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Abstract

In the present paper we introduce and study an extended product quadrature rule to approximate Hadamard
finite part integrals of the type

Hp( f U , t) =

∫

=
+∞

0

f (x)
(x − t)p+1

U(x)d x , t > 0, p ∈ N, U(x) = e−x xγ, γ≥ 0.

Hypersingular integrals arise in many contexts, such as singular and hypersingular boundary integral
equations, which are tools for modeling many phenomena in different branches of the applied sciences.
Here we derive an extended product rule and by a mixed combination with the one weight product
rule introduced in [9], we propose a compound scheme of quadrature rules which allows a significant
reduction in the number of evaluations of the density function f . Conditions assuring the stability and
the convergence of the the mixed scheme in weighted uniform form are deduced. Some numerical
experiments are also given, in order to highlight the efficiency of the mixed approach.

1 Introduction
This paper deals with the approximation of integral transforms of the type

Hp( f U , t) =

∫

=
+∞

0

f (x)
(x − t)p+1

U(x)d x , t > 0, p ∈ N, U(x) = e−x xγ, γ≥ 0, (1)

where the integral on the right-hand side is defined as the finite part in the Hadamard sense. Integrals of this kind are also called
“hypersingular integrals” and arise in many contexts, such as singular and hypersingular boundary integral equations, which are
tools for modeling many phenomena in different branches of the applied sciences (see for instance [1], [14], [18], [27] and the
references therein).

Here we propose an “extended product quadrature rule” obtained by replacing the function f by an extended Lagrange
polynomial which interpolates f at two related sets of zeros of orthogonal polynomials. This rule, suitably combined with the
one set product rule introduced in [9], allows to consider a compound scheme of quadrature formulae, organized so that a
significant reduction in the number of samples of f is obtained. This mixed approach will find application in the construction of a
fast numerical method for hypersingular integral equations, similar to that proposed in [23] for second kind Fredholm integral
equations.

Then we determine conditions assuring the stability and the convergence of the the mixed scheme, in some weighted uniform
spaces of functions. Despite the simplicity of the approach, the success of any product rule is based on the "exact" computation of
the coefficients, topic that is not yet easy, since any kernel k(x , t) appearing in the integral involves specific techniques. In the case
of the one weight product rule (shortly OWPR) studied in [9] for the kernel k(x , t) = (x − t)−p−1, the coefficients were constructed
by means of the modified moments involving Laguerre polynomials, generated by some recurrence relations determined there.
Unfortunately the same recurrence relations do not hold in the case of the extended rule coefficients, where some generalized
modified moments appear, which involve the product of two Laguerre polynomials. Here we determine a recurrence relation for
the generalized modified moments, whose construction starts from the ordinary modified moments.

Then we propose to employ the extended rule for composing a sequence of product rules organized in such a way that
a significant reduction of samples of f is carried out. This saving is based on the representation of the extended Lagrange
polynomial in terms of two ordinary Lagrange polynomials w.r.t. the weight w and the weight w̄, separately (see (12)). As we
will show, the mixed quadrature sequence allows to reduce of one third the number of samples of f .
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The plan of the paper is the following: next section contains some preliminary results and notations. In Section 3 we present
a result of simultaneous approximation of a function f and its derivatives by means of a composite Lagrange polynomial sequence
and results about the convergence are given in Sobolev-type weighted spaces of functions. In Section 4 we state the new product
rule with some results about its stability, and an estimate of the error is obtained. Moreover, we will construct a mixed sequence of
product rules which allows to approximate Hp( f ) with a reduced number of evaluations of the density function f . In Section 5 we
provide some details about the computation of the coefficients of the extended product rule and then we propose some numerical
experiments, in order to show the efficiency of the mixed sequence of product rules also in comparison with the sequence of
ordinary ones. Finally, in Section 6 the proofs of the main results are presented.

2 Definition and preliminary results
Throughout the paper the constant C will be used several times, having different meanings in different formulas. Moreover from
now on we will write C 6= C(a, b, . . .) in order to say that C is a positive constant independent of the parameters a, b, . . ., and
C = C(a, b, . . .) to say that C depends on a, b, . . .. Moreover, if A, B ≥ 0 are quantities depending on some parameters, we will
write A∼ B, if there exists a constant 0< C 6= (A, B) such that

B
C
≤ A≤ CB.

Finally, Pm will denote the space of the algebraic polynomials of degree at most m.

2.1 Function spaces

With U(x) = e−x xγ, γ≥ 0, we denote by CU the following space of functions

CU =



















¨

f ∈ C0((0,+∞)) : lim
x→+∞
x→0+

( f U)(x) = 0,

«

if γ > 0,

n

f ∈ C0([0,+∞)) : lim
x→+∞

( f U)(x) = 0,
o

if γ= 0,

equipped with the norm
‖ f ‖CU

:= ‖ f U‖= sup
x≥0
|( f U)(x)|∞ .

In the case γ= 0, the space CU consists of all continuous functions on (0,+∞).
For smoother functions, we introduce the Sobolev-type spaces of order r ∈ N

Wr(U) =
�

f ∈ CU : f (r−1) ∈ AC((0,+∞)) and ‖ f (r)ϕr U‖< +∞
	

,

where AC((0,+∞)) denotes the set of all functions which are absolutely continuous on every closed subset of (0,+∞) and
ϕ(x) =

p
x . In what follows we will mean W0(U) = CU . We equip these spaces with the norm

‖ f ‖Wr (U) := ‖ f U‖+ ‖ f (r)ϕr U‖.

Denoting by
Em( f )U = inf

P∈Pm
‖( f − P)U‖∞,

the error of the best polynomial approximation of f ∈ CU , we recall from [3] that for any f ∈Wr(U), r ≥ 1,

Em( f )U ≤ C
‖ f ‖Wr (U)

(
p

m)r
, 0< C 6= C(m, f ). (2)

Analogously, by replacing the weight U(x) = e−x xγ, γ≥ 0, with u(x) = e−
x
2 xγ, γ≥ 0, the space Cu is defined. In the case the

parameter γ is the same in u and U , we have Cu ⊂ CU .

2.2 Orthogonal polynomials

Let w(x) = e−x xα be the Laguerre weight of parameter α > −1 and let {pm(w)}m be the corresponding sequence of orthonormal
polynomials with positive leading coefficients

pm(w, x) = cm(w)x
m + terms of lower degree, cm(w)> 0.

Denoting by {xm,k =: xk}mk=1 the zeros of pm(w) in increasing order, we have that

C
m
≤ x1 < x2 < . . . xm ≤ 4m+ 2α+ 2− C(4m)

1
3

and that

∆xk := xk+1 − xk ∼
√

√ xk

4m− xk
, k = 1,2, . . . , m− 1.
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From now on, for a fixed 0< θ < 1, we will denote by j = j(m) the index defined as

x j = x j(m) =min {xk : xk ≥ θ4m, k = 1, 2, .., m} . (3)

Moreover, related to the weight w, let us introduce the weight w(x) = xw(x). Denoting by {yk}m−1
k=1 the zeros of the

corresponding (m−1)-th orthonormal polynomial pm−1(w), we recall that the zeros of pm−1(w) interlace those of pm(w) [19], i.e.,

xk < yk < xk+1, k = 1, 2, . . . , m− 1.

Thus the polynomial Q2m−1 := pm(w)pm−1(w) has simple zeros and, setting

z2i−1 := x i , i = 1, 2, . . . , m, z2i := yi , i = 1,2, . . . , m− 1,

it follows that

∆zk = zk+1 − zk ∼
s

zk+1

m
, k = 1,2, . . . , 2 j,

with j defined as in (3), uniformly in m ∈ N [19].

3 Lagrange interpolation processes
Denote by Lm+1(w, f ) the truncated Lagrange polynomial [13], which interpolates a given function f at the zeros {xk}mk=1 of
pm(w, x)(4m− x), i. e. with j as defined in (3), let

Lm+1(w, f , x) =
j
∑

k=1

`m,k(w, x) f (xk)
4m− x
4m− xk

, `m,k(w, x) =
pm(w, x)

p′m(w, xk)(x − xk)
.

We recall that [13]
Lm+1(w, f ) = f , ∀ f ∈ P∗m,

where
P∗m = {q ∈ Pm : q(4m) = 0= q(x i), i > j} ⊂ Pm.

About the simultaneous approximation of f in the weighted uniform norm, the following theorem was proven in [7].

Theorem 3.1. Let w(x) = xαe−x , u(x) = e−
x
2 xγ,γ≥ 0, and assume that

max
�

0,
α

2
+

1
4

�

≤ γ≤
α

2
+

5
4

. (4)

If f ∈Wr(u), r ≥ 1, then for 0≤ k ≤ r − 1, it holds

‖( f − Lm+1(w, f ))(k)ϕku‖ ≤ C
log m
(
p

m)r−k

�

‖ f ‖Wr (u) + e−Am‖ f u‖
	

, 0< C 6= C(m, f ). (5)

In the case of the ordinary Lagrange polynomial interpolating f at the zeros of pm(w, x)(4m− x), the previous theorem was
proved in [15].
Remark 1. By (5), under the assumptions (4), it follows for f ∈Wr(U), r > 1,

‖Lm+1(w, f )‖Wr−1(u) ≤ C
�

‖ f ‖Wr (u) + ‖ f ‖Wr−1(u)

�

. (6)

Besides the one-weight Lagrange polynomial, consider the extended truncated Lagrange polynomial interpolating a function
f at the zeros of Q2m−1(x)(4m− x) [19], i.e., with j defined as in (3),

L2m(w, w, f , x) =
2 j
∑

k=1

Q2m−1(x)(4m− x)
(4m− zk)Q′2m−1(zk)(x − zk)

f (zk) ∈ P2m−1. (7)

Letting
P∗2m−1 = {q ∈ P2m−1 : q(4m) = 0= q(zi), i > 2 j} ⊂ P2m−1, (8)

L2m(w, w̄) is a projector of CU onto P∗2m−1. Moreover, setting

eE2m−1( f )U := inf
P∈P∗2m−1

‖( f − P)U‖,

the quasi best approximation error of f in CU , it can be estimated by means of the best approximation error EM ( f )U , where M is a
proper fraction of 2m− 1, i.e. [16],

eE2m−1( f )U ≤ C
�

EM ( f )U + e−Am‖ f U‖
	

, ∀ f ∈ CU , (9)

with M =
�

(2m− 1)
�

θ
1+θ

��

and the constants 0< A 6= A(m, f ), 0< C 6= C(m, f ).
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We recall here the following estimate of the error of best polynomial approximation Em( f )U , holding for any f ∈Wr(U) [3]

Em( f )U ≤
C

(
p

m)r
Em−r( f

(r))Uϕr , (10)

which gives

Em( f )U ≤ C
‖ f (r)ϕr U‖
(
p

m)r
, (11)

where C 6= C(m, f ) in all estimates.
The polynomial L2m(w, w, f ) can be represented in the following useful form

L2m(w, w, f , x) = pm−1(w, x)Lm+1

�

w,
f

pm−1(w)
, x
�

+ pm(w, x)Lm

�

w,
f

pm(w)
, x
�

= pm−1(w, x)(4m− x)
j
∑

k=1

`m,k(w, x)
f (xk)

pm−1(w, xk)(4m− xk)
(12)

+ pm(w, x)(4m− x)
j
∑

k=1

`m−1,k(w, x)
f (yk)

pm(w, yk)(4m− yk)
,

`m,k(w, x) =
pm(w, x)

p′m(w, xk)(x − xk)
, `m−1,k(w, x) =

pm−1(w, x)
p′m−1(w, yk)(x − yk)

,

which will be employed in our successive results. Indeed, by this representation the samples of f involved in the extended
polynomial are split into the sets { f (x i)}mi=1 and { f (yi)}m−1

i=1 . Thus, whenever the polynomial Lm+1(w, f ) (or Lm(w, f )) has been
constructed, the computation of L2m(w, w, f ) requires at most m new values of f (or m+ 1).

Next theorem is new and it deals with the simultaneous approximation of a function f by the extended Lagrange polynomial
in (12)

Theorem 3.2. Let f ∈Wr(U), with r ∈ N and let 0≤ k ≤ r − 1. If the parameters α,γ satisfy the assumption

α+ 1≤ γ≤ α+ 2,

then we have

‖( f − L2m(w, w, f ))(k)ϕkU‖ ≤ C
�

log m
‖ f ‖Wr (U)

(
p

m)r−k
+ e−Am‖ f U‖

�

, (13)

where the constants 0< A 6= A(m, f ), 0< C 6= C(m, f ).

Remark 2. By (13) it follows for f ∈Wr(U), r > 1

‖L2m(w, w, f )‖Wr−1(U) ≤ C
�

‖ f ‖Wr (U) + ‖ f ‖Wr−1(U)

�

. (14)

Remark 3. For k = 0, it was proved in [19].
Now we state a general result about the simultaneous approximation of functions by means of a suitable sequence of Lagrange

interpolating polynomials, requiring a reduced number of samples of the function we want to approximate. Indeed, by the
convergence results about the one-weight interpolation process and the extended one, we have two polynomial sequences
{Ln(w, f )}n∈N and {L2n(w, w, f )}n∈N that, under suitable common assumptions, uniformly converge to f ∈ CU , with the same
speed of convergence. Moreover, in view of (12), after having determined Lm+1(w, f ), the construction of L2m(w, w, f ) requires
only m evaluations of the function f , that can be of interest in approximation methods employing Lagrange polynomial sequences.
Thus, for a fixed integer m> 1, we consider the sequence Lm+1(w, f ), L2m(w, w, f ), L4m+1(w, f ), L8m(w, w, f ), . . . . Thus, for each
integer n≥ 0, we define the following mixed polynomial sequence {L2nm( f )}n:

L2nm( f , x) =
§

L2nm+1(w, f , x), n= 0,2, 4, . . .
L2nm(w, w, f , x), n= 1,3, 5, . . . . (15)

About the convergence, we can claim the following

Theorem 3.3. Under the assumption

α+ 1≤ γ≤
α

2
+

5
4

,

for any f ∈Wr(U), r ≥ 1 and 0≤ k ≤ r − 1 we have

‖[ f −L2nm( f )]
(k)ϕkU‖∞ ≤ C

log2nm

(
p

2nm)r−k
‖ f ‖Wr (U),

where C 6= C(n, m, f ).

Remark 4. We omit the proof of the previous theorem, since it can be easily deduced by combining the results of Theorems 3.1
and 3.2.
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Remark 5. In some cases the sequence (15) can replace the usual sequence {L2n+1(w, f )}n commonly implemented in the
approximation processes, with the considerable advantage of reducing of one third the global number of function evaluations.
One application will be proposed in the next Section for the approximation of Hadamard integrals of the type (1). Similar mixed
schemes have been employed in the construction of product rules for ordinary integrals in (−1, 1) [22] and in (0,+∞) [26]. We
point out that similar constructions can also be implemented for the approximation of functions on the real line, since efficient
extended Lagrange interpolating processes have been studied either in uniform norm and in mean weighted norm ([24], [25]).

4 Product integration rules for Hadamard integrals
In what follows we will consider hypersingular integrals defined as the finite part of divergent integrals, in the Hadamard sense.
Many properties fulfilled by finite part integrals can be found in [17], [10], [18], [27] in the case of bounded intervals and in [7],
[8], [6], [20] in the case of unbounded ones. Let us start by providing sufficient conditions on f to assure the existence of the
integral (1). By [5, Th. 3.1], the following result immediately follows

Theorem 4.1. Let p ≥ 1, γ≥ 0. If f ∈Wp+r(U), r ∈ N, r ≥ 1 then for any t > 0

t p|Hp( f U , t)| ≤ C‖ f ‖Wp+r (U), 0< C 6= C( f , t).

Remark 6. The statement of the previous theorem is also valid under weaker assumptions on f , namely assuming f in weighted
Zygmund-type spaces of functions.

About the approximation of integrals (1), we recall the following product rule, to whom we refer as the one-weight product
rule:

Hp,m+1( f U , t) =
j
∑

k=1

f (xk)Ck(t), Ck(t) =

∫

=
+∞

0

4m− x
4m− xk

`m,k(w, x)

(x − t)p+1
U(x)d x , (16)

ep,m+1( f U , t) = Hp( f U , t)−Hp,m+1( f U , t), (17)

with j defined as in (3). The rule (16) is exact for the polynomials in P∗m, i.e.

ep,m+1( f U , t) = 0, ∀ f ∈ P∗m.

Regarding the stability and the convergence of the rule (16) the following theorem can be deduced from [9, Th. 3.2]

Theorem 4.2. For any t > 0, if f ∈Wp+2(U) and α,γ satisfy the assumption

max
�

0,
α

2
+

1
4

�

≤ γ≤
α

2
+

5
4

, (18)

we have

t p|Hp,m+1( f U , t)| ≤ C
�

‖ f ‖Wp+1(U) +
log m
p

m
‖ f ‖Wp+2(U)

�

<∞,

where 0< C 6= C(m, f , t). Moreover, if f ∈Wp+r(U), r ∈ N, r ≥ 2, then we obtain

t p|ep,m+1( f U , t)| ≤ C
‖ f ‖Wp+r (U)

(
p

m)r−1
log m, 0< C 6= C(m, f , t). (19)

One of the advanyages of this kind of approach is that no derivatives of the density function f are involved, unlike with other
procedures require (see [11], [12] for bounded intervals and [4], [8] for unbounded ones.) The same good property is shared by
the product integration rule we now propose, which is based on the extended Lagrange interpolating polynomial in (12). By
approximating f in (1 ) by the Lagrange polynomial L2m(w, w, f ), the following extended product integration rule can be deduced

Hp( f U , t) = Hp,2m( f U , t) + Rp,2m( f U , t), Hp,2m( f U , t) =
j
∑

k=1

( f (xk)Ak(t) + f (yk)Bk(t)) (20)

Ak(t) =
1

pm−1(w, xk)(4m− xk)

∫

=
+∞

0

pm−1(w, x)(4m− x)
`m,k(w, x)

(x − t)p+1
U(x)d x , (21)

Bk(t) =
1

pm(w, yk)(4m− yk)

∫

=
+∞

0

pm(w, x)(4m− x)
`m−1,k(w, x)

(x − t)p+1
U(x)d x . (22)

By definition of L2m(w, w̄, f ), the rule is exact for any polynomial P ∈ P∗2m−1, P∗2m−1 being defined in (8). Moreover, performing
its construction after that of the one- weight rule (16), only additional j function’ evaluation are required. This allows to double
the degree, by using only half new samples of f . About the stability and the convergence of the rule (20), we can claim the
following

Dolomites Research Notes on Approximation ISSN 2035-6803
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Theorem 4.3. For any t > 0, if f ∈Wp+2(U), and α,γ satisfy

α+ 1≤ γ≤ α+ 2 (23)

then
t p|Hp,2m( f U , t)|<∞. (24)

Moreover, assuming f ∈Wp+r(U), r ∈ N, r ≥ 2 one has

t p|Rp,2m( f U , t)| ≤ C
‖ f ‖Wp+r (U)

(
p

m)r−1
log m, (25)

where 0< C 6= C(m, f , t).

At first we observe that if the computation of Hp,2m( f U , t) follows that of Hp,m+1( f U , t), only j new function evaluations are
needed, i.e. the degree of approximation is doubled by using the half number of required samples of f . Moreover, as we will
show in the Section Computational details the coefficients of the product rules (16) and (20) are closely connected, since the
latter can be obtained from the first.

By exploiting these properties, we now propose a mixed scheme of product rules, in order to obtain a significant saving in the
approximation process of Hp( f U). Let {L2nm( f )}n be the polynomial sequence defined in (15). By approximating the function f
in Hp( f U) by the sequence {L2nm( f )}n, i.e.

Hp( f U , t) =

∫

=
+∞

0

L2nm( f , x)
(x − t)p+1

U(x)d x + R(p)2nm( f , t) =: T (p)2nm( f , t) + R(p)2nm( f , t), (26)

define the sequence {T (p)2nm( f , t)}n as

T (p)2nm( f , t) =











Hp,2nm+1( f U , t), n= 0, 2,4, . . .

Hp,2nm( f U , t), n= 1, 3,5, . . .

(27)

In the next theorem we state conditions assuring that the rule (26) is stable and that the sequence {T (p)n ( f , t)}n converges
pointwise to Hp( f U , t).

Indeed, the following result about the stability and the convergence of the mixed sequence holds true

Theorem 4.4. Under the assumptions −1< α≤ 1
2 and

α+ 1≤ γ≤
α

2
+

5
4

, (28)

for any f ∈Wp+2(U) we get

t p|T (p)2nm( f U , t)|<∞. (29)

Moreover, if f ∈Wp+r(U), r ∈ N, r ≥ 2, then

t p|Hp( f U , t)− T (p)2nm( f U , t)|| ≤ C
‖ f ‖Wp+r (U)

(
p

2nm)r−1
log(2nm), (30)

where 0< C 6= C( f , t, n, m).

From the previous result we can conclude that when the assumptions of the Theorem 4.4 hold, the sequence {T (p)2nm( f U , t)}n
can replace the commonly implemented sequence {Hp,2nm+1( f U , t)}n, since they have the same rate of convergence. Moreover,
a suitable algorithm for generating odd elements of the mixed sequence with the reuse of the samples employed in the even
ones, allows to save one third w.r.t. the function evaluations necessary in computing corresponding elements of the sequence
{Hp,2nm+1( f U , t)}n.

5 Computational details and numerical tests
First we provide some details for computing the coefficients of the rules (16), (20). Indeed, as it is known, a large effort in
the construction of product integration rules is due to the “exact" computation of the coefficients. Usually in the case of the
one-weight product rule (16) the coefficients have been computed via modified moments. To be more precise, recalling the
following expressions of the fundamental Lagrange polynomials

`m,k(w, x) = λm,k(w)
m−1
∑

i=0

pi(w, x)pi(w, xk), k = 1,2, . . . , m, (31)

the coefficients {Ck(t)}
j
k=1 in (16) take the form

Ck(t) =
λm,k(w)

(4m− xk)

m−1
∑

i=0

pi(w, xk)Hp((4m− ·)pi(w)U , t),

Dolomites Research Notes on Approximation ISSN 2035-6803
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where {Hp((4m − ·)pi(w)U , t)} j
i=0 are the Modified Moments (MMs) w.r.t. the hypersingular kernel k(x , t) := 1

(x−t)p+1 and
{λm,k(w)}mk=1 are the coefficients of the m−th Gauss-Laguerre rule. Since in [9] suitable recurrence relations for the modified
moments were determined, we focus our attention on the computation of the coefficients in the rule (20), i.e. {Ak,Bk}

j
k=1.

In view of (31) and

`m−1,k(w, x) = λm−1,k(w)
m−2
∑

i=0

pi(w, x)pi(w, yk), k = 1, 2, . . . , m− 1,

we have

Ak(t) =
λm,k(w)

(4m− xk)pm−1(w, xk)

m−1
∑

i=0

pi(w, xk)Hp((4m− ·)pi(w)pm−1(w)U , t) (32)

Bk(t) =
λm−1,k(w)

(4m− yk)pm(w, yk)

m−2
∑

i=0

pi(w, yk)Hp((4m− ·)pi(w)pm(w)U , t). (33)

Denoting by Mi,k(t) the Generalized Modified Moments (GMMs) w.r.t. k(x , t), i.e.

Mi,k(t) =

∫

=
+∞

0

pi(w, x)pk(w, x)
(x − t)p+1

U(x)d x , i = 0,1, . . . , k = 0,1, . . .

(Mi,k(t) 6= Mk,i(t)), the coefficients Ak,Bk take the form

Ak(t) =
λm,k(w)

(4m− xk)pm−1(w, xk)

m−1
∑

i=0

pi(w, xk)
�

(4m− bm−1(w))Mi,m−1(t)− am(w)Mi,m(t)− am−1(w)Mi,m−2(t)
�

(34)

Bk(t) =
λm−1,k(w)

(4m− yk)pm(w, yk)

m−2
∑

i=0

pi(w, yk)
�

(4m− bm(w))Mm,i(t)− am+1(w)Mm+1,i(t)− am(w)Mm−1,i(t)
�

, (35)

where ai , bi are the coefficients of the three term recurrence relation for the orthonormal Laguerre polynomials

p1(w, x) = 0, p0(w, x) =
1

p

Γ (α+ 1)
,

ai+1(w)pi+1(w, x) = (x − bi(w))pi(w, x)− ai(w)pi−1(w, x) (36)

ai(w) =
Æ

i(i +α), bi(w) = 2i +α+ 1.

Assuming that the ordinary modified moments have been determined by the procedure described in [9], we show how to
compute the GMMs starting from them. To be more precise denoting by {Mi(w)(p)}2m

i=0 the ordinary modified moments (MMs)
w.r.t the kernel k(x , t) and weights w, i.e.

Mi(w, t)(p) =: Mi(w, t) =

∫

=
+∞

0

pi(w, x)
(x − t)p+1

U(x)d x , i = 0,1, . . . ,

we give the algorithm for determining the GMMs.
Algorithm

Initialization: {Mi,−1(t) = 0}2m−1
i=0 , {Mi,0(t) = p0(w)Mi(w, t)}2m−1

i=0 ;

for 0≤ i ≤ 2m− 1, 0≤ k ≤ 2m− 1− i

Mi,k(t) =
1

ai(w)

�

ak+1(w)Mi−1,k+1(t) + ak−1(w)Mi−1,k−2(t) + (bk(w)− bi−1(w))Mi−1,k(t)− ai−1(w)Mi−2,k(t)
�

.

Now we propose some numerical tests, to show the performance of the mixed sequence (27) w.r.t. the one-weight sequence
(16). In each test we report the approximate values of the integral by means of the one-weight rule (OWR) and by the
corresponding mixed sequence (MixSeq), for increasing values of n. Moreover, we specify the effective number # f eval. of
function evaluations, corresponding to OWR and MixSeq in consequence of the truncation. We point out that all the computations
have been performed in double-machine precision (epsD ≈ 2.22044e−16), except the routine for GMMs, performed in quadruple
arithmetic precision in view of the mild instability of the algorithm.

Moreover, we will use the following definition of the truncation index (see [2, p. 781])

j = min
k=1,...,m

�

k : λm,k(w)< epsD

	

, (37)

taking into account that λm,k(w)∼∆xm,kw(xk). The above definition is equivalent to (3) in the sense that there exists a θ ∈ (0, 1)
s.t. x j−1 < 4mθ < x j , where j is defined in (37). To have an idea of the percentage of the knots involved in the truncation
process, depending on the choice of θ , see [21].
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Finally, we point out that the exponent α of the weight w will be selected according to

2γ−
5
2
≤ α≤ γ− 1, (38)

deduced by (28).
Example 1 Consider the integral

H0( f U , t) =

∫

=
+∞

0

sinh( x
8 )|x − 0.5|

9
2

(x − t)
x

3
2 e−x d x ,

where γ= 1.5, p = 0 and f (x) = sinh( x
8 )|x − 0.5|

9
2 ∈W4(U), then, according to (25), choosing α= 0.5, the error behaves like

m−
3
2 . Thus, for m= 1280 we can expect 4 exact digits, even if the table shows much better numerical results. We observe, in

addition, that the extended rule, besides the saving in the number of function computation, produces better results w. r.t the OPR.

Results t = 0.001
m # OWR # MixSeq.
33 32 7.222685e+ 1 32 7.222685e+ 1
64 47 7.22268552e+ 1 31 7.2226855e+ 1

129 67 7.22268552e+ 1 67 7.22268552e+ 1
256 95 7.2226855260e+ 1 63 7.2226855260e+ 1
513 134 7.2226855260e+ 1 134 7.2226855260e+ 1

1024 189 7.2226855260e+ 1 124 7.22268552602e+ 1

Results t = 1.5
m # OWR # MixSeq.
9 9 9.49e+ 1 9 9.49e+ 1

16 16 9.49777e+ 1 10 9.497e+ 1
33 32 9.49777e+ 1 32 9.49777e+ 1
64 47 9.497777e+ 1 31 9.4977777e+ 1

129 67 9.4977777e+ 1 67 9.4977777e+ 1
256 95 9.49777778e+ 1 66 9.4977777813e+ 1
513 134 9.497777781e+ 1 134 9.497777781e+ 1

1024 189 9.497777781e+ 1 126 9.497777781811e+ 1

Results t = 15
m # OWR # MixSeq.
9 9 2.24e+ 3 9 2.24e+ 3

16 16 2.248551e+ 3 10 2.2485e+ 3
33 32 2.24855125e+ 3 32 2.24855125e+ 3
64 47 2.248551257e+ 3 31 2.2485512578e+ 3

129 67 2.2485512578e+ 3 67 2.2485512578e+ 3
256 95 2.2485512578e+ 3 66 2.2485512578e+ 3
513 134 2.248551257863e+ 3 134 2.248551257863e+ 3

1024 189 2.248551257863e+ 3 124 2.248551257863e+ 3

Table 1: Example 1, for t = 0.001, 1.5,15

Example 2

H1( f U , t) =

∫

=
+∞

0

sin(x + 5)
(x − t)2

p
xe−x d x ,

where γ= 0.5, p = 1 and f (x) = sin(x + 5). We have f ∈Wr(U),∀r, then, according to (25), choosing α= −0.5, we expect a
fast convergence, confirmed by the numerical results in Table 1.
Example 3

H2( f U , t) =

∫

=
+∞

0

x
(5+ x2)(x − t)3

x
3
2 e−x d x ,

where γ= 1.5, p = 2 and f (x) = x
5+x2 . We have f ∈Wr(U),∀r, thus, according to (25), choosing α= 0.5, a fast convergence is

expected. However, the numerical results indicate a poor convergence order which may be explained by very large numbers of
the seminorm ‖ f (r)ϕr U‖.
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Results t = 0.5
m # OWR # MixSeq.
9 9 1.7 9 1.7

16 16 1.79 10 1.788473
33 25 1.78847 25 1.78847
64 35 1.7884716362 24 1.788471636285

129 50 1.7884716362853 50 1.7884716362853
256 68 1.7884716362853 48 1.7884716362853

Results t = 5
m # OWR # MixSeq.
9 9 6.e− 2 9 6.e− 2

16 16 6.e− 2 10 6.976e− 2
33 25 6.9766e− 2 25 6.9766e− 2
64 35 6.97661977219e− 2 24 6.976619772188e− 2

129 50 6.976619772188e− 2 50 6.976619772188e− 2
256 68 6.976619772188e− 2 48 6.9766197721883e− 2

Results t = 10
m # OWR # MixSeq.
9 9 −1.1e− 4 9 −1.1e− 4

16 16 5.e− 4 10 5.3e− 4
33 25 5.352e− 4 25 5.352e− 4
64 35 5.3523475769e− 4 24 5.35234757699e− 4

129 50 5.352347576998e− 4 50 5.352347576998e− 4
256 68 5.352347576998e− 4 48 5.352347576998e− 4

Table 2: Example 2, for t = 0.5, 5,10

Example 4

H0( f U , t) =

∫

=
+∞

0

e−
p

x

(x − t)
x

3
2 e−x d x ,

where γ = 1.5, p = 0 and f (x) = e−
p

x ∈W4(U), then, according to (25), choosing α = 0.5, the error behaves like m−
3
2 . Thus, for

m= 1024 we can have 4 exact digits but the numerical results displayed in Table 4 suggest that the accuracy can be higher.
Final remark As the Tables show, it seems that the extended product rule converges a little bit faster than the OWRA. As

conjectured in [26] for the case of the ordinary product rule, the better performance of the extended rule depends on the greater
number of quadrature nodes belonging to the truncated interval (0, 4mθ ).

6 The Proofs
Proof of Theorem 3.2. By arguments similar to those used in the proof of [7, Th.2.3] and taking into account the assumption on
α,γ, we get

‖( f − L2m(w, w, f ))(k)ϕkU‖ ≤ C
�

m
k
2 log mEM ( f )U + E2m−k( f

(k))Uϕk + e−Am‖ f U‖
�

with M =
�

(2m− 1)
�

θ
1+θ

��

. Then, since by (10)

EM ( f )U ≤ C
EM−k( f (k))Uϕk

(
p

m)k
,

we have

‖( f − L2m(w, w, f ))(k)ϕkU‖ ≤ C
�

log mEM−k( f
(k))Uϕk + e−Am‖ f U‖

�

,

and taking into account (11), under the assumption f ∈Wr+1(U)≡ f (k) ∈Wr+1−k(U), the theorem is completely proven.

Proof of Theorem 4.3. First we prove (24). By definition Hp,2m( f U , t) = Hp(L2m(w, w̄, f )U , t) and by using Theorem 4.1, it
follows that

t p|Hp,2m( f U , t)| ≤ C‖L2m(w, w̄, f )‖Wp+1(U).

Then, taking into account the assumptions (23), by (14) we can conclude

t p|Hp,2m( f U , t)| ≤ C
log m
p

m
‖ f ‖Wp+2(U) + ‖ f ‖Wp+1(U) <∞.
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Results t = 0.001
m # OWR # MixSeq.
17 17 3.e− 1 17 3.e− 1
32 25 3.2e− 1 24 3.2e− 1
65 35 3.236e− 1 35 3.236e− 1

128 50 3.2363613e− 1 48 3.2363613e− 1
257 70 3.236361328e− 1 70 3.236361328e− 1
512 99 3.236361328e− 1 97 3.236361328e− 1

Results t = 1.5
m # OWR # MixSeq.
17 17 3.9e− 2 17 3.9e− 2
32 25 3.94e− 2 24 3.94e− 2
65 35 3.949e− 2 35 3.9491028e− 2

128 50 3.9491028e− 2 48 3.9491028e− 2
257 70 3.949102877e− 2 70 3.949102877e− 2
512 99 3.94910287739e− 2 97 3.94910287739e− 2

Results t = 15
m # OWR # MixSeq.
17 17 −1.− 4 17 −1.e− 4
32 25 −1.8e− 4 24 −1.8e− 4
65 35 −1.7993e− 4 35 −1.79935e− 4

128 50 −1.7993501e− 4 48 −1.799350113e− 4
257 70 −1.79935011316e− 4 70 −1.79935011316e− 4
512 99 −1.79935011316e− 4 97 −1.79935011316e− 4

Table 3: Example 3, for t = 0.001, 1.5,15

To prove (25), by Theorem 4.1 again,

t p|Rp,2m( f U , t)|= t p |H( f − L2m(w, w̄, f )U , t)| ≤ C‖ f − L2m(w, w̄, f )‖Wp+1(U)

and by (13), (25) follows.
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