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Abstract

In this paper, we present a new three-parameter semi-classical Laguerre matrix weight function and
explore the associated sequence of matrix orthogonal polynomials. We derive explicit expressions for
the corresponding three-term recurrence relations, both in terms of their scalar counterparts and scalar
Hankel determinants. Finally, we analyze the asymptotic behavior of the recurrence coefficients with
respect to the variables t and n.

1 Introduction

One of the most important properties of orthogonal polynomials is the three-term recurrence relation [1, 2, 3]. Let W be a matrix
weight function defined on the real line for which all the moments

w, = J x"W(x)dx

exist. Here and throughout, the integral is understood entrywise, so that w,, is itself a matrix given by
w, = [J x"W;;()dx | .
dijj

It is well known [4, subsection 2.1] that: if detd, # 0, n € N, where 0, = (Wk+j)£’j=0 is the Hankel-block matrix

WO W1 “e. Wn
Wy Wy Tt Whn

0, = , neEN,
Wy Wpypo o0t Won |

then there exist two sequences {Prlf (x)} and {Pf (x)} of, respectively, left and right orthonormal polynomials such that

neN neN
J PL(OW (x)x™dx = 6,,,H, ", left orthogonality,
f x’”W(x)Pf(x)dx = 5an;1, right orthogonality,

form=0,1,...,n and n € N, where H, is, for each n € N, a nonsingular matrix and §,,, is the Kronecker delta. The left and
right three-term recurrence relations then take the following forms:

xP-=atpt + ﬁrll_Prll_ +ytpt

n n® n+l n” n-1’
R _ pR R RpaR R R
xpn - Pn+1an + Pn ﬂn + Pnflyn ’

with initial conditions P}l = Pfl =0and Pé' = PoR =1L In particular, when W is symmetric, then PnR = (Pr'l')T [5].
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In [6, 8, 7, 9], orthogonal polynomials associated with the semi-classical scalar Laguerre weight function
W(x, t) = x e >+ x €RT, 1)

on the half-line (0,+00), with parameters A > —1 and t € R, were studied. These papers investigate the recurrence coefficients
of semi-classical Laguerre polynomials and reveal deep connections to integrable systems, particularly to the Painlevé equations.
They establish that these recurrence coefficients satisfy fourth Painlevé and discrete Painlevé equations, linking the structure of
these polynomials to rich mathematical frameworks such as Wronskian representations, Chazy systems, Dyson’s Coulomb fluid
for large n asymptotics and large t asymptotics. The studies collectively bridge orthogonal polynomial theory with nonlinear
integrable systems, emphasizing the role of semi-classical weights in revealing hidden structures in recurrence relations.

As the theory progressed, researchers extended the scalar theory of orthogonal polynomials to the matrix one. In that way
a comprehensive theory of matrix-valued orthogonal polynomials has been developed from different perspectives and found
applications in several areas of mathematics and mathematical physics. One remarkable outcome of this development was
the appearance of Painlevé equations. They arise naturally in the study of semi-classical weights. In [10], the authors focus
on semiclassical Laguerre-type matrix weights and investigate the recurrence coefficients of the associated matrix orthogonal
polynomials. They show that these coefficients satisfy integrable systems such as the Toda lattice and Painlevé III equations,
highlighting the rich integrable structure inherent to the matrix setting. Building upon this foundation, [4] develops a Riemann-
Hilbert framework for matrix Laguerre biorthogonal polynomials and derives nonlinear matrix equations for their recurrence
coefficients, resulting in a matrix extension of the discrete Painlevé IV equation. These advances inspire us to study the recurrence
coefficients from a different perspective, specifically focusing on their asymptotic behavior.

Motivated by the construction of new families of matrix orthogonal polynomials of Hermite, Laguerre, and Jacobi type [12, 11],
as well as by the analysis of the three-term recurrence relations associated with semi-classical scalar weights [9, 8], we propose a
new family of semi-classical matrix Laguerre weight. Building on these foundations, we investigate the corresponding three-term
recurrence relations for the associated matrix orthogonal polynomials.

The applications of orthogonal polynomials are numerous and growing, spanning both the use of polynomials of fixed degree
and the asymptotic analysis of the n-th orthogonal polynomial, p,, as n — ©o. In the scalar setting, a thorough overview of
asymptotic results and their applications is presented by Lubinsky [13]. This theory has been powerfully extended to the matrix
case. The asymptotic behavior of matrix orthogonal polynomials, which is the focus of this work, and its applications are explored
in depth in the literature, see for instance [18, 14, 15, 17, 20, 19, 16, 21].

This paper is organized as follows. In Section 2, we review some key results from the literature that are used throughout the
paper. In Section 3, we introduce a semi-classical Laguerre matrix weight function along with the associated sequence of matrix
orthogonal polynomials. Additionally, we derive an explicit expression for the corresponding three-term recurrence relation in
terms of scalar quantities. Sections 4 and 5 are dedicated to the study of the asymptotic behavior of the three-term recurrence
relation, with respect to the variables t and n, respectively.

2 Scalar semi-classical Laguerre Orthogonal Polynomials

In this section, we recall some known results on scalar semi-classical Laguerre polynomials available in the literature.
We consider the monic orthogonal polynomials p,(x, t), for n € N, with respect to the semi-classical Laguerre weight (1).
These polynomials satisfy the three term recurrence relation.

xpn(x7 t) = pn+1(x’ t) + an(t)pn(x; t) + bn(t)pn—l(x’ t)' (2)

The following properties of scalar semi-classical Laguerre polynomials, as presented in [8], will be required.
Clarkson and Jordaan [8, Theorem 4.6] proved the following result.

Theorem 2.1. The sequence of monic polynomials {p,(x, t)},cy are orthogonal with respect to the semi-classical Laguerre weight (1)
such that

f P, 0P, OWH(x, £) dx = 6, (O] | Bi0), 3
0 k=1

where the zero-order moment ,ué(t) is given by

Cneeli)p , (3v2e) A €N
pa(t) =
lyn-L {exp(3¢?)[1+erf(3t)]} ifr=meN

with D, ({) the parabolic cylinder function and erf(z) the Gauss error function [22].
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For convenience, we denote the constant of orthogonality by:
+00 n
N,(£) = J (P, ) WH(x, ) dx = ()| | Bilo)
0 k=1

Clarkson and Jordaan [8, Theorem 4.9] further proved the following theorem.

Theorem 2.2. The recurrence coefficients a,(t) and b, (t) in (2), associated with monic orthogonal polynomials with respect to the
semi-classical Laguerre weight (1) are given by

d . A(t) d?
)=—In— b ()=—1nA,(0),
a,(t)= - In A0 n(0) =5 InA,(0)
when A, (t) is the Hankel determinant given by
Mo My o0 Hp
My My oo Uy
A() =] . o . |, neN,
Un—1 Un Uan—2

where U, is the moment of order n. See [8, Theorem 2.1 ] for more details.

These explicit expressions for scalar coefficients provide a foundation for deriving recursion coefficients in the matrix case.
Moreover, from [8, Lemma 5.3], we have the following asymptotic expansions As t — ©0:
t A 2A(2n—A+1)
)=c+=-+—"— =1 0(t°
a,(0)=5+7 5 (c7)
n nA 6nA(n—A) 6
bn(t)—E—E—Tﬁ'O(t )

@

Finally, from [9, Theorem 1.6]

e\ 2ty 2+12(1+2)  1+240%(1+2)—48(64° —61—5)
" 3 6 244/6n 2304+/6n3/2
t(92%—2) . t°+36t4(1+ 1)+ 144t2 (6642 + 61 —13) — 1728 (8A° + 612 — 51 —3)
144n2 110592v/6n5/2
Lt [£2(27A2 —7)—12(92A% + 922 —21—2) | vo(n), )
1728n3
NAEL t/n . 2462 t(t2+121) 2-9p2 B t(t* +24A¢2 + 316812 — 816)
" 6 6v6 72 288+/6n 144n 27648+/6n3/2
. t2(7—-2722) + 41 (91* —2) L [0 +36At* —144t? (24642 —61) + 17284 (64A* — 17) ]
1152n2 1327104+/6n5/2
These expansions will be instrumental in deriving the asymptotic results presented in the final sections.

+0(n?).

3 Matrix Semi-Classical Laguerre Weight

Inspired by the work of Durdn [12, 11], we introduce the following new non-scalar weight:

1+a®x? ax

Wa’l(x, t)= xheXiHtx [ ] , a€R. 6)

ax 1

In this section, we present a new family of matrix polynomials and establish their orthogonality with respect to the matrix
weight (6) (see Theorem 3.1). We also derive explicit expressions for the recursion coefficients in terms of a scalar Hankel
determinant (see Theorem 3.2), as well as for the matrix recursion coefficients in terms of the corresponding scalar ones (see
Corollary 3.3).

3.1 Matrix semi-classical Laguerre orthogonal polynomials

We propose the following family of matrix polynomials, {P,(x, t)},cy Of semi-classical Laguerre type constructed using scalar
semi-classical Laguerre polynomials {p,(x, t)},cx:

palx, t) —aa,(t)p,(x,t) —ab,(t)p,_,(x,t)
P,(x,t) = , n=0

—ab,(t)p,,(x,t) (@*b,(6) + Dp,(x, t) + a’a, 1 (t)b,()p,_1(x, t) + a*b, 1 (£)b,(t)p, o (x, )

where a,(t), b,(t) are defined in Theorem 2.2 and a € R. Observe that deg(P,) = n.
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3.1.1 Orthogonality relation

Theorem 3.1. For n € N, the matrix polynomials {P,},.y already introduced in (7) are orthogonal on (0, +00) with respect to the
matrix weight function Wa’l(x, t) (6), such that:

+00
f P, (x, )W (x, t) (P (x, 0))" dx = 6,,H, (1),
0
where the matrix H, ' (t) is given by:

pe(6) (1 +a2b,1 (0) T iz, bilt) 0 ]
0 (1 +ab, () pd® [T, b0 ]

Proof. The proof follows from the orthogonality properties of the scalar Laguerre polynomials and the structure of PP,,. In fact,

H;l(t)=[

P,(x, )WH(x, t) (B, (x, 1)) = xPet*’

P36, )P (3, £) + a®pryy (0, )P r (x, 1) —ab, ()Pt (x, )P, (x, t) + ap, (x, t)p,i1 (x, t)
®
—a b, (t)p,—1(x, )pm(x, t) +ap,(x, )p,1(x, t) Pa(, ) (x, ) +a?b, ()b, (O)p,, 1 (x, Op, 1 (x, 1)

For m ¢ {n—1, n, n+ 1}, by relation (3), it is clear that

f P, (x, W (x, t) P, (x, )7 dx = [0 0:| .
0 “ 0 0

For m = n, we obtain

j B,(x, ) WA(x, £) (By(x, £)T dx = [N“(t) + @ N (1) 0 ]
0

0 N, (8) +a® (b, (£))* N, (1)

Then, we replace N,(t) from Theorem 2.1.

For m = n+ 1, we find that the (1, 1), (2,2) and (1, 2) entries of (8) are zero. The nullity of the (2, 1) entry follows from the
identity:

N,(t) = b,(t)N,_,(¢).

In fact,
b, ()N, (t) = bn(t)fm (P (x, ) WH(x, 1) dx
0

= L+°° (Pn+1(x, t)+a,(t)P,(x,t)+ b,(t)P,_1(x, t)) W (x, )P, 4 (x,t)dx
= on xP,(x,t) Wa’l(x, t)P,_4(x,t)dx

0
= on pa(x,t) Wa’l(x, t) (xPn_l(x, t)) dx

0

+00
= J P,(x, YW (x, £) (Pn(x, t)+ a1 ()P, (x, t) + b1 ()P, _,(x, t)) dx =N,(t).
0

Finally, for m = n—1, a similar argument leads to:

+00 0 0
P, (x, )W) (x, £) (B (x,1))" d :[ ]
JO x x 1(x =14 0

3.1.2 Three-term Recursion Relation

Our main objective is to obtain explicit expressions for the coefficients in the recurrence relation satisfied by the semi-classical
Laguerre matrix polynomials.
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Theorem 3.2. The sequence of matrix Laguerre semi-classical orthogonal polynomials {Pn(x, t)}nEN defined in(7) satisfies the
following matrix three terms recurrence relation,

X]Pn(x: t) = an(t)Pn+1(x’ t) + ﬁn(t)Pn(x’ t) + Yn(t)Pn—l(xﬁ t):

where
r d g Ania(t)
1 aln Any1(0)
@2 Ay (041
a,(t)= >
0 dtz InAL(t)+1

a? dt2 InA41(6)+1

[ S e o 5220 a0 1o
1402 a4 (0 1402 L a0
Bn(t) = ,
fz Ai:it()t) an+a2 dz InAL(H)ap—1
L a 1+a2ﬁlnA"+1(t) 1+a2 2lnA (t)

2
1+a? 45 nan (0)

T 0

24 1

a2+
B

%nmn(r)

Ya(t) =

a2 d . Anea(t)
a3 lnAn(t)( In oy +2(r))

1-*-:12m InA,(t)

InA,(t)

dt2

when A, (t) is defined in Theorem 2.2.

Proof. from Theorem 3.1, we deduce the recursion relation:
X]Pn(x’ t) = an(t)Pn+1(x’ t) + ﬁn(t)Pn(x: t) + Yn(t)Pn—l(x: t)’

where

a,(t)= f xP,(x, OWH(x, ) (Ppyq (x,£))" dx Hyys,
B.(t)= f xP,(x, ) WH(x, £) (Po(x, )" dx H,,

Yn(t)=f XP,(x, )W (x, 1) (Byy (x,0))" dx H, s

Now, a straightforward calculation leads to

1 ant1()—ay(t) ﬂn(f)+‘12‘1n+l(f)bn+1(f) _ bp(B)=bpy () b 1+a? bn+1(f) 0
1+a2b,1(0) TaZby,(0) 14a2b,(0) () Tazh
a,(t) = , Ba(t)= » Talt)=
a®by ()+1 by ()=bny1(t) an(6)+a®by(t)ay_1(t) a4y (8)—an1(t)
0 1+a2bp11 (1) —a l+a2bn:;(t) 1+a2b,(t) ab (t) 1+a2b,(t) bn(t)

Considering the expressions

_ d n+1(t)
R T NG R

the result follows. |

b()— 5 InA (o),

Remark 1. The sequence {P,(x, t)},cy isSn’t monic, from it’s expression (7) we get the leading coefficient:

w1 (8)
A (t):[1 T4 ar @I 5 ]
8 0 dt2 InA(t)+1

Hence, we can define the monic semi-classical Laguerre matrix polynomials {P,(x, t)},cy such that:
Pa(x,0) = (A () Py, 0).
This new sequence satisfies a three terms recurence relation
XP(30, £) = Py (3, £) + Bu(6)Po(x, €) + 7, ()P (6, 1),
where f3,(t) = (4,() ™" Bu(1)A, (1) and 7,(t) = (A,()) " 7,()A,1(0).

The sequence of matrix orthogonal polynomials can be expressed in terms of scalar semi-classical Laguerre polynomials,
which facilitates the derivation of certain results.
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3.1.3 Representation in Terms of Scalar Polynomials

The matrix orthogonal polynomials {P,(x, t)},cy could be expressed as a linear combination of scalar ones such that:

P, (x, £) = A, (8) pax, £) + B, (£) pra (x, £) + G (8) pra(x, £), neN,
where
|1 —aa,(t) _ 0 —ab,(t) _|o 0
A“(t)_[o azbn(t)+1]’ B”(t)_[—abn(t) azbn(t)an_l(t)]’ C"(t)_[o azbn(t)bn_l(t)]'

We can easily see that the monic ones, P,(x, t) satisfies
P.(x,t)=1P,(x,t) +B,(t)P,_,(x,t) + C,(£)P,_,(x, 1), nen,

where I denotes the identity matrix and

a’a,(t)b,_, ()b, (t)

2 3
_a%ay(0)by(t) —ab,(t)+ a1 ()an ()b, (1) 0

= _ T+a2b,(t) T+a2b, (1) ~ _ 1+a2b,(t)
Bn(t) - _ aby(t) azan,l(t)bn(t) > Cn(t) - azbn,l(t)nbn(t) . (9)
1+a2b,(t) 1+a2b,(t) Tb(t)
a n

Which allows us to express the three terms recurrence relation fgn(t) and 7,(t) in terms of these coefficients En(t) and én(t)
such that

Bu(t) = a,(14B,(1) = B, (1), 7alt) = ba(O14B,(0)a,1(0) + Co(1) = Con () = Bo(0)B, (1) (10)
These relations facilitate the computation of the asymptotic expansion in the next sections.

Corollary 3.3. The monic semi-classical Laguerre matrix polynomials {Pn(x, t)}neN satisfies

X P (5, £) = Py (3, £) + Bo(O)Po(x, 0) + 7, ()P (X, 1), ne{1,2...},
with
) @11 (b (D) - a1 (Oba(8) G (Db ()
Ba(t) = 1+a?b,(t) 1+a2b,4 (1) @ (bnin (0) bn(t))+a3an(f)( 14a%b,(t)  1taZbuai(0) )
o 2basa(t) = blt) @a,,(Ob() | ay(6) :
(1+a2b,(0)(1 +a2by (1)) 1+a%b,(t)  1+a2b,(t)

o=@ 7,40

Yn(t) - |:,)7r211(t) ?iz(t)]’
where
FU(e) = ba(6) (1 + @b ()L + @b (1) + a*(a,(6) — @, (1)a, (1))
T (1+a2b,(0))? :
12 ab,(t) ((1 +a?b,(t)) (an(t)(l +a?b,_,(t)) _anfl(t)ai(t)_anfl(t)azbnﬂ(t)) +a%a, ,(t) (an,l(t)an(t) —a(0)— bn(t)))
7A(t) = RO |
~21(t) _ a(an(t) _an_l(t))bn(t)
N RN ()
2y = PO (A @0 (0N + brs(0) + @1 (0 (1) — au(1)
7r(t) = '

(1+a?b,(1))?

4 Large-t Asymptotics

Theorem 4.1. As t — 0o, the coefficients (9), B,(t) and C,(t) have the asymptotic expansions

b b¢ b
D a .2 a a 1%n 2%n 3%n
Bn(t)—zbn[ +1bnt+0bn+ ; +T+?+O(F),

= “ W -1 G _3Ch  _aCy 1
C,(t)=qcit+oc, + . + 2 + 3 + v +0 =)

where
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o 20°An [—4A—4+n(4+2a*(A—2)) +n?(a*(A—1)—2a%) —2a*n® 0
3T (24 a2n)3 0 4% —4—n(4 + 4a® + 2a*1) + n?(2a® — a*(1 + 1)) + 2a*n®
ain 8+a2n(16—4azA)+a4r12(16—a27L)+5a6n3
_ ba = — 2 2 ,
2% T (2 + a2n)? 4 +8 n

b — a*An®* [-1 0
T 2+ae2n)2| 0 1)

an 0 1 4—2a%A+4a*n—2a* An+a*n?
obd=— 2 24+a2n s
n 2+a’n |7 0
e — a’n -1 0
"n ™ 2(2+a2n) | 0 1|’
a®n
obl = 8+4a2n |,
0 0
-0 a’n(n—1) 1
16, = 4(2+da%n) |,
0
_0 o Z
o€y = 0 a®n(n-1) | »
i 2(2+a2n) ]
-0 _ a3 An(n—1)
icp = (2+a2n)? |,
0
[0 0
oy = 0 _azl(n—l)(4n+a2n2) B
| (2+a?n)?
[ a3A(n—l)n(167L+8a21n+a47m2—(2+a2n)[8(n—1)—4a2n+a2n2])
aCp = (2+a2n)3
| 0

Proof. Taking into account the asymptotic expensions (4) of a,(t) and b,(t), we have:

_da,(t)b,(t) _

14+a2b,(t)

—ab, () + ala,_,a,(t)b,(t) _

a’n _dan® 1
2(2 +a%n) (2+a2n)? t
N 282 An[ A(—4 + a®n(2 + a®n)) — (2 + a®n)(2 + n(—2 + a*(1 +2n)))] 1 +(9( 1 )

(2+ a2n)3 t3 ’

1+a2b, ()

a’a, 1 (0)b,(t)

a*n 2_(&_ a3)un(1+a2n))
8 +4a’n 2 (2 +a2n)?
aln[8+a2n(16—4a2()t—4n)+a4n(—l+5n))] 1 1
¥ +o(2),
(2+a2n)3 t2

a’n a*An? 1

1+ a2b,(t) -

a’a, ()b, ()b,(t) _

t+ =
2(2+ a2%n) (2+a%2n)? t
2a27tn[4—4?t+2(2+a2(2+)t))n+a2(—2+a2(1+A))n2—2a4n3] 1 1
— oft)
(2+a2n)? 3 £5
a®(n—1)n a*A(n—1n 1

14 a2b,(t) N

4(2 + a?n) (2+a2n)2 t
a*An—1)n[A(4+a?n)® — (2 + a®n)(—8 + (8 + a®(n—4))n) | 1
+ (2 +a2n)3¢3 +O( )’

Dolomites Research Notes on Approximation

ISSN 2035-6803

|



/O‘A\,\ Fradi 18

_ ab,(t) ___an 4ain 1

1+a2bn(t)_ 2+a?n  (2+a2n)? t2
8akn[3n(2+a2n)—27t(3+a2n):| 1 1

o)

(2+a2n)3 t4

a?b, ()b, (t)  a*(n—1)n _ a®AMn—=1)(4n +a*n?) 1

14+a2b,(t) ~ 2(2+a2n) (2 + a2n)? £2
2a2AM(n—1)n[—3(2 + a®n)(—2 + (4 + a®(n— 1))n) + A(28 + 3a®n(6 + a*n)) ] 1 1
+ —+o[=).
(2+a2n)3 t4 ( t6 )

From the expressions of B, (t) and C,(t) (9), truncating the previous expansions at the appropriate order yields the desired
result. =

Taking these expressions into account, we deduce the large-t asymptotic expansions of the recurrence coefficients ﬁn(t) and
7,.(t) associated with the monic polynomials. For computational purposes, the expansions will be truncated at third order.
Theorem 4.2. As t —> 00, the recurrence coefficients (10) B,(t) and 7,(t) have the asymptotic expansions

a a
5 B ey 1
B0y =g e Br e oy + =+ 224 0 )
a a
. 4 e —2Yn  —3Vn 1
Ta=aypttor,+ =55+ 57+ O(F ,
where

0 —(16+a® (24 +48n + 5a%(2 + n(4 + a*(n + 1)))?)) + 2a*
4(a*n(n+1)—4) 0

p’a =___ a
—2Fn T @raZnZera ()2

(16+32n+a%(4+n(n+1)(6+a*n)(6+a®(n+1))))A
(2+a2n)(2+a2(n+1)) :|

B = 2 16 + a?(16 + 32n + a*(n + 1)(8 + n(24 + a®(n + 1)(8 + a®n)))) 0
—Wn T @r?nRe? (1) 0 16+ a*(16 + n(32 + a®(16 + n(24 + a*(n + 1)(8 + a*>(n+ 1)) |’
a 0o 1 a?(4+a?(4+8n)+3a*n(n+1))A
a— 2 2+a?n)(2+a2(n+1 s
o (2+a%n)(2+a%(n+1)) |5 ( ())( (n+1))
ri 1 1
ﬂa _|2 + 2+¥aZn  2+a2(n+l) 0
1P, = 0 1__1_ . 1 B
L 2 2+a?n 2+a2(n+1)
[0 . _a
ﬁﬂ — 2(2+a2n)(2+a2(n+1)):|
o 0 ’
r 3
m=[0 ]
n 0 0 ’
[ n(2+a2(n+1)) 0
0}/‘1 = 4+2a?n 1 R 1 i|’
0 2 + 2 + 2+a2n
a_ An 4+4a’n+a*n(n+1) 0
2T = T o 2n)2 0 4+ 4a’n+a*tn—1n|’
ain 2(8+a%(—20A+n(40+14a(2n—A)+a*n(5n—1))))
Y= 2+a?
= Gt ey o ( 61 n)

Proof. It suffices to apply the previous theorem 4.1 in combination with the relation (10). The remainder of the proof follows by
straightforward computation. O

As a consequence,
] — 2 Ly’ —
Ba(t) ~ =By 7+ 1Byt + 0By, Talt) ~ =arpt+ory

In particular, for a = 0 we recover the scalar case [8, Lemma 5.3]:

1 n
By 1 9 L)
~ = 2 v ~y = 2
Ba(t) [0 %] t, Fal0) [0 g]'
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5 Large-n Asymptotics

Theorem 5.1. Suppose a # 0. As n — 00, the coefficients (9), B,(t) and C,(t) have the asymptotic expansions

- *%b(tl ¢ 1
B (t)=1b{n+ 1bf vn+ob + + +O(—3),

Jn n n2
~ 3 —%Cta 1
C,(t)= %CSHZ +1cfn+%cf\/ﬁ+ocf+ﬁ+ O(H),
where
I a
pa=|0 2
1% 0 0 s
B 2 at
b= -V m}
3t 2|’
Y 5
[t 4 a ;2 a
pa—| 8 —a 7t ﬁk]
oY _1 t 5
L «a 6
a?(42+t2—4)+96 at(¢?+121)
1 bY = 8a2v/6 9616
-zt 0 _ (4A+2+4)+96 |
| 8a2/6
r_1.(72 2 24 | 2624122 1 4 2 2
—=t(B+t2+61) 2 partiad gy La(2t 424624 + 15302 — 54)
-1 b‘: = >
2(t2+60)+72 1,.(72 2
L 1243 7_2t(a_2+t +6)L)
a
3¢t = 0 376
2t o o0
r at
0 %
lcf = 3
0 3
_O a?(5¢2+122—36)—288
B 144v/6a
%Ct = >
t
0 &6
r a?e(t2+121-18)—72¢
a 0 432a
Oct = s
1 1
L0 i@
'0 55296+192a%(7t2+36A+36 )+a* (13t*+24r2+152r2A—336+2881—9612)
4608v6a3
_icl =
3t
0 3+12¢A—24t
L 288v6

Proof. Taking into account the asymptotic expensions (5) of a,(t) and b, (t), we derive those of a,_,(t) and b,_,(t):

L+ 2 2+12(-1 —t*—24t2(—1 - A(1
o (t)= ?n+£+t+ ( +A)+ t 4t°(—14+A)+48(—5+6A(1+ 1))

6 24+/6n 2304+/6n3/2
t(—=2+9242) 5+ 36t%(—=1+A)—1728(—=1+ A)(—1 +21)(3 + 4A) + 144t3(—13 — 61 + 6612)
144n2 110592+/6n5/2
—12t(=1+A)(—2 )+ t3(=7 + 2722
N (=1 +A)(—249A%)+ t>(—7+ 27 )+O(n,7/2),
1728n3
n t t24+61—12 t(t2+121—24) 2-—92?
by (t)==+——=vn+ +
' 6 6v6 72 28864/ 144n
t (¢4 +24t%(2 —2) + 48(66A% — 121 —5)) . £2(7 — 27A%) + 4(A — 2)(9A% — 2)
27648+/6n3/2 1152n2
t7 +36t5(A —2) — 144t3(6A(41A + 2) — 73) + 1728t (A — 2)(64A> — 41— 13) N
+ +0(n™).
1327104+/6n5/2
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Next, we establish the asymptotic expansions of each component of B,(t) and C,(t), following the approach used in the proof of
Theorem 4.1 (albeit with more complex expressions). Finally, by truncating these expansions at the appropriate order, we obtain
the desired result. o
Taking these expressions into account, we obtain the asymptotic expansions of the recurrence coefficients f,(t) and 7,(t).

Theorem 5.2. Suppose a # 0. As n — 00, the recurrence coefficients (10) ,(t) and ¥,(t) have the asymptotic expansions

_1Bd e 1
iy P +0 (—3)
v n n2

1Yt 1
~ 2
R =iy Vi + S v o1,

Bu(t) =17 n+ 1 B I+ o +

where

t2+12(-1+21) at
LB = 246 446
—1P; 0 t2+12(3+A) |’
2446
o
ﬁa_ 6 ]’
oMt -0 é

ol
=)
~a
Il
o
w
§| o
wiN
[

a
o |55 —2[75]’

17, =
S S
o= [ 5 (t>+12+61) 1 -4 ]
= ) ,
CL 0 ﬁ(t —12+61)
M t(t2+124+61) 12—a?
1y = 2886 4+/6a
-5t 0 t(t2—12+61) |*
28846

Proof. We substitute n + 1 into the given expression for B,(t) and ,(t). We expand each term using asymptotic expansions
around infinity, we obtain:

1b¢ 1b¢ b¢
) _ a a a 3t a 3t —1%¢ —3/2
Bn+1(t)_1btn+1b[+%btﬁ+2ﬁ+ob[+ Wi +—n +0(n™"?),
C _ a % a a 3 a 1/— a a 3 a 1 a a 1 O( —1)
n+1(t)—%ctn +cin+ %ct-i-E%c[ n+ (¢ +oc;)+ g%C[-i—E%Ct-i-_%C[ ﬁ-{_ n).
Thus:

. . 1 _

Bn(t)_Bn+1(t)=_1bf_%b?m +0(n™?),

- ~ 3 3 1 1 =

Cn(t)—CnH(t)=—§%cfﬁ—1cf—(§%cf—E%Cf)—n+0(n ).

To finish the proof, we use the relation (10).
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