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Polynomial approximation on pyramids,
cones and solids of rotation

Stefano De Marchi a · Marco Vianello a

Abstract

Given a planar compact set Ω where a weakly admissible mesh (WAM) is known, we compute WAMs
and the corresponding discrete extremal sets for polynomial interpolation on solid (even truncated)
cones with base Ω (with pyramids as a special case), and on solids corresponding to the rotation of Ω
around an external coplanar axis by a given angle.
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1 Introduction
In the seminal paper [8], the notion of admissible mesh for multivariate polynomial approximation has been introduced. A
(weakly) admissible mesh is a finite norming set, with respect to the infinity-norm, for polynomials of a fixed degree on a given
(polynomial determining) compact set. In recent years, there has been increasing attention to this notion in the approximation
theory and numerical literature, due to the deep connections with multivariate polynomial interpolation and approximation.

For example, in [8] it has been shown that WAMs are nearly optimal for polynomial least squares approximation in the
uniform norm. On the other hand, discrete extremal sets (of Fekete and Leja type) extracted from such meshes show good
Lebesgue constants and behave asymptotically as the corresponding continuous extremal sets; we refer the reader, e.g., to the
technical papers [2, 3, 4, 18], and to the excellent survey [1] on the state of the art in multivariate polynomial interpolation
and approximation. It is also worth observing that such discrete extremal sets have begun to play a role in the numerical PDEs
context, concerning spectral element and collocation methods; cf., e.g., [14, 21].

We recall that a weakly admissible mesh (WAM) is a sequence of finite subsets of a multidimensional compact set, say
An ⊂ K ⊂ Cd , such that

∥p∥K ≤ C(An)∥p∥An
, ∀p ∈ Pd

n(K) , (1)

where both C(An) and card(An) increase at most polynomially with n; here and below, Pd
n(K) denotes the space of d-variate

polynomials of degree not exceeding n (restricted to K), and ∥ f ∥X the sup-norm of a function f bounded on the (discrete or
continuous) set X . Observe that necessarily card(An)≥ dim(Pd

n(K)).
When C(An) is bounded we speak of an admissible mesh. Among their properties, we quote that WAMs are preserved by

affine transformations, and can be constructed incrementally by finite union and product. Moreover, we recall that unisolvent
interpolation point sets, with slowly (at most polynomially) increasing Lebesgue constant, are WAMs, with C(An) equal to the
Lebesgue constant and card(An) = dim(Pd

n(K)). Concerning these and other basic features of WAMs, we refer the reader to
[4, 8].

In the present note, which is mainly of computational character, we construct real 3-dimensional WAMs, on two classes of
solid compact sets corresponding to a given planar compact, say Ω, where a WAM is known.

The first class are solid cones with base Ω and vertex x∗, i.e., the sets formed by all the segments connecting x∗ with a point
of Ω (pyramids, i.e., cones with polygonal base, being a subclass), along with the truncated cones obtained by cutting with a
plane parallel to the base. The second are solids of rotation with cross section Ω and (external) axis α, i.e., the sets obtained
by the rotation of Ω by a given angle, even smaller than 2π, around a coplanar line α. In this case, we resort to some recent
results on trigonometric interpolation on subintervals of the period, cf. [6, 9].

We show that the (numerically evaluated) infinity-norms of the polynomial least squares approximation corresponding
to the whole meshes, are much lower than the theoretical estimates given in [8]. Moreover, using the results developed in
[2, 3, 4, 18] and the numerical code [19], we are able to compute from the meshes discrete extremal sets for polynomial
interpolation, along with numerical estimates of their Lebesgue constants.
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2 Cones and solids of rotation
In this section we state and prove the main result, in a geometric fashion. We do not make here a distinction between cones
and pyramids, since the latter are cones with a polygonal base.

Theorem 2.1. Let Ω⊂ R3 be a planar compact set where a 2-dimensional WAM, say An, is known, cf. (1). Let x∗ be a point in R3

not belonging to the plane of Ω; let α be a line in R3 lying on the plane of Ω and not intersecting Ω (or intersecting Ω only at the
boundary), and let θ ∗ ∈ (0,2π] a given angle. Then, the following hold:

(i) (cones) the cone C with base Ω and vertex x∗, that is the pencil of the segments joining x∗ with each point of Ω, has a WAM,
say Bn, with C(Bn) = O(C(An) log n) and card(Bn) = 1+ ncard(An), given by the union of the n+ 1 Chebyshev-Lobatto
points of the segments joining x∗ with each of the points of An; if we consider the truncated cone obtained by cutting the cone
with a plane parallel to the base, then the WAM is given by the union of the Chebyshev-Lobatto points of the cut segments,
and has cardinality (n+ 1)card(An);

(ii) (solids of rotation) the solid of rotation R obtained by rotating Ω around the axis α by an angle θ ∗ has a WAM, say Bn, with
C(Bn) = O(C(An) log n) and card(Bn) = (2n+ 1)card(An), given by the union of the 2n+ 1 copies of An corresponding to
rotating An by the angles

θ j =
θ ∗

2
+ 2 arcsin
�
ξ j sin(θ ∗/4)
� ∈ (0,θ ∗) , (2)

where {ξ j} are the classical Chebyshev points in (−1, 1), i.e., the zeros of the Chebyshev polynomial T2n+1(·)

ξ j = cos
�
(2 j− 1)π
2(2n+ 1)

�
, j = 1,2, . . . , 2n+ 1 .

Proof. We first prove (i). Given a polynomial p ∈ P3
n and a point x belonging to the cone, the restriction of p to the pencil

segment σ(x) corresponding to x , is a univariate polynomial and thus the following inequality holds

|p(x)| ≤ Λn ∥p∥Xn(σ(x)) , Xn(σ(x)) = {τ j(σ(x)) , j = 0, . . . , n} , (3)

where {τ j(σ(x))} are n+1 Chebyshev-Lobatto points of the segment (ordered in such a way, for example, τ0 = x∗ and τn ∈ Ω),
and Λn = O(log n) the Lebesgue constant of Chebyshev-Lobatto interpolation of degree n (which is invariant under affine
transformations).

Then, we get
∥p∥C ≤ Λn ∥p∥∪x Xn(σ(x)) = Λn ∥p∥∪ j Ω j

, (4)

where
Ω j = {τ j(σ(x)) , x ∈ C}= {τ j(σ(y)) , y ∈ Ω} , j = 0, . . . , n. (5)

Observe that, by the intercept theorem of Thales of Miletus applied to each pair of segments of the pencil, the points τ j(σ(x))
for a given j are all coplanar, thus the sets Ω j belong to planes parallel to the plane of Ω, and are affine transformations of Ω. It
follows that a polynomial p ∈ P3

n restricted to Ω j is a bivariate polynomial satisfying the polynomial inequality

∥p∥Ω j
≤ C(An)∥p∥Yn, j

, Yn, j = {τ j(σ(y)) , y ∈An} , j = 0, . . . , n ,

since the constant in (1) is invariant under affine transformations, and finally by (4)

∥p∥C ≤ Λn ∥p∥∪ j Ω j
≤ Λn C(An)∥p∥∪ j Yn, j

, (6)

i.e., Bn =
∪n

j=0 Yn, j =
∪

y∈An
Xn(σ(y)) is a WAM for the cone C. The assertion on the cardinality of Bn follows immediately by

subtracting the repetitions of the the vertex. In the case of a truncated cone, we can follow exactly the reasoning above, with
the only difference that the Chebyshev-Lobatto points are those of the subsegments corresponding to the cut.

To prove (ii), we consider cylindrical coordinates, say ((r, t),θ),

(x1, x2, x3) = ϕ((r, t),θ) = (r cosθ , r sinθ , t) , ϕ : Ω× [0,θ ∗]→R ,

with respect to the (oriented) axis α that, with no loss of generality can be taken as the x3 axis, x = (x1, x2, x3). In such coor-
dinates, a polynomial p ∈ P3

n becomes a tensor product polynomial, algebraic in (r, t), and trigonometric in θ , say q((r, t),θ),
with q ∈ P2

n

⊗
Tn, where Tn denotes the space of univariate trigonometric polynomials of degree not exceeding n.

Since the underline transformation into cylindrical coordinates is surjective, R= ϕ(Ω× [0,θ ∗]), we have

∥p∥R = ∥q∥Ω×[0,θ∗] . (7)

Now, for every ((r, t),θ) ∈ Ω× [0,θ ∗] we can write the chain of inequalities

|q((r, t),θ)| ≤ C(An) max
(r,t)∈An

|q((r, t),θ)|

≤ C(An) max
(r,t)∈An

Λn max
θ∈Θn
|q((r, t),θ)|= C(An)Λn ∥q∥An×Θn

, (8)
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where Θn = {θ j , j = 1, . . . , 2n+ 1} (cf. (2)) is a set of suitable angular nodes for trigonometric interpolation on subintervals of
the period, and Λn = O(log n) their Lebesgue constant, which is invariant with respect to the angular interval; cf. [6, 9]. From
(7)-(8) immediately follows

∥p∥R ≤ C(An)Λn ∥p∥ϕ(An×Θn) , (9)

i.e., Bn = ϕ(An ×Θn) (that corresponds to 2n+ 1 copies of An rotated by the angles θ j) is a WAM for the solid of rotation R.
�

Remark 1. It is clear that (i) of Theorem 1 can be extended in a straightforward way to “cylindroids”, that are truncated cones
where the vertex x∗ is taken at infinity. In such instances, the segments σ(x) are all parallel and the sets Ω j , Yn, j are simply
translations of Ω and An, respectively (cf. [10] for the case of the standard cylinder).
Remark 2. Since Theorem 1 refers to planar compacts where a WAM is known, it is worth recalling that any polynomial
determining compact Ω⊂ C2 admits trivially a WAM with (n+1)(n+2)/2 cardinality (its Fekete points), but also an admissible
mesh of cardinality O((n log n)2), an existence result recently proved in [1, Prop.23]. Such admissible meshes, however, being
formed by Fekete points of suitable degree, are difficult to compute. On the other hand, real (weakly) admissible meshes with
optimal cardinality O(n2) are known constructively in several instances, not only on basic geometries, such as the triangle and
the disk (cf. [5, 6]), but for example also on convex and concave polygons, circular sections (such as sectors and zones), convex
and even starlike bodies with C2 boundary [12, 13, 20]. Admissible meshes with near optimal cardinality can be constructed
on planar convex bodies, and on fat subanalytic compacts; cf. [13, 17].

3 Numerical results
A number of theoretical and computational results have pointed out in the last years that WAMs are relevant structures for
multivariate polynomial approximation.

Let us term LAn
the projection operator C(K)→ Pd

n(K) defined by polynomial least squares on a WAM, and IFn
the projection

operator defined by interpolation on Fekete points of degree n extracted from a WAM (Fekete points are points that maximize
the absolute value of the Vandermonde determinant). Concerning their operator norms with respect to ∥ · ∥K , in [8] it is proved
that

∥LAn
∥¯ C(An)
p

card(An) , ∥IFn
∥ ≤ C(An)dim(Pd

n(K)) , (10)

which show that WAMs with slowly increasing constants C(An) and cardinalities, are sets of choice for multivariate polyno-
mial approximation. Weakly admissible and even admissible meshes with O(nd) cardinality are known to exist for several
d-dimensional compacts, and in some cases are also easily computable; cf., e.g., [2, 5, 7, 13, 20].

The extraction of Fekete points from a WAM is a NP-hard problem, but two greedy algorithms, resting on basic matrix
factorization methods, can be successfully adopted. Working on rectangular Vandermonde matrices in a suitable polynomial
basis, by QR factorization with pivoting one computes the so-called “approximate Fekete points”. On the other hand, LU
factorization with pivoting allows to compute the so-called “discrete Leja sequences”; cf. [3, 18].

Both these families show good interpolation properties; moreover, it has been proved that they behave asymptotically as the
“true” Fekete points, namely that the associated discrete measure converges to the pluripotential equilibrium measure of the
compact [1, 2, 3].

On the other hand, all the numerical tests have shown that bounds (10) for the projection operators are by large overesti-
mates of the actual norms (even using the approximate sets), cf., e.g., [2, 5].

We present some numerical results concerning the present 3-dimensional framework; the corresponding set of Matlab
functions and demos can be downloaded from [11]. In Figures 1 and 3, we plot the WAM and the approximate Fekete points
extracted from them, for a pyramid with quadrangular base, a truncated cone with circular base, and a portion of a torus
with circular cross-section. The 3-dimensional WAMs have been constructed as in Theorem 1, starting from the 2-dimensional
meshes studied in [5, 12], which have card(An) ≈ n2 and C(An) ≈ ( 2

π
log n)2. Notice that the mesh points (and thus the

approximate Fekete points) lie on a pencil of segments in the conical instances, and on a bundle of parallel circular arcs in the
toroidal instance.

In Figures 2 and 4 the norms of the interpolation (left) and least squares (right) operators are shown (they have been
evaluated numerically on a finer control WAM of degree 4n). Such norms turn out to be much lower than the bounds (10).

However, it is not always possible to use a theoretical WAM for practical computations, especially in the present 3-
dimensional instances, when the 2-dimensional meshes on Ω are already huge at moderate degree. For example, if Ω is a
polygon, then by triangulation and finite union we can obtain a WAM that has constant C(An) ≈ ( 2

π
log n)2, but with cardina-

lity card(An) ≈ mn2, where m is the number of sides, which would led to a WAM for the cone or the solid of rotation with
card(Bn) ≈ mn3. Already for moderate values of m and n, finding a WAM with lower cardinality could become essential to
manage computational complexity and memory requirements.

In order to reduce the sampling cardinality, we could use the (until now only experimental) observation that the approximate
Fekete points of degree 2n for a d-dimensional compact K , say F̃2n, present low norms in least squares approximation of degree
n, and have clearly cardinality equal to dim(Pd

2n(K)) (irrespectively of the geometry of the compact). In Figure 5, we show for
illustration the WAM and the approximate Fekete points of degree 10 on a regular decagon, and the norms of the least squares
operator for degree n on the approximate Fekete points F̃2n, n= 1, ..., 16.

A possible theoretical interpretation of such a behavior could come from an open problem stated in [1]: for every (L-
regular) compact set in K ⊂ Cd , does there exist c = c(K) > 1 such that Fekete arrays of degree cn form an admissible mesh for
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K? Notice that the fact that univariate Chebyshev-like algebraic and trigonometric interpolation sets of degree cn, c > 1, form
an admissible mesh, is well-known; cf., e.g., [6, 13, 20]. The notion of L-regularity arises in pluripotential theory, and has
strong connections with multivariate polynomial approximation. In the real case, a sufficient condition for L-regularity is for
example that the compact domain is fat (i.e., K o = K), and subanalytic [15], which is essentially equivalent to the property
that K is a finite union of images of cubes by open analytic mappings; we refer the reader to [16] for a survey on pluripotential
theory and subanalytic geometry. In the present framework, it is not difficult to show that a cone or a solid of rotation are
fat and subanalytic, and thus L-regular, whenever the planar compact set Ω is fat and subanalytic as a subset of the two real
dimensional affine plane in which it lies. This is the case in all of our examples.

In general, given a Pd
n(K)-determining finite set Xn ⊂ K , the least squares operator is a projection operator on the polynomial

space, that can be written as LXn
f (x) =
∑
ξ∈Xn

f (ξ)ϕξ(x), where {ϕξ} is a suitable array of generators of Pd
n(K), from which

we get ∥LXn
∥=maxx∈K

∑
ξ∈Xn
|ϕξ(x)| and ∥LXn

f ∥K ≤ ∥LXn
∥∥ f ∥Xn

; cf., e.g., [4].
Then, (1) holds for the planar compact Ω with An = Xn = F̃2n, namely

∥p∥Ω ≤ ∥LF̃2n
∥∥p∥F̃2n

, ∀p ∈ Pd
n(Ω) , (11)

i.e., F̃2n is a WAM, at least for the range of degrees that have been experimentally tested. This entails that the corresponding
WAM of the cone with base Ω, or of the solid of rotation with cross-section Ω, say Bn, will have C(Bn) = O(∥LF̃2n

∥ log n)
and card(Bn) ≈ 2n3 (irrespectively of the geometry of Ω). A further reduction of the sampling cardinality, which becomes
(2n+ 1)(2n+ 2)(2n+ 3)/6 ≈ 4

3
n3, can be obtained resorting again to the approximate Fekete points of degree 2n extracted

from B2n: a numerical test is shown in Figure 6.

Figure 1: WAMs (asterisks) and approximate Fekete points (small circles) of degree n = 4 for a pyramid with quadrangular base, and for a
standard truncated cone.

References
[1] T. Bloom, L. Bos, J.-P. Calvi and N. Levenberg, Polynomial interpolation and approximation in Cd , Ann. Polon. Math. 106 (2012), 53–81.

[2] L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva and M. Vianello, Geometric Weakly Admissible Meshes, Discrete Least Squares Approxi-
mation and Approximate Fekete Points, Math. Comp. 80 (2011), 1601–1621.

[3] L. Bos, S. De Marchi, A. Sommariva and M. Vianello, Computing multivariate Fekete and Leja points by numerical linear algebra, SIAM J.
Numer. Anal. 48 (2010), 1984–1999.

[4] L. Bos, S. De Marchi, A. Sommariva and M. Vianello, Weakly Admissible Meshes and Discrete Extremal Sets, Numer. Math. Theory
Methods Appl. 4 (2011), 1–12.

[5] L. Bos, A. Sommariva and M. Vianello, Least-squares polynomial approximation on weakly admissible meshes: disk and triangle, J.
Comput. Appl. Math. 235 (2010), 660–668.

[6] L. Bos and M. Vianello, Subperiodic trigonometric interpolation and quadrature, Appl. Math. Comput. 218 (2012), 10630–10638.

[7] L. Bos and M. Vianello, Low cardinality admissible meshes on quadrangles, triangles and disks, Math. Inequal. Appl. 15 (2012), 229–235.

[8] J.P. Calvi and N. Levenberg, Uniform approximation by discrete least squares polynomials, J. Approx. Theory 152 (2008), 82–100.

[9] G. Da Fies and M. Vianello, On the Lebesgue constant of subperiodic trigonometric interpolation, J. Approx. Theory 167 (2013), 59–64.

[10] S. De Marchi, M. Marchioro and A. Sommariva, Polynomial approximation and cubature at approximate Fekete and Leja points of the
cylinder, Appl. Math. Comput. 218 (2012), 10617–10629.

Dolomites Research Notes on Approximation ISSN 2035-6803



De Marchi · Vianello 24

Figure 2: Lebesgue constants of the approximate Fekete points (left) and norms of the least squares approximation operators (right), for the
WAMs of the pyramid (small triangles) and truncated cone (small circles) in Figure 1, at degree n= 1, . . . , 20.
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Figure 3: WAM (asterisks) and approximate Fekete points (small circles) of degree n= 3 for a portion of torus corresponding to a rotation of a
disk by an angle 2π/3.

Figure 4: Lebesgue constants of the approximate Fekete points (left) and norms of the least squares approximation operators (right), for the
WAMs of a portion of torus with circular section (small circles) and square section (small squares), at degree n= 1, . . . , 20.
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Figure 5: Left: WAM (dots) and corresponding approximate Fekete points (small circles) of degree 10 on a regular decagon. Right: norm of
the least squares projection operator on approximate Fekete points of degree 2n, n= 1, . . . , 16.
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Figure 6: Left: WAM (asterisks) and corresponding approximate Fekete points of degree 4 (small circles) on a pyramid with decagonal base
(the mesh of the base is given by approximate Fekete points of degree 8). Right: norm of the least squares projection operator on the pyramid’s
approximate Fekete points of degree 2n, n= 1, . . . , 16.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	Cones and solids of rotation
	Numerical results

