisfies

xPn(x , t) = Pn+1(x , t) + β̃n(t)Pn(x , t) + γ̃n(t)Pn−1(x , t), n ∈
�

1, 2, . . .
	

,

with

β̃n(t) =







an(t)
1+ a2 bn(t)

+
a2an+1(t)bn+1(t)

1+ a2 bn+1(t)
a (bn+1(t)− bn(t)) + a3an(t)

�

an−1(t)bn(t)
1+a2 bn(t)

− an+1(t)bn+1(t)
1+a2 bn+1(t)

�

a(bn+1(t)− bn(t))
(1+ a2 bn(t))(1+ a2 bn+1(t))

a2an−1(t)bn(t)
1+ a2 bn(t)

+
an(t)

1+ a2 bn+1(t)






,

γ̃n(t) =

�

γ̃11
n (t) γ̃12

n (t)
γ̃21

n (t) γ̃22
n (t)

�

,

where

γ̃11
n (t) =

bn(t)
�

(1+ a2 bn(t))(1+ a2 bn+1(t)) + a2(an(t)2 − an−1(t)an(t))
�

(1+ a2 bn(t))2
,

γ̃12
n (t) =

abn(t)
�

(1+ a2 bn(t))
�

an(t)(1+ a2 bn−1(t))− an−1(t)a2
n(t)− an−1(t)a2 bn+1(t)

�

+ a2an−1(t)
�

an−1(t)an(t)− a2
n(t)− bn(t)

��

(1+ a2 bn(t))2
,

γ̃21
n (t) =

a(an(t)− an−1(t))bn(t)
(1+ a2 bn(t))2

,

γ̃22
n (t) =

bn(t)
�

(1+ a2 bn(t))(1+ a2 bn−1(t)) + a2an−1(t)(an−1(t)− an(t))
�

(1+ a2 bn(t))2
.

4 Large-t Asymptotics

Theorem 4.1. As t −→∞, the coefficients (9), B̃n(t) and C̃n(t) have the asymptotic expansions

B̃n(t) = 2 ba
n t2 + 1 ba

n t + 0 ba
n +

−1 ba
n

t
+ −2 ba

n

t2
+ −3 ba

n

t3
+ O

�

1
t4

�

,

C̃n(t) = 1ca
n t + 0ca

n +
−1ca

n

t
+ −2ca

n

t2
+ −3ca

n

t3
+ −4ca

n

t4
+ O

�

1
t5

�

,

where
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−3 ba
n =

2a2λn
(2+ a2n)3

�

−4λ− 4+ n
�

4+ 2a2(λ− 2)
�

+ n2
�

a4(λ− 1)− 2a2
�

− 2a4n3 0
0 4λ− 4− n(4+ 4a2 + 2a2λ) + n2(2a2 − a4(1+λ)) + 2a4n3

�

,

−2 ba
n =

aλn
(2+ a2n)2





0
8+a2n(16−4a2λ)+a4n2(16−a2λ)+5a6n3

2+a2n
4 0



 ,

−1 ba
n =

a4λn2

(2+ a2n)2

�

−1 0
0 1

�

,

0 ba
n = −

an
2+ a2n





0
1
2

4−2a2λ+4a2n−2a4λn+a4n2

2+a2n
1 0



 ,

1 ba
n =

a2n
2(2+a2n)

�

−1 0
0 1

�

,

2 ba
n =





0
a3n

8+4a2n
0 0



 ,

1ca
n =





0
a3n(n−1)
4(2+a2n)

0 0



 ,

0ca
n =





0 0

0
a2n(n−1)
2(2+a2n)



 ,

−1ca
n =





0 − a3λn(n−1)
(2+a2n)2

0 0



 ,

−2ca
n =





0 0

0 − a2λ(n−1)(4n+a2n2)
(2+a2n)2



 ,

−3ca
n =





0
a3λ(n−1)n(16λ+8a2λn+a4λn2−(2+a2n)[8(n−1)−4a2n+a2n2])

(2+a2n)3
0 0



 .

Proof. Taking into account the asymptotic expensions (4) of an(t) and bn(t), we have:

−
a2an(t)bn(t)
1+ a2 bn(t)

= −
a2n

2(2+ a2n)
t −

a4λn2

(2+ a2n)2
1
t

+
2a2λn

�

λ(−4+ a2n(2+ a2n))− (2+ a2n)
�

2+ n(−2+ a2(1+ 2n))
��

(2+ a2n)3
1
t3
+O

�

1
t5

�

,

−abn(t) +
a3an−1an(t)bn(t)

1+ a2 bn(t)
=

a3n
8+ 4a2n

t2 −
�

an
2
−

a3λn(1+ a2n)
(2+ a2n)2

�

+
aλn

�

8+ a2n
�

16− 4a2(λ− 4n) + a4n(−λ+ 5n)
��

(2+ a2n)3
1
t2
+O

�

1
t4

�

,

a2an−1(t)bn(t)
1+ a2 bn(t)

=
a2n

2(2+ a2n)
t +

a4λn2

(2+ a2n)2
1
t

−
2a2λn

�

4− 4λ+ 2(2+ a2(2+λ))n+ a2(−2+ a2(1+λ))n2 − 2a4n3
�

(2+ a2n)3
1
t3
+O

�

1
t5

�

,

a3an(t)bn−1(t)bn(t)
1+ a2 bn(t)

=
a3(n− 1)n
4(2+ a2n)

t −
a3λ(n− 1)n
(2+ a2n)2

1
t

+
a3λ(n− 1)n

�

λ(4+ a2n)2 − (2+ a2n)
�

−8+ (8+ a2(n− 4))n
��

(2+ a2n)3 t3
+O

�

1
t5

�

,
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−
abn(t)

1+ a2 bn(t)
= −

an
2+ a2n

+
4aλn

(2+ a2n)2
1
t2

+
8aλn

�

3n(2+ a2n)− 2λ(3+ a2n)
�

(2+ a2n)3
1
t4
+O

�

1
t6

�

,

a2 bn−1(t)bn(t)
1+ a2 bn(t)

=
a2(n− 1)n
2(2+ a2n)

−
a2λ(n− 1)(4n+ a2n2)

(2+ a2n)2
1
t2

+
2a2λ(n− 1)n

�

−3(2+ a2n)
�

−2+ (4+ a2(n− 1))n
�

+λ(28+ 3a2n(6+ a2n))
�

(2+ a2n)3
1
t4
+O

�

1
t6

�

.

From the expressions of B̃n(t) and C̃n(t) (9), truncating the previous expansions at the appropriate order yields the desired
result.

Taking these expressions into account, we deduce the large-t asymptotic expansions of the recurrence coefficients β̃n(t) and
γ̃n(t) associated with the monic polynomials. For computational purposes, the expansions will be truncated at third order.

Theorem 4.2. As t −→∞, the recurrence coefficients (10) β̃n(t) and γ̃n(t) have the asymptotic expansions

β̃n(t) = 2β
a
n t2 + 1β

a
n t + 0β

a
n +

−1β
a
n

t
+ −2β

a
n

t2
+ O

�

1
t3

�

,

γ̃n(t) = 1γ
a
n t + 0γ

a
n +

−2γ
a
n

t2
+ −3γ

a
n

t3
+ O

�

1
t4

�

,

where

−2β
a
n =

aλ
(2+a2n)2(2+a2(n+1))2





0 −
�

16+ a2
�

24+ 48n+ 5a2(2+ n(4+ a2(n+ 1)))2
��

+ 2a4 (16+32n+a2(4+n(n+1)(6+a2n)(6+a2(n+1))))λ
(2+a2n)(2+a2(n+1))

4(a4n(n+ 1)− 4) 0



,

−1β
a
n =

λ
(2+a2n)2(2+a2(n+1))2

�

16+ a2(16+ 32n+ a2(n+ 1)(8+ n(24+ a2(n+ 1)(8+ a2n)))) 0
0 16+ a2(16+ n(32+ a2(16+ n(24+ a2(n+ 1)(8+ a2(n+ 1))))))

�

,

0β
a
n =

a
(2+ a2n)(2+ a2(n+ 1))





0
1
2 −

a2(4+a2(4+8n)+3a4n(n+1))λ
(2+a2n)(2+a2(n+1))

2 0



 ,

1β
a
n =

� 1
2 +

1
2+a2n −

1
2+a2(n+1) 0

0 1
2 −

1
2+a2n +

1
2+a2(n+1)

�

,

2β
a
n =

�

0 − a3

2(2+a2n)(2+a2(n+1))

0 0

�

,

1γ
a
n =

�

0 − a3n
4+2a2n

0 0

�

,

0γ
a
n =

�

n(2+a2(n+1))
4+2a2n 0

0 − 1
2 +

n
2 +

1
2+a2n

�

,

−2γ
a
n = −

λn
(2+ a2n)2

�

4+ 4a2n+ a4n(n+ 1) 0
0 4+ 4a2n+ a4(n− 1)n

�

,

−3γ
a
n =

aλn
(2+ a2n)2





0
2(8+a2(−20λ+n(40+14a2(2n−λ)+a4n(5n−λ))))

(2+a2n)
8 0



 .

Proof. It suffices to apply the previous theorem 4.1 in combination with the relation (10). The remainder of the proof follows by
straightforward computation.

As a consequence,

β̃n(t) ∼t→∞
= 2β

a
n t2 + 1β

a
n t + 0β

a
n , γ̃n(t) ∼t→∞

= 1γ
a
n t + 0γ

a
n.

In particular, for a = 0 we recover the scalar case [8, Lemma 5.3]:

β̃n(t) ∼t→∞
=

�

1
2 0
0 1

2

�

t, γ̃n(t) ∼t→∞
=

�

n
2 0
0 n

2

�

.
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5 Large-n Asymptotics

Theorem 5.1. Suppose a 6= 0. As n −→∞, the coefficients (9), B̃n(t) and C̃n(t) have the asymptotic expansions

B̃n(t) = 1 ba
t n+ 1

2
ba

t

p
n+ 0 ba

t +
− 1

2
ba

t
p

n
+ −1 ba

t

n
+ O

�

1

n
3
2

�

,

C̃n(t) = 3
2
ca

t n
3
2 + 1ca

t n+ 1
2
ca

t

p
n+ 0ca

t +
− 1

2
ca

t
p

n
+ O

�

1
n

�

,

where

1 ba
t =

�

0 a
2

0 0

�

,

1
2

ba
t =

�

−
q

2
3

at
2
p

6

0
q

2
3

�

,

0 ba
t =

�

− t
6 − 4

a −
a

72 t2 − a
12λ

− 1
a

t
6

�

,

− 1
2

ba
t =





a2(4λ+t2−4)+96
8a2
p

6

at(t2+12λ)
96
p

6

0 − a2(4λ+t2+4)+96
8a2
p

6



,

−1 ba
t =





− 1
72 t

�

72
a2 + t2 + 6λ

�

24
a3 +

2t2+12λ
3a + 1

432 a
�

2t4 + 24t2λ+ 153λ2 − 54
�

a2(t2+6λ)+72
12a3

1
72 t

�

72
a2 + t2 + 6λ

�



 ,

3
2
ca

t =

�

0 a
3
p

6

0 0

�

,

1ca
t =





0 at
12

0 1
6



 ,

1
2
ca

t =







0
a2(5t2+12λ−36)−288

144
p

6a

0 t
6
p

6






,

0ca
t =





0
a2 t(t2+12λ−18)−72t

432a

0 − 1
6 −

1
a2



 ,

− 1
2
ca

t =









0
55296+192a2(7t2+36λ+36)+a4(13t4+24t2+152t2λ−336+288λ−96λ2)

4608
p

6 a3

0 t3+12tλ−24t
288
p

6









.

Proof. Taking into account the asymptotic expensions (5) of an(t) and bn(t), we derive those of an−1(t) and bn−1(t):

an−1(t) =

√

√2n
3
+

t
6
+

t2 + 12(−1+λ)

24
p

6n
+
−t4 − 24t2(−1+λ) + 48(−5+ 6λ(1+λ))

2304
p

6n3/2

+
t(−2+ 9λ2)

144n2
+

t6 + 36t4(−1+λ)− 1728(−1+λ)(−1+ 2λ)(3+ 4λ) + 144t2(−13− 6λ+ 66λ2)

110592
p

6n5/2

+
−12t(−1+λ)(−2+ 9λ2) + t3(−7+ 27λ2)

1728n3
+O(n−7/2),

bn−1(t) =
n
6
+

t

6
p

6

p
n+

t2 + 6λ− 12
72

+
t(t2 + 12λ− 24)

288
p

6
p

n
+

2− 9λ2

144n

−
t
�

t4 + 24t2(λ− 2) + 48(66λ2 − 12λ− 5)
�

27648
p

6n3/2
+

t2(7− 27λ2) + 4(λ− 2)(9λ2 − 2)
1152n2

+
t7 + 36t5(λ− 2)− 144t3(6λ(41λ+ 2)− 73) + 1728t(λ− 2)(64λ2 − 4λ− 13)

1327104
p

6n5/2
+O(n−3).
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Next, we establish the asymptotic expansions of each component of B̃n(t) and C̃n(t), following the approach used in the proof of
Theorem 4.1 (albeit with more complex expressions). Finally, by truncating these expansions at the appropriate order, we obtain
the desired result.

Taking these expressions into account, we obtain the asymptotic expansions of the recurrence coefficients β̃n(t) and γ̃n(t).

Theorem 5.2. Suppose a 6= 0. As n −→∞, the recurrence coefficients (10) β̃n(t) and γ̃n(t) have the asymptotic expansions

β̃n(t) = 1β
a
t n+ 1

2
β a

t

p
n+ 0β

a
t +

− 1
2
β a

t
p

n
+ −1β

a
t

n
+ O

�

1

n
3
2

�

,

γ̃n(t) = 1γ
a
t n+ 1

2
γa

t

p
n+ 0γ

a
t +

− 1
2
γa

t
p

n
+ O

�

1
n

�

,

where

−1β
a
t =

�

0 −
a
2

0 0

�

,

− 1
2
β a

t =







t2 + 12(−1+λ)

24
p

6

at

4
p

6

0
t2 + 12(3+λ)

24
p

6






,

0β
a
t =

�

t
6 0
0 t

6

�

,

1
2
β a

t =

�q

2
3 0

0
q

2
3

�

,

1γ
a
t =

�

1
6 0
0 1

6

�

,

1
2
γa

t =

� t
6
p

6
− a

2
p

6

0 t
6
p

6

�

,

0γ
a
t =

�

1
72 (t

2 + 12+ 6λ) − at
12

0 1
72 (t

2 − 12+ 6λ)

�

,

− 1
2
γa

t =

�

t(t2+12+6λ)
288
p

6
12−a2

4
p

6a

0 t(t2−12+6λ)
288
p

6

�

.

Proof. We substitute n+ 1 into the given expression for B̃n(t) and C̃n(t). We expand each term using asymptotic expansions
around infinity, we obtain:

B̃n+1(t) = 1 ba
t n+ 1 ba

t + 1
2

ba
t

p
n+

1
2

ba
t

2
p

n
+ 0 ba

t +
− 1

2
ba

t
p

n
+ −1 ba

t

n
+O(n−3/2),

C̃n+1(t) = 3
2
ca

t n
3
2 + 1ca

t n+
�

1
2
ca

t +
3
2

3
2
ca

t

�p
n+ (1ca

t + 0ca
t ) +

�

3
8

3
2
ca

t +
1
2

1
2
ca

t + − 1
2
ca

t

�

1
p

n
+O

�

n−1
�

.

Thus:

B̃n(t)− B̃n+1(t) = −1 ba
t − 1

2
ba

t

1
2
p

n
+O(n−3/2),

C̃n(t)− C̃n+1(t) = −
3
2

3
2
ca

t

p
n− 1ca

t −
�

3
8

3
2
ca

t −
1
2

1
2
ca

t

�

1
p

n
+O

�

n−1
�

.

To finish the proof, we use the relation (10).
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