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Abstract

In this paper, we explore the concepts of generalized degenerate g-Bernoulli and g-Euler polynomial
matrices, elucidating their fundamental properties. Our primary focus is on investigating inversion-type
formulas and matrix inversion formulas that are interconnected with these matrices.
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1 Introduction

The term ‘quantum group’ was coined by the Fields Medalist V. G. Drinfel’d to describe a novel mathematical structure that
first appeared in a technique for studying integrable systems in quantum field theory and statistical mechanics, known as the
quantum inverse scattering method. Drinfel’d [7, 8] realized that the algebraic structure associated with the quantum inverse
scattering method could be reproduced through a suitable algebraic quantization of Poisson Lie algebras. Similar relations were
obtained by Jimbo [15] using a somewhat different approach. Today, quantum groups and their representations, closely related
to well-known g-special functions, constitute a significant part of both mathematics and theoretical physics [31].

In this context, g-Pascal matrices [9, 10, 14, 27, 28, 34] can be used to construct specific representations of quantum groups.
These representations are important as they provide a framework for understanding symmetries in quantum mechanics and
quantum field theory in a non-commutative setting (see, for instance, [22]).

For example, the g-general linear group GL,(n, C) is a quantum group that arises by deforming the algebraic properties of the
general linear group GL(n, C) using a deformation parameter q. The g-special linear group SL,(n, C) is a subgroup of GL,(n,C)
that plays a significant role in quantum algebra. It is possible to define certain quantum matrices related to Pliicker coordinates
in SL,(n, C). These quantum matrices have entries that are g-analogues of binomial coefficients and can be similar in nature to
q-Pascal matrices. Furthermore, quantum matrices are used to construct representations of quantum groups like SL,(n, C), and
often these matrices exhibit properties similar to those of g-Pascal matrices.

More recently, inversion formulas for various types of g-Pascal matrices, determinantal representations for polynomial
sequences, identities involving g-Gaussian coefficients, and a novel general method of constructing g-analogues and other
generalizations of Pascal-like matrices have been provided in [1, 29] (see also [11, 12] for some earlier approaches). Additionally,
it has been proven that g-Pascal matrices allow the construction of g-analogues of certain Banach sequence spaces [32, 33].

Motivated by [23] and recent works such as [2, 3, 4, 5, 6, 13, 16, 19, 20, 30], we introduce a A-degenerate deformation on
g-Pascal matrices and provide corresponding factorizations for the generalized degenerate g-Bernoulli and g-Euler polynomial
matrices, respectively. Furthermore, we present inversion-type formulas for the generalized degenerate g-Bernoulli and g-
Euler polynomials. Furthermore, we show the inversion-type formulae for the generalized degenerate g-Bernoulli and g-Euler
polynomials.
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The paper is organized as follows. Section 2 contains some notations, defnitions, and properties of the g-analogs and some
other auxiliary results which we will use throughout the paper. In Section 3, we present the corresponding inversion-type
formulas for the generalized degenerate g-Bernoulli and g-Euler polynomials, respectively, and establish novel properties for the
generalized degenerate g-Bernoulli and g-Euler matrices (see Theorems 3.1, 3.3, 3.5, and 3.6). Finally, we provide concluding
remarks in Section 4.

2 Background and previous results

Throughout this paper, let N, Ny, Z, R, and C denote, respectively, the sets of natural numbers, non-negative integers, integers,
real numbers, and complex numbers. As usual, we will always use the principal branch for complex powers, in particular, 1* =1
for a € C. Furthermore, the convention 0° = 1 will be adopted.

For w € C and k € Z, we use the notations w*) and (w),, for the rising and falling factorials, respectively, i.e.,

1, ifk=0,
wh =S [T w+i—1), ifk>1,
0, if k<O,

and
1, ifk=0,
Wh =4 [T, w—i+1), ifk>1,
0, if k <O.

Next, we introduce some g-notations that will be needed frequently. The g-shifted factorial (a; q), is defined by

1, n=0,

(@@ =1 10 ey}
l_[(l—aqk), neN,
k=0

where a,q € C and it is assumed that a # ¢~™, m € N,. It is well know that there exists other notations for the g-shifted factorial

(1), for instance, (a), ,, [a],, and even (a),, when the base q is understood. So, in order to avoid any ambiguity we only use the
notation (1).

For any z,q € C such that g # 1 and ¢* # 1, the g-number [z], is defined by (cf. [28])

¢ —1
-1’

@

(=], :=
with the convention [0], = 0.

In particular, the g-analogue of n € N is obtained from (2) taking z =n, i.e.,

(nl,=1+q+¢*+---+q" "

The g-analogue of n! is then defined by

[n]q!::{ s ifn=0,
[n][n—1],---[2],[1],, ifn€EN,

from which the g-binomial coefficient is given by

n [n]q !
=—————, nkeN; 0=Zk=n.
[ k ]q [n—k],![k],!

Any matrix is assumed an element of M,;(R), the set of all (n + 1)-square matrices over the real field R. Moreover, for i, j,
any nonnegative integers, and any matrix A € M,,,;(R) we adopt, respectively, the following conventions

i
[ j ] =0, whenever j >i, and A°=1I,, =diag(1,1,...,1),
q
where I, denotes the identity matrix of order n+ 1.

From now on, the constraint |g| < 1 will be tacitly assumed. For A, x € R, the degenerate g-exponentials are defined as
follows (cf. [20]):
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2 apgy <1 AR\ (O}
n=0 q°
e, (@) = ®)

o 21
anm, |Z|<1, ifA=0,
n=0 q*

where the generalized falling factorials (x), ;, are given by (cf. [16, 17, 18, 19, 20, 21]):

1, ifn=0,
(s =1 [T, (x=(G=1A), ifn>1,
0, ifn<O.

It is clear that %im e(’; (@)= e;‘ o(). Furthermore, e; o(2) coincides with a g-analogue of the classical exponential function [28,
50 9 X X

Equation (7)].
The degenerate g-exponentials (3) do not satisfy the exponents product law like the exponentials functions, i.e.,
e;’;y(z) # e;‘,l(z) eg’l(z).

For x,A € R, we also consider, respectively, the A-binomial and the degenerate g-binomial coefficients as follows [20,
Equations (9), (27)]:

1, ifn=0,
x (n .

( ) = le"}L’ lfn 2 1,
nj :

0, ifn<o,

1, ifn=0,

( x ) = e ifn>1, €))

n 2 q

¢ 0, ifn<o0.

Since the following expression holds (cf. [13, Equation (7)])

O+ ¥)up = Z( Z ) () a(Vnkrs 120,

k=0

it is straightforward that ([20, Equation (10)])

(x :y)l :g(i)a(nik); n=0.

Finally, the connection between the A-binomial and the degenerate g-binomial coefficients is given by

(0,54

Forr €N, |q| <1 and |x| < |1 —q|™!, we consider the degenerate g-Bernoulli and g-Euler polynomials of order r as follows
[20]:

; ' X — — (r) Z“

(eq,a(z) -1 ) e;,(2) ; Bn,q,a(x)—[n]q! , lzl<1, 5
# ’ex (Z) = ig(r) (x)i |Z| <1 ©
eq,l(z) +1 a2 p— n,q,A [n]q! 5

These represent degenerate versions of the g-analogue of the classical Bernoulli and Euler polynomials, respectively. As usual,
when x =0, B,Ef;,l(o) = Bflrg , and Sgi ,(0)= Eé’r;’ , are called respectively, the degenerate g-Bernoulli and g-Euler numbers of
order r.

Whenr =1, BS;,A(X) = Byyg(x) (Er(:;’l(x) = &,42(x)) which are the degenerate g-Bernoulli (¢-Euler) polynomials and

: : (r) — r : (r)
notice that %13% Bn,q,x(x) = Bn,q(x) (%13}) &

n,q,A
B (x) = (x),5 = £, (%)

(x)= Sr(l,rq)(x)), which are g-Bernoulli (g-Euler) polynomials of order r. Finally,
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n [20] is proved the following addition formula:

3 Generalized degenerate g-Bernoulli and g-Euler matrices and their properties

Inversion formulae are typically used to compute the coefficients of a generating function or to count specific combinatorial
structures. In contrast, inversion-type formulae are similar to the former but may involve more complex operations or dependencies
on multiple parameters. In the context of generalized degenerate g-Pascal matrices, inversion-type formulae allow us to factorize
these matrices in terms of degenerate g-Bernoulli (g-Euler) matrices. In this section, we present some novel properties for the
generalized degenerate g-Bernoulli and g-Euler matrices. Before that, we demonstrate the corresponding inversion-type formulas
for the generalized degenerate gq-Bernoulli and g-Euler polynomials, respectively.

Theorem 3.1. For every n > 0, A € R and r = 1, the degenerate q-Bernoulli polynomials satisfy the following inversion-type
formula:

X 1 < n+1
(n)q,l N [n+1]! kz(;[ k+1 ]q(l)"“”‘gﬂk:qﬂ(") )
1 [ n+1
B [n+1]q!kz_0:|: k+1 ]q(l—?\)k,ﬁnk,q,a(x)- ®

Proof. Let A € R. In view of (3) and (5), and the identity

n+1

Z(x)nl ] Z[n+1]q(x)n7t[ +1] '

we have

0 g+l
Z[n+1]q(x)n,l[n+—1]q! - [Z(l)nl :| [anql(x) :|

n=0 n=0

|:Z(1)n+1l +1 :| [ZBnql(x) :| (9)

From the use of the Cauchy product rule on the right-hand side of (9), it follows that

n+1 el n n+1 P
1 S 1 —_— 1
g[n RO e e = LZ[ el L( )m,lzsnk,q,l(x)] TEET (10)
Hence, comparing the coefficients of ™! on both sides of (10) and using the identity (4), we obtain (7).
Finally, ® is a simple consequence of  the identity (D12 = A=A p, for all
k e N,. O

Example 3.1. The first three degenerate g-Bernoulli polynomials are

Aml (x)_xz_x+/12—21+1_27&—3A+1
[23,” > [2], [3],

Remark 1. Notice that the substitution of A = 0 into (7) recovers the classical g-Bernoulli polynomials (cf. [14, 24, 25]).

BO,q,)\(X) = 1; Bl,q,l(x) =x+

From a matrix framework, Theorem 3.1 has the following consequence.

Corollary 3.2. For n € N, and A € R, the matrix T, (x) = (1 (X)p - (X)M)T can be expressed as follows:
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T;.(x) =M;Bg 5 (x)

1
o o
q
2 2
ﬁ[ 5 ] D22 ﬁ[ ] ] My 0
q q
— 3 3 .
= 1 1 . By (x
o [ 5 ] D)3 oL [ 5 ] (D)2 . 0 .2 (x)
q q
1 n+1 1 n+1 1 n+1
m[ ntl ] (D12 m[ O A syl I (D1,n
q q q
1 0 0 0
Eﬁ;(l)zz 1 0 0
1
L (1) 1 0
=| B3 2 By a(x),
—1 (1) (1) ﬂ(l) o1
[n+1]q n+1,A n,A [2]q n—1,A
T
where Bq,l(x) = (Bo,q,l(x) Bl,q,l(x) e Bn,q,l(x)) .

Theorem 3.3. For every n>0and A € R and r = 1, the degenerate g-Euler polynomials satisfy the following inversion-type formula:

X 1 n n
( )ql 2[n],! Z[ k ] (1T + a ) (D 2 Epi g0 (),

q° k=0 q

where

Qay

1: Iszoy
0, ifl1<k<n.

Proof. From (3) and (6) we have

zgo(x)n,a[rf—;q! 20(1)“1 ] [Z Eran ()= ]
H le
(1+a )(an [n,! :| |:HZ(; En,q,x(x)[n—]q!]

= Z|:k 0(1+ak)[ Z ] (D pén- kqx(x):|[ Nk

1, ifk=o0,
ag =
0, ifl<k<n.

I
| e Y — |
i[M]8

where

Therefore, by comparing the coefficients of 2" on both sides and using the identity (4), we obtain the identity (11) .

Theorem 3.3 has the following consequence.

Corollary 3.4. For n € N, and A € R, the matrix T, (x) = (1 (X)p - (X)M)T can be expressed as follows:

(1D
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Ty(x) = M Eg 5 (x)

o | a+aan; 0 0
- 1 -4 1
1 (I+a)()q12 [ 0 :| (1 +ap)(1)ox 0
- -q q
17 57 .
2 2 (1+a3)(1)22 [ i i| (1+ax)(W12 B 0 Ega(x)
- -q q
Z (1+a) (D [ n_”l ] A +a)Dprp [ 8 ] (1+a0) (1o
- -q q q
2 0 0 e 0
(D1 2 0 0
:% (1).2,»1 (1).1,1 2 0 E (%),
(1)n,l (l)n—l,l (l)n—Z,A 2
where B ;(x) = (Egg(x)  E102(x)  Eqa(0)".

The degenerate g-Pascal matrices corresponding to the generalized falling factorials can be defined as follows:

Definition 3.1. Let x be any nonzero real number. For A € R and |q| < 1, the generalized degenerate g-Pascal matrix of first
kind P, ;[x], is an (n + 1) x (n + 1) matrix whose entries are given by

i C .
[ i ] (izjps 121,
Pijgr(x) = d 12)
0, otherwise.
Remark 2.

(i) Itis clear that the matrix P, ,[x] tends to the g-Pascal matrix of first kind P,[x] as A — 0 (cf. [10] (Equation (8))).

(ii) It is worth mentioning that P, ;[x] is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular
matrix.

(iii) The identity (4) says us that the entries of the generalized degenerate g-Pascal matrix of first kind in (12) can be written as

01! (i—j)q,; =0

0, otherwise.

Pi,j,q,x(x) =

(iv) For x,y € R, the generalized degenerate g-Pascal matrix do not satisfy the addition law like the generalized degenerate
Pascal matrix, i.e.,
Plx+y1#P,[x]P,[y].

(v) If the convention (0), , = 1 is adopted, then it is possible to define
Pq,l[o] = In+1'
Definition 3.2. The generalized degenerate (n+1) x (n+1) g¢-Bernoulli matrix %;r;(x) of real order r is defined by the entries
i (r) . .
. [ j ] Fiiarbd 127,
%i,j,q,l(x) = q
0, otherwise.

Remark 3.

(i) We denote by 9, ,(x) the degenerate g-Bernoulli matrix %é};(x).
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Definition 3.2 and the inversion-type formula (7) lead to the following result:

Theorem 3.5. The generalized degenerate q-Pascal matrix of the first kind P, ;[x] can be factorized in terms of B, 5(x) as follows:
Pq,l[x] = Bq,x(x)%,x, 13)

where 5, 5 is an (n + 1) x (n + 1) invertible matrix with entries
: 1)._.

[ i ] ( )l.m,z i
J q [l —J + 1:|q

0, otherwise.

Lj,gA T

Proof. Let us consider n € Ny and 0 < i, j < n such that i > j. From Definition 3.2 and the inversion-type formula (7), we have

i=j

_ i | 1 i—j+1
Pi,j,q,/x(x) = [ j ]q (x)ij,l_|: j ]q —[i—j+1]qlz[ k41 ]q (1)k+1,7LBi7j7k,q,A(x)

k=0

AT i—j i 1 Wisra
kzt;[[ K ] Bij kqn(x) [j ]q k1, | a4

q

Since the right hand member of (14) is the (i, j)-th entry of matrix product B, ,(x)5, ;, we conclude that (13) holds. Notice
that the matrix 5 ; is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular matrix. O

The following example shows the validity of Theorem 3.5.
Example 3.2. Let us consider n = 2. It follows from Definition 3.1, (13), and a simple computation that

K Jjona o 0
Poalx] = (1) ()12 [ 1 ] (x)o,n 0
- -q q
oo [ ] [3] o
- -q q q
[ 0] 0
o _qBO,q,A(x) 0 0 [ 0 ]q(l)u 0 0
(1] M
= | | o | Braat [ . } Boq) 0 [ . ] o [ . ] (s 0
- -q q q q
I i 1 ¢!
o] B |3 Bt [ 3w [\ [ 3]G (1] B2 [ 5] o
L dq q q q q q q q
Bga(x) Hg.2

Definition 3.3. The generalized degenerate (n + 1) x (n+ 1) g-Euler matrix é’q(;)(x) is defined by the entries

i r C s
. [ ; ] gD ), iz],
éoi,j,q,}.(x) = q

0, otherwise.

We denote by &, ,(x) the degenerate g-Euler matrix é";]l) ().
Definition 3.3 and the inversion-type formula (11) lead to the following result:
Theorem 3.6. The generalized degenerate q-Pascal matrix of the first kind P, ;[x] can be factorized in terms of &, ;(x) as follows:
P [x]=E,(x)T 5, (15)
where 7, 5 is an (n + 1) x (n + 1) invertible matrix with entries
i :| (1 + aifj) (1)171',1
q

. s =]
[ J 2
%,q,x =

0, otherwise.
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Proof. Let us consider n € Ny and 0 < i, j < n such that i > j. From Definition 3.3 and the inversion-type formula (11), we have

i=j

p,i,jq,l(x) = [ ; :| (X)i—j,/1=|: ; :| %Z[ i_kj ] (1+ak)(1)k,)tgi—j—k,q,l(x)
q q

q k=0
i—j . .
i—j i (IT+a) (D
= Z[[ k ] gijk,q,l(x):| H j ] - e— (16)
k=0 q q
Since the right-hand member of (16) is the (i, j)-th entry of matrix product &£, ,(x)Z, ,, we conclude that (15) holds. Notice
that the matrix 7, , is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular matrix. O

Combining Theorems 3.5 and 3.6 gives the following connection formula.

Corollary 3.7. For any A,x € R, we have
gq,?t(x) = Bq,?t(x)‘%/aq,l%,_ll'

4 Conclusion

Diverse kinds of g-Pascal matrices can be used to construct certain representations of quantum groups. These representations are
essential for understanding symmetries in quantum mechanics and quantum field theory in a non-commutative setting.

The aim of our research was to determine some novel properties of generalized degenerate g-Bernoulli and g-Euler polynomials
and their matrices. Firstly, we focused our attention on some inversion-type formulae for the generalized degenerate g-Bernoulli
and g-Euler polynomials and their matrices. Secondly, we introduced the generalized degenerate g-Pascal matrix of the first
kind and provided factorizations for the generalized degenerate g-Bernoulli and g-Euler polynomial matrices in terms of the
generalized degenerate q-Pascal matrix of the first kind.

Finally, it is noteworthy that under the suitable constraints of parameters associated with the generalized Apostol-type
polynomial matrices given in [26], it is possible to provide a A-degenerate deformation for some g-analogues of these matrices.
The proof of this statement is not provided here; the interested reader is strongly encouraged to follow the above arguments to
prove it.
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