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Abstract

In this article, we present the best possible proof of the conjectures posed by re-searchers Li Yin et al. and
Riku Klen et al., along with the appropriate bounds involv-ing generalized trigonometric and hyperbolic
functions. These inequalities are further generalized with the best possible bounds. Alternative proofs of
the Cusa-Huygens inequality were given using particular cases.

1 Introduction

For 0≤ t ≤ 1, we know that,

arcsin(t) =

∫ t

0

(1− x p)
−1
2 d x

And
π

2
= arcsin(1) =

∫ 1

0

(1− x2)
−1
2 d x .

From this result it is easy to define trigonometric sine function in the interval [0, π2 ] as the inverse of arcsine and it can be
extended up to infinity. Also, In Dirichlet equation for the one-dimensional Laplacian, the eigenfunction is defines as the inverse
of the function σp : [0, 1]→ R,

σp(t) =

∫ t

0

(1− x p)
−1
p d x .

This eigenfunction is corresponding to the eigenvalue involving πp =
2π

p sin( πp )
. We can denote σp(t) as arcsinp(t).

In the year 1995, Lindqvist [7] defined a generalized version of the trigonometric and hyperbolic function. The generalized
arcsinp is defined as,

arcsinp(t) =

∫ t

0

(1− x p)
−1
p d x ,

and the inverse of arcsinp(t) is said to be the generalized sine function sinp(t) for all t ∈ (0,
πp
2 ] and 1< p <∞. The constant

πp
2 is defined as

πp

2
= arcsinp(1) =

∫ 1

0

(1− x p)
−1
p d x

=
π

p

�

csc
π

p

�

=
1
p
Γ

�

1−
1
p

�

Γ

�

1
p

�

,

where, the Γ represents the gamma function leading to the result, πp =
2π

p sin( πp )
.

The generalized sine function is strictly increasing in [0,
πp
2 ], since sinp(0) = 0, sinp(

πp
2 ) = 1. We can extend this function on

(−∞,∞) by the periodicity of 2πp. Now the generalized cosine function is defined as [12],

cosp(t) =
d
d t
[sinp(t)], 0≤ t ≤

πp

2
.
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And

d
d t
[cosp(t)] = −[cos2−p

p (t) sinp−1
p (t)], 0≤ t ≤

πp

2
.

Similarly, the generalized tangent function is defined as,

tanp(t) =
sinp(t)

cosp(t)
, t ∈ R \ {kπp +

πp

2
: k ∈ Z}.

And

d
d t
(tanp(t)) = 1+ |tanp(t)|p, t ∈

�

−
πp

2
,
πp

2

�

.

The generalized secant and cosecant functions are also defined in the form of a generalized sine and cosine function.

secp(t) =
1

cosp(t)
, t ∈ [0,

πp

2
).

And
d
d t
(secp(t)) = secp(t) tanp−1

p (t), t ∈ [0,
πp

2
).

Now, the generalized inverse hyperbolic sine function arcsinhp is given as,

arcsinhp(t) =







∫ t

0

(1+ x p)
−1
p d x , t ∈ (0,∞),

−arcsinhp(−t), t ∈ (−∞, 0).

The inverse of arcsinhp(t) is said to be the generalized hyperbolic p-sine function sinhp(t).
Similarly, the generalized hyperbolic cosine function is given as,

coshp(t) =
d
d t
[sinhp(t)].

And

d
d t
[coshp(t)] = cosh2−p

p (t) sinhp−1
p (t).

The generalized hyperbolic tangent, secant and cosecant functions are also defined using the generalized sine and cosine functions.

tanhp(t) =
sinhp(t)

coshp(t)
, sechp(t) =

1
coshp(t)

.

And
d
d t
[tanhp(t)] = 1− tanhp

p(t),
d
d t
[sechp(t)] = − sechp(t) tanhp−1

p (t).

When p = 2, all these results coincide with the classical trigonometric and hyperbolic functions.
These results were also used to establish some well-known classical inequalities. For more details (see [2, 3, 4]).
In the year 2012,Takeuchi [8] defined the two-parameter is said to be the generalized sine function with two-parameter sinp,q(t).
This function is the inverse of:

arcsinp,q(t) =

∫ t

0

(1− xq)
−1
p d x ,

where q, p ∈ (1,∞) and t ∈ [0, 1]. If p = q then it becomes sinp(t) and expands to (−∞,∞).. Similarly, using the generalized
sine function of two-parameter, the generalized cosine and tangent functions are also defined.
The generalized hyperbolic sine function of two-parameter, sinhp,q(t) is the inverse of,

arcsinhp,q(t) =

∫ t

0

(1+ xq)
−1
p d x , t ∈ (0,∞).

The generalized hyperbolic cosine and tangent functions with two-parameter are also defined in a similar way using the generalized
hyperbolic sine function. In recent years, many researchers have studied these generalized trigonometric and hyperbolic functions.
For more information (see [3, 9, 11, 12, 13, 14]).
In Section 2 we list preliminary results and lemma that are used in the proof of our main results. Section 3 we establish some
classical inequalities with best possible bounds and particular cases. In Section 4 we have given the best possible proof of the
three main conjectures posed by Huang et al and Riku Klen et al and Section 5 is the conclusion of the article.
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2 Preliminaries and Lemma

In this section, we see some important results and lemmas, which play a crucial role in the proof of our main theorem.

Lemma 2.1. [10] For −∞ < a < b <∞ and the functions f , g : [a, b]→ R are continuous and differentiable on (a, b) with

g(a) = f (a) = 0 or g(b) = f (b) = 0. Assume that, g
′
(t) 6= 0 for all t ∈ (a, b). If f

′

g′
is decreasing (increasing) on (a, b) then f

g is
also decreasing (increasing) on (a, b) .

Lemma 2.2. For p ∈ (1,2] and for all t ∈ (0,
πp
2 ], the function

sinp(t)−t cosp(t)
t increases strictly.

Proof. Consider the function,

f (t) =
sinp(t)− t cosp(t)

t
=

f1(t)
f2(t)

,

where f1(t) = sinp(t)− t cosp(t), f2(t) = t and clearly f1(0) = f2(0) = 0. Differentiation with respect to t we get,

f
′

1 (t)

f ′2 (t)
= cosp(t)− cosp(t) + t sinp(t) tanp−2

p (t)

= t sinp(t) tanp−2
p (t)> 0,

which is increasing function, this implies that
f
′
1 (t)

f
′
2 (t)

is strictly increasing. Hence, according to Lemma 2.1, the function f (t)

increases strictly.

Lemma 2.3. For all t ∈ (0,
πp
2 ) and p ∈ [2,∞), the function f (t) =

tanp(t)−t
t−tanhp(t)

is strictly increasing.

Proof. Consider the function,

g(t) =
tanp(t)− t

t − tanhp(t)
=

g1(t)
g2(t)

,

where g1(t) = tanp(t)− t and g1(t) = t − tanhp(t) with g1(0) = g2(0) = 0. On Differentiation, we get

g
′

1(t)

g ′2(t)
=

tanp
p(t)

tanhp
p(t)

= tanp
p(t) cothp

p(t),

which is the increasing function, this implies that
g
′
1(t)

g
′
2(t)

increases strictly. By Lemma 2.1, the function g(t) also increases strictly.

Lemma 2.4. For p ∈ (1,2] and t ∈ (0,
πp
2 ], the function

(p+cosp(t))(tanp(t)−t)
t is strictly increasing.

Proof. Consider the function,

h(t) =
(p+ cosp(t))(tanp(t)− t)

t
=

h1(t)
h2(t)

,

where h1(t) = (tanp(t)− t)(p+ cosp(t)) and h2(t) = t with h1(0) = h2(0) = 0. On differentiation, we get

h
′

1(t)

h′2(t)
= p tanp

p(t) + sinp(t) tanp−2
p (t)

= sinp(t) tanp−2
p (t)[p tanp(t) secp(t) + 1],

which is increasing for all t ∈ (0,
πp
2 ], implies that

h
′
1(t)

h
′
2(t)

strictly increasing. By Lemma 2.1, the function h(t) is also strictly

increasing.

Lemma 2.5. [1] Let bn > 0, n= 1,2, · · · , k then

b1 + b2 + · · ·+ bk

k
≥ k
Æ

(1+ b1)(1+ b2) · · · (1+ bk)− 1≥ k
Æ

b1 b2 · · · bk.

Lemma 2.6. [12] For p > 0 and t ∈ (0,
πp
2 ) the function

tanp(t)
t is strictly increasing.

Lemma 2.7. [12] For p > 1 and t ∈ (0,
πp
2 ], the function

sinp(t)
t is strictly decreasing.
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Lemma 2.8. For p ∈ [2,∞), the function f (t) = tanp−1
p (t)− tanhp−1

p (t) is strictly increasing in (0,
πp
2 ).

Proof. By differentiation, we get

f
′
(t) = (p− 1)[tanp−2

p (t)(1+ tanp
p(t))− tanhp−2

p (t)(1− tanhp
p(t))].

Now, for p ≥ 2,

f
′
(t)≥ (p− 1)(tanp−2

p (t)− tanhp−2
p (t))> 0,

since tanp(t)> tanhp(t). Therefore, the function f (t) is strictly increasing.

3 Main Result:-1

Theorem 3.1. For p ∈ [2,∞), t ∈ (0,∞) and a1 − pa2 ≤ 0, a2 > 0,
�

sinhp(t)

t

�a1

+

�

tanhp(t)

t

�a2

> 2. (1)

Proof. From the A-G mean inequality as stated in [1] and [4],

αr + β s ≥ 2α
r
2 β

s
2 .

We can write inequality (1) as,

�

sinhp(t)

t

�a1

+

�

tanhp(t)

t

�a2

≥ 2

�

sinhp(t)

t

�

a1
2
�

tanhp(t)

t

�

a2
2

≥ 2

�

sinhp(t)

t

�

a1
2
�

sinhp(t)

t coshp(t)

�

a2
2

=⇒
�

sinhp(t)

t

�a1

+

�

tanhp(t)

t

�a2

≥ 2

�

sinhp(t)

t

�

a1+a2
2
�

1
coshp(t)

�

a2
2

(2)

using the inequality defined in [10] as,

cosh
1

p+1
p (t)<

sinhp(t)

t

i.e.

1
coshp(t)

>

�

sinhp(t)

t

�−(p+1)

,

we can write inequality (2) as,

�

sinhp(t)

t

�a1

+

�

tanhp(t)

t

�a2

> 2

�

sinhp(t)

t

�

a1+a2
2
�

sinhp(t)

t

�

−(p+1)a2
2

> 2

�

sinhp(t)

t

�

a1+a2−pa2−a2
2

> 2

�

sinhp(t)

t

�

a1−pa2
2

.

Since a1 − pa2 ≤ 0, a2 > 0, the above inequality becomes,
�

sinhp(t)

t

�a1

+

�

tanhp(t)

t

�a2

> 2.

Inequality (1) holds for all a1, a2 > 0 and p ∈ [2,∞).
Example 3.1.1 If p = 2 and a1 = 0.1, a2 = 0.1> 0 are such that a1 − pa2 = −0.1< 0 with t = 1, then inequality (1) gives,

[sinh2(1)]
0.1 + [tanh2(1)]

0.1 = 1.1231+ 0.9731= 2.0962> 2.
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Corollary 3.2. If a1 = 2, a2 = 1 the inequality defined in Theorem 3.1 becomes
�

sinhp(t)

t

�2

+

�

tanhp(t)

t

�

> 2

which is the first Wilker’s inequality [5].

Corollary 3.3. If a1 = 2p, a2 = p and p ≥ 2 then the above inequality reduces to,
�

sinhp(t)

t

�2p

+

�

tanhp(t)

t

�p

> 2.

Theorem 3.4. For p ∈ [2,∞), t ∈ (0,∞) and a1 − pa2 ≤ 0, a2 > 0,
�

1+

�

sinhp(t)

t

�a1
��

1+

�

tanhp(t)

t

�a2
�

> 4. (3)

Proof. For k = 2 the inequality defined in Lemma 2.5 becomes,
Æ

(1+ b1)(1+ b2)≥
Æ

b1 b2 + 1

=⇒ (1+ b1)(1+ b2)≥
�
Æ

b1 b2 + 1
�2

.

For b1 =
�

sinhp(t)
t

�a1
and b2 =

�

tanhp(t)
t

�a2
we get,

�

1+

�

sinhp(t)

t

�a1
��

1+

�

tanhp(t)

t

�a2
�

≥





�

sinhp(t)

t

�

a1
2
�

tanhp(t)

t

�

a2
2

+ 1





2

≥





�

sinhp(t)

t

�

a1
2
�

sinhp(t)

t

�

a2
2
�

1
coshp(t)

�

a2
2

+ 1





2

≥





�

sinhp(t)

t

�

a1+a2
2
�

1
coshp(t)

�

a2
2

+ 1





2

.

Using the inequality 1
coshp(t)

>
�

sinhp(t)
t

�−(p+1)
we get,

�

1+

�

sinhp(t)

t

�a1
��

1+

�

tanhp(t)

t

�a2
�

>





�

sinhp(t)

t

�

a1−pa2
2

+ 1





2

Since a1 − pa2 < 0, a2 > 0 and
sinhp(t)

t < 1, the inequality reduces to
�

1+

�

sinhp(t)

t

�a1
��

1+

�

tanhp(t)

t

�a2
�

> 4.

Inequality (3) holds for all a1, a2 > 0 and p ∈ [2,∞).
Example 3.2.1 If p = 2 and a1 = 0.1, a2 = 0.1> 0 are such that a1 − pa2 = −0.1< 0 with t = 1, then inequality (3) gives:

[1+ (sinh2(1))
0.1][1+ (tanh2(1))

0.1] = (2.1231)(1.9731) = 4.1890> 4.

We now present an alternate proof of the Cusa-type inequality [6] with the best possible bounds involving trigonometric functions
which was previously proved by Huang et al. [1].

Theorem 3.5. For p ∈ (1,2] and t ∈ (0,
πp
2 ] the function

ln
�

sinp (t)
t

�

ln
�

p+cosp (t)
p+1

� is strictly increasing. In particular for all p ∈ (1,2] and

t ∈ (0,
πp
2 ] ,

�

p+ cosp(t)

p+ 1

�a

<
sinp(t)

t
<

�

p+ cosp(t)

p+ 1

�b

(4)

with the best possible values of a = 1 and b =
ln

�

2 sinp (
πp
2 )

πp

�

ln

�

p+cosp (
πp
2 )

p+1

� .
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Proof. To prove this result, consider the function,

g(t) =
ln
�

sinp(t)
t

�

ln
�

p+cosp(t)
p+1

� =
g1(t)
g2(t)

,

where g1(t) = ln
�

sinp(t)
t

�

and g2(t) = ln
�

p+cosp(t)
p+1

�

. Then by differentiation, we have

g
′

1(t)

g ′2(t)
=
[t cosp(t)− sinp(t)][p+ cosp(t)]

(−t)(tanp−2
p (t)) sin2

p(t)

=
[tanp(t)− t][p+ cosp(t)]

(t) tanp−1
p (t) sinp(t)

=
1

tanp−1
p (t) sinp(t)

�

(tanp(t)− t)(p+ cosp(t))

t

�

.

Now, by Lemma 2.4 and monotonicity of tanp(t), sinp(t), the ratio
g
′
1(t)

g
′
2(t)

is strictly increasing on t ∈ (0,
πp
2 ], g

′
(t) is strictly

increases since, g
′
(t)> g

′
(0)> 0. Hence, using Lemma 2.1, the function g(t) also strictly increasing.

The values of bounds follows from the l’Hospital rule,

g(0+) = 1

g(
πp

2
) =

ln
�

2sinp(
πp
2 )

πp

�

ln
�

p+cosp(
πp
2 )

p+1

� .

It gives the inequality defined in (4) as,
�

p+ cosp(t)

p+ 1

�a

<
sinp(t)

t
<

�

p+ cosp(t)

p+ 1

�b

with best possible value of a and b. We can easily see in Figure 1 that the inequality holds for different values of parameter p.

(a) p = 2 (b) p.= 3

Figure 1: Inequalities for the different values of parameter p.

Corollary 3.6. For p = 2 the inequality defined in (4) is reduced into the inequality,

2+ cosp(t)

3
>

sinp(t)

t

which is the Cusa type inequality.
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4 Main Result:-2

In this section we proved the conjecture and particular cases posed by Huang et al. [1] and two conjectures posed by Riku Klen
et al.[12]

Theorem 4.1 ( Conjecture 4.1[1]). For all t ∈ (0,
πp
2 ] and p ∈ (1, 2], the function

ln( t
sinp (t)

)

ln(coshp(t))
is strictly increasing.

Proof. To prove this result, consider the function,

h(t) =
ln( t

sinp(t)
)

ln(coshp(t))
=

h1(t)
h2(t)

,

where h1(t) = ln( t
sinp(t)

) and h2(t) = ln(coshp(t)) with h1(0) = 0= h2(0). On Differentiation we get,

h
′

1(t)

h′2(t)
=
(sinp(t)− (t) cosp(t))

(t) sinp(t) tanhp−1
p (t)

=
1

sinp(t) tanhp−1
p (t)

�

sinp(t)− (t) cosp(t)

t

�

(sinp(t) tanhp−1
p (t))h

′

1(t) =
sinp(t)− t cosp(t)

t
,

which is positive since the monotonicity of sinp(t), tanhp(t) and Lemma 2.2. This implies that
h
′
1(t)

h
′
2(t)

is increasing. Using Lemma

2.1, the ratio h1(t)
h2(t)

also increases strictly for all t ∈ (0,
πp
2 ]. Therefore, the function h(t) is strictly increasing.

Theorem 4.2 (Conjecture (3.12) [12]). For p ∈ [2,∞) and t ∈ (0,
πp
2 ), the function

ln( t
sinp (t)

)

ln(
sinhp (t)

t )
is strictly increasing and

�

sinhp(t)

t

�a1

<
t

sinp(t)
<

�

sinhp(t)

t

�a2

holds for the best possible constant a1 = 1 and a2 =
2 sinhp(

πp
2 )

πp
.

Proof. For the proof of result, consider the function,

f (t) =
ln( t

sinp(t)
)

ln(
sinhp(t)

t )
=

f1(t)
f2(t)

,

where f1(t) = ln( t
sinp(t)

) and f2(t) = ln (
sinhp(t)

t ) with f1(0) = 0= f2(0). Differentiation gives

f
′

1 (t)

f ′2 (t)
=

sinhp(t)[sinp(t)− (t) cosp(t)]

sinp(t)[(t) coshp(t)− sinhp(t)]

=

�

sinhp(t)

sinp(t)

�

.

�

sinp(t)− (t) cosp(t)

(t) coshp(t)− sinhp(t)

�

=

�

tanhp(t)

tanp(t)

�

.

�

tanp(t)− t

t − tanhp(t)

�

(tanp(t) cothp(t))(
f
′

1 (t)

f ′2 (t)
) =

tanp(t)− t

t − tanhp(t)
,

which is clearly increasing since tanp(t)> tanhp(t) and by Lemma 2.3. This implies that
f
′
1 (t)

f
′
2 (t)

is increasing. Hence, the function

f (t) is strictly increasing by Lemma 2.1. Using the l’Hospital rule, we easily find the best possible values of a1 and a2.

f (0) = a1 = 1, f (
πp

2
) = a2 =

2 sinh(
πp
2 )

πp
.

The inequality holds for all values of p ∈ [2,∞), for the particular value of p = 2, the inequality is shown in Figure 2.
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Figure 2: Inequality for the particular case p = 2

Theorem 4.3 (Conjecture 3.29 [12]). For p ∈ [2,∞) and t ∈ (0,
πp
2 ),

sinhp(t)

t
<

p+ 1
p+ cosp(t)

. (5)

Proof. For the proof of inequality, let us take the function,

f (t) = (p+ 1)(t)− (sinp(t))(p+ cosp(t)).

By Differentiation, we have

f
′
(t) = (p+ 1)− coshp(t)(p+ cosp(t))− sinhp(t)(cos2−p

p (t) sinp−1
p (t))

= (p+ 1)− coshp(t)(p+ cosp(t))− sinhp(t) sinp(t) tanp−2
p (t),

and

f
′′
(t) = coshp(sinp(t) tanp−2

p (t))− sinhp(t) tanhp−2
p (t)(p+ cosp(t)) + cosp(t) sinhp(t) tanp−2

p (t)

+ sinp(t) coshp(t) tanp−2
p (t)− (p− 2) sinp(t) sinhp(t) tanp−3

p (t) secp
p(t)

≥ cosp(t) sinhp(t)[tanp−2
p (t)− tanhp−2

p (t)] + sinp(t) coshp(t) tanp−3
p (t)[2 tanp(t)+

(p− 2) tanhp(t) secp
p(t)]

≥ 0,

where this inequality follows from the monotonicity of functions and Lemma 2.6, 2.8, now we can see that, f
′
(t)> f

′
(0)> 0.

This implies that the function f (t) is strictly increasing, which implies the inequality (5).
Figure 3 illustrate the inequalities define in (5) for particular value of p.

The inequality (5) holds for all values of p ≥ 2 and it is more closer at p = 2 and the inequality will be more strict when
p ≥ 3.
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(a) p = 3 (b) p = 2

Figure 3: Inequalities for the particular values of p

5 Conclusion

In this paper, we provided proofs of the inequalities involving generalized hyperbolic and trigonometric functions with one
parameter establishing the best possible bounds. Additionally, we made efforts to address the conjectures posed by researchers.
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