
Volume 17 · 2024 · Pages 63–71

A Note on Generalized Degenerate q-Bernoulli and q-Euler
Matrices

Hernández Juan a · Quintana Yamilet b · Ramírez Francisco Jorge c

Communicated by Donatella Occorsio

Abstract

In this paper, we explore the concepts of generalized degenerate q-Bernoulli and q-Euler polynomial
matrices, elucidating their fundamental properties. Our primary focus is on investigating inversion-type
formulas and matrix inversion formulas that are interconnected with these matrices.
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1 Introduction

The term ‘quantum group’ was coined by the Fields Medalist V. G. Drinfel’d to describe a novel mathematical structure that
first appeared in a technique for studying integrable systems in quantum field theory and statistical mechanics, known as the
quantum inverse scattering method. Drinfel’d [7, 8] realized that the algebraic structure associated with the quantum inverse
scattering method could be reproduced through a suitable algebraic quantization of Poisson Lie algebras. Similar relations were
obtained by Jimbo [15] using a somewhat different approach. Today, quantum groups and their representations, closely related
to well-known q-special functions, constitute a significant part of both mathematics and theoretical physics [31].

In this context, q-Pascal matrices [9, 10, 14, 27, 28, 34] can be used to construct specific representations of quantum groups.
These representations are important as they provide a framework for understanding symmetries in quantum mechanics and
quantum field theory in a non-commutative setting (see, for instance, [22]).

For example, the q-general linear group GLq(n,C) is a quantum group that arises by deforming the algebraic properties of the
general linear group GL(n,C) using a deformation parameter q. The q-special linear group SLq(n,C) is a subgroup of GLq(n,C)
that plays a significant role in quantum algebra. It is possible to define certain quantum matrices related to Plücker coordinates
in SLq(n,C). These quantum matrices have entries that are q-analogues of binomial coefficients and can be similar in nature to
q-Pascal matrices. Furthermore, quantum matrices are used to construct representations of quantum groups like SLq(n,C), and
often these matrices exhibit properties similar to those of q-Pascal matrices.

More recently, inversion formulas for various types of q-Pascal matrices, determinantal representations for polynomial
sequences, identities involving q-Gaussian coefficients, and a novel general method of constructing q-analogues and other
generalizations of Pascal-like matrices have been provided in [1, 29] (see also [11, 12] for some earlier approaches). Additionally,
it has been proven that q-Pascal matrices allow the construction of q-analogues of certain Banach sequence spaces [32, 33].

Motivated by [23] and recent works such as [2, 3, 4, 5, 6, 13, 16, 19, 20, 30], we introduce a λ-degenerate deformation on
q-Pascal matrices and provide corresponding factorizations for the generalized degenerate q-Bernoulli and q-Euler polynomial
matrices, respectively. Furthermore, we present inversion-type formulas for the generalized degenerate q-Bernoulli and q-
Euler polynomials. Furthermore, we show the inversion-type formulae for the generalized degenerate q-Bernoulli and q-Euler
polynomials.
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The paper is organized as follows. Section 2 contains some notations, defnitions, and properties of the q-analogs and some
other auxiliary results which we will use throughout the paper. In Section 3, we present the corresponding inversion-type
formulas for the generalized degenerate q-Bernoulli and q-Euler polynomials, respectively, and establish novel properties for the
generalized degenerate q-Bernoulli and q-Euler matrices (see Theorems 3.1, 3.3, 3.5, and 3.6). Finally, we provide concluding
remarks in Section 4.

2 Background and previous results

Throughout this paper, let N, N0, Z, R, and C denote, respectively, the sets of natural numbers, non-negative integers, integers,
real numbers, and complex numbers. As usual, we will always use the principal branch for complex powers, in particular, 1α = 1
for α ∈ C. Furthermore, the convention 00 = 1 will be adopted.

For w ∈ C and k ∈ Z, we use the notations w(k) and (w)k for the rising and falling factorials, respectively, i.e.,

w(k) =











1, if k = 0,
∏k

i=1(w+ i − 1), if k ≥ 1,

0, if k < 0,

and

(w)k =











1, if k = 0,
∏k

i=1(w− i + 1), if k ≥ 1,

0, if k < 0.

Next, we introduce some q-notations that will be needed frequently. The q-shifted factorial (a; q)n is defined by

(a; q)n :=



















1, n= 0,

n−1
∏

k=0

�

1− aqk
�

, n ∈ N,

(1)

where a, q ∈ C and it is assumed that a 6= q−m, m ∈ N0. It is well know that there exists other notations for the q-shifted factorial
(1), for instance, (a)q,n, [a]n, and even (a)n, when the base q is understood. So, in order to avoid any ambiguity we only use the
notation (1).

For any z, q ∈ C such that q 6= 1 and qz 6= 1, the q-number [z]q is defined by (cf. [28])

[z]q :=
qz − 1
q− 1

, (2)

with the convention [0]q = 0.

In particular, the q-analogue of n ∈ N is obtained from (2) taking z = n, i.e.,

[n]q = 1+ q+ q2 + · · ·+ qn−1.

The q-analogue of n! is then defined by

[n]q! :=

¨

1, if n= 0,

[n]q[n− 1]q · · · [2]q[1]q, if n ∈ N,

from which the q-binomial coefficient is given by
�

n
k

�

q

:=
[n]q!

[n− k]q![k]q!
, n, k ∈ N0; 0µ k µ n.

Any matrix is assumed an element of Mn+1(R), the set of all (n+ 1)-square matrices over the real field R. Moreover, for i, j,
any nonnegative integers, and any matrix A∈ Mn+1(R) we adopt, respectively, the following conventions

�

i
j

�

q

= 0, whenever j > i, and A0 = In+1 = diag(1,1, . . . , 1),

where In+1 denotes the identity matrix of order n+ 1.
From now on, the constraint |q| < 1 will be tacitly assumed. For λ, x ∈ R, the degenerate q-exponentials are defined as

follows (cf. [20]):
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ex
q,λ(z) =























∞
∑

n=0

(x)n,λ
zn

[n]q!
, |z|< 1, if λ ∈ R \ {0},

∞
∑

n=0

xn zn

[n]q!
, |z|< 1, if λ= 0,

(3)

where the generalized falling factorials (x)n,λ, are given by (cf. [16, 17, 18, 19, 20, 21]):

(x)n,λ =











1, if n= 0,
∏n

i=1(x − (i − 1)λ), if n≥ 1,

0, if n< 0.

It is clear that lim
λ→0

ex
q,λ(z) = ex

q,0(z). Furthermore, e1
q,0(z) coincides with a q-analogue of the classical exponential function [28,

Equation (7)].

The degenerate q-exponentials (3) do not satisfy the exponents product law like the exponentials functions, i.e.,

ex+y
q,λ (z) 6= ex

q,λ(z) e
y
q,λ(z).

For x ,λ ∈ R, we also consider, respectively, the λ-binomial and the degenerate q-binomial coefficients as follows [20,
Equations (9), (27)]:

�

x
n

�

λ

=











1, if n= 0,
(x)n,λ

n! , if n≥ 1,

0, if n< 0,

�

x
n

�

q,λ

=











1, if n= 0,
(x)n,λ
[n]q ! , if n≥ 1,

0, if n< 0.

(4)

Since the following expression holds (cf. [13, Equation (7)])

(x + y)n,λ =
n
∑

k=0

�

n
k

�

(x)k,λ(y)n−k,λ, n≥ 0,

it is straightforward that ([20, Equation (10)])

�

x + y
n

�

λ

=
n
∑

k=0

�

x
k

�

λ

�

y
n− k

�

λ

, n≥ 0.

Finally, the connection between the λ-binomial and the degenerate q-binomial coefficients is given by
�

x
n

�

λ

=
[n]q!

n!

�

x
n

�

q,λ

.

For r ∈ N, |q|< 1 and |x |< |1− q|−1, we consider the degenerate q-Bernoulli and q-Euler polynomials of order r as follows
[20]:

�

z
eq,λ(z)− 1

�r

ex
q,λ(z) =

∞
∑

n=0

B(r)n,q,λ(x)
zn

[n]q!
, |z|< 1, (5)

�

2
eq,λ(z) + 1

�r

ex
q,λ(z) =

∞
∑

n=0

E (r)n,q,λ(x)
zn

[n]q!
, |z|< 1. (6)

These represent degenerate versions of the q-analogue of the classical Bernoulli and Euler polynomials, respectively. As usual,
when x = 0, B(r)n,q,λ(0) = B(r)n,q,λ and E (r)n,q,λ(0) = E (r)n,q,λ are called respectively, the degenerate q-Bernoulli and q-Euler numbers of
order r.

When r = 1, B(1)n,q,λ(x) = Bn,q,λ(x) (E (1)n,q,λ(x) = En,q,λ(x)) which are the degenerate q-Bernoulli (q-Euler) polynomials and

notice that lim
λ→0

B(r)n,q,λ(x) = B(r)n,q(x) (lim
λ→0

E (r)n,q,λ(x) = E (r)n,q(x)), which are q-Bernoulli (q-Euler) polynomials of order r. Finally,

B(0)n,q,λ(x) = (x)n,λ = E (0)n,q,λ(x).
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In [20] is proved the following addition formula:

�

x + y
n

�

q,λ
=

n
∑

k=0

�

n
k

�

�

n
k

�

q

�

x
k

�

q,λ

�

y
n− k

�

q,λ

.

3 Generalized degenerate q-Bernoulli and q-Euler matrices and their properties

Inversion formulae are typically used to compute the coefficients of a generating function or to count specific combinatorial
structures. In contrast, inversion-type formulae are similar to the former but may involve more complex operations or dependencies
on multiple parameters. In the context of generalized degenerate q-Pascal matrices, inversion-type formulae allow us to factorize
these matrices in terms of degenerate q-Bernoulli (q-Euler) matrices. In this section, we present some novel properties for the
generalized degenerate q-Bernoulli and q-Euler matrices. Before that, we demonstrate the corresponding inversion-type formulas
for the generalized degenerate q-Bernoulli and q-Euler polynomials, respectively.

Theorem 3.1. For every n ≥ 0, λ ∈ R and r = 1, the degenerate q-Bernoulli polynomials satisfy the following inversion-type
formula:

�

x
n

�

q,λ
=

1
[n+ 1]q!

n
∑

k=0

�

n+ 1
k+ 1

�

q

(1)k+1,λBn−k,q,λ(x) (7)

=
1

[n+ 1]q!

n
∑

k=0

�

n+ 1
k+ 1

�

q

(1−λ)k,λBn−k,q,λ(x). (8)

Proof. Let λ ∈ R. In view of (3) and (5), and the identity

z
∞
∑

n=0

(x)n,λ
zn

[n]q!
=
∞
∑

n=0

[n+ 1]q(x)n,λ
zn+1

[n+ 1]q!
,

we have
∞
∑

n=0

[n+ 1]q(x)n,λ
zn+1

[n+ 1]q!
=

�∞
∑

n=0

(1)n,λ
zn

[n]q!
− 1

��∞
∑

n=0

Bn,q,λ(x)
zn

[n]q!

�

=

�∞
∑

n=0

(1)n+1,λ
zn+1

[n+ 1]q!

��∞
∑

n=0

Bn,q,λ(x)
zn

[n]q!

�

. (9)

From the use of the Cauchy product rule on the right-hand side of (9), it follows that

∞
∑

n=0

[n+ 1]q(x)n,λ
zn+1

[n+ 1]q!
=
∞
∑

n=0

�

n
∑

k=0

�

n+ 1
k+ 1

�

q

(1)k+1,λBn−k,q,λ(x)

�

zn+1

[n+ 1]q!
. (10)

Hence, comparing the coefficients of zn+1 on both sides of (10) and using the identity (4), we obtain (7).
Finally, (8) is a simple consequence of the identity (1)k+1,λ = (1−λ)k,λ, for all

k ∈ N0.

Example 3.1. The first three degenerate q-Bernoulli polynomials are

B0,q,λ(x) = 1, B1,q,λ(x) = x +
λ− 1
[2]q

, B2,q,λ(x) = x2 − x +
λ2 − 2λ+ 1
[2]q

−
2λ2 − 3λ+ 1
[3]q

.

Remark 1. Notice that the substitution of λ= 0 into (7) recovers the classical q-Bernoulli polynomials (cf. [14, 24, 25]).

From a matrix framework, Theorem 3.1 has the following consequence.

Corollary 3.2. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
�

1 (x)1,λ · · · (x)n,λ

�T
can be expressed as follows:
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Tλ(x) =MλBq,λ(x)

=





































�

1
1

�

q

(1)1,λ 0 · · · 0

1
[2]q

�

2
2

�

q

(1)2,λ
1
[2]q

�

2
1

�

q

(1)1,λ · · · 0

1
[3]q

�

3
3

�

q

(1)3,λ
1
[3]q

�

3
2

�

q

(1)2,λ

. . . 0

...
... · · ·

...

1
[n+1]q

�

n+ 1
n+ 1

�

q

(1)n+1,λ
1

[n+1]q

�

n+ 1
n

�

q

(1)n,λ · · · 1
[n+1]q

�

n+ 1
1

�

q

(1)1,λ





































Bq,λ(x)

=



















1 0 0 · · · 0
1
[2]q
(1)2,λ 1 0 · · · 0

1
[3]q
(1)3,λ (1)2,λ 1 · · · 0

...
...

...
. . .

...
1

[n+1]q
(1)n+1,λ (1)n,λ

[n]q
[2]q
(1)n−1,λ · · · 1



















Bq,λ(x),

where Bq,λ(x) =
�

B0,q,λ(x) B1,q,λ(x) · · · Bn,q,λ(x)
�T

.

Theorem 3.3. For every n≥ 0 and λ ∈ R and r = 1, the degenerate q-Euler polynomials satisfy the following inversion-type formula:
�

x
n

�

q,λ
=

1
2[n]q!

n
∑

k=0

�

n
k

�

q

(1+ ak)(1)k,λEn−k,q,λ(x), (11)

where

ak =

¨

1, if k = 0,

0, if 1≤ k ≤ n.

Proof. From (3) and (6) we have

2
∞
∑

n=0

(x)n,λ
zn

[n]q!
=

�∞
∑

n=0

(1)n,λ
zn

[n]q!
+ 1

��∞
∑

n=0

En,q,λ(x)
zn

[n]q!

�

=

�∞
∑

n=0

(1+ an)(1)n,λ
zn

[n]q!

��∞
∑

n=0

En,q,λ(x)
zn

[n]q!

�

=
∞
∑

n=0

�

n
∑

k=0

(1+ ak)

�

n
k

�

q

(1)k,λEn−k,q,λ(x)

�

zn

[n]q!
,

where

ak =

¨

1, if k = 0,

0, if 1≤ k ≤ n.

Therefore, by comparing the coefficients of zn on both sides and using the identity (4), we obtain the identity (11) .

Theorem 3.3 has the following consequence.

Corollary 3.4. For n ∈ N0 and λ ∈ R, the matrix Tλ(x) =
�

1 (x)1,λ · · · (x)n,λ

�T
can be expressed as follows:
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Tλ(x) =MλEq,λ(x)

=
1
2





































�

0
0

�

q

(1+ a0)(1)0,λ 0 · · · 0
�

1
1

�

q

(1+ a1)(1)1,λ

�

1
0

�

q

(1+ a0)(1)0,λ · · · 0

�

2
2

�

q

(1+ a2)(1)2,λ

�

2
1

�

q

(1+ a2)(1)1,λ

. . . 0

...
... · · ·

...
�

n
n

�

q

(1+ an)(1)n,λ

�

n
n− 1

�

q

(1+ an)(1)n−1,λ · · ·
�

n
0

�

q

(1+ a0)(1)0,λ





































Eq,λ(x)

=
1
2

















2 0 0 · · · 0
(1)1,λ 2 0 · · · 0
(1)2,λ (1)1,λ 2 · · · 0

...
...

...
. . .

...
(1)n,λ (1)n−1,λ (1)n−2,λ · · · 2

















Eq,λ(x),

where Eq,λ(x) =
�

E0,q,λ(x) E1,q,λ(x) · · · En,q,λ(x)
�T

.

The degenerate q-Pascal matrices corresponding to the generalized falling factorials can be defined as follows:

Definition 3.1. Let x be any nonzero real number. For λ ∈ R and |q| < 1, the generalized degenerate q-Pascal matrix of first
kind Pq,λ[x], is an (n+ 1)× (n+ 1) matrix whose entries are given by

pi, j,q,λ(x) :=















�

i
j

�

q

(x)i− j,λ, i ≥ j,

0, otherwise.

(12)

Remark 2.

(i) It is clear that the matrix Pq,λ[x] tends to the q-Pascal matrix of first kind Pq[x] as λ→ 0 (cf. [10] (Equation (8))).

(ii) It is worth mentioning that Pq,λ[x] is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular
matrix.

(iii) The identity (4) says us that the entries of the generalized degenerate q-Pascal matrix of first kind in (12) can be written as

pi, j,q,λ(x) =















[i]q!

[ j]q!

�

x
i − j

�

q,λ
, i ≥ j,

0, otherwise.

(iv) For x , y ∈ R, the generalized degenerate q-Pascal matrix do not satisfy the addition law like the generalized degenerate
Pascal matrix, i.e.,

Pq,λ[x + y] 6= Pq,λ[x]Pq,λ[y].

(v) If the convention (0)0,λ = 1 is adopted, then it is possible to define

Pq,λ[0] := In+1.

Definition 3.2. The generalized degenerate (n+1)× (n+1) q-Bernoulli matrixB (r)q,λ(x) of real order r is defined by the entries

B (r)i, j,q,λ(x) =















�

i
j

�

q

B(r)i− j,q,λ(x), i ≥ j,

0, otherwise.

Remark 3.

(i) We denote byBq,λ(x) the degenerate q-Bernoulli matrixB (1)q,λ(x).
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Definition 3.2 and the inversion-type formula (7) lead to the following result:

Theorem 3.5. The generalized degenerate q-Pascal matrix of the first kind Pq,λ[x] can be factorized in terms of Bq,λ(x) as follows:

Pq,λ[x] = Bq,λ(x)Hq,λ, (13)

whereHq,λ is an (n+ 1)× (n+ 1) invertible matrix with entries

Hi, j,q,λ =















�

i
j

�

q

(1)i− j+1,λ

[i − j + 1]q
, i ≥ j,

0, otherwise.

Proof. Let us consider n ∈ N0 and 0≤ i, j ≤ n such that i ≥ j. From Definition 3.2 and the inversion-type formula (7), we have

pi, j,q,λ(x) =

�

i
j

�

q

(x)i− j,λ =

�

i
j

�

q

1
[i − j + 1]q!

i− j
∑

k=0

�

i − j + 1
k+ 1

�

q

(1)k+1,λBi− j−k,q,λ(x)

=
i− j
∑

k=0

�

�

i − j
k

�

q

Bi− j−k,q,λ(x)

��

�

i
j

�

q

(1)k+1,λ

[k+ 1]q

�

. (14)

Since the right hand member of (14) is the (i, j)-th entry of matrix product Bq,λ(x)Hq,λ, we conclude that (13) holds. Notice
that the matrixHq,λ is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular matrix.

The following example shows the validity of Theorem 3.5.

Example 3.2. Let us consider n= 2. It follows from Definition 3.1, (13), and a simple computation that

Pq,λ[x] =





























�

0
0

�

q

(x)0,λ 0 0

�

1
0

�

q

(x)1,λ

�

1
1

�

q

(x)0,λ 0

�

2
0

�

q

(x)2,λ

�

2
1

�

q

(x)1,λ

�

2
2

�

q

(x)0,λ





























=





























�

0
0

�

q

B0,q,λ(x) 0 0

�

1
0

�

q

B1,q,λ(x)

�

1
1

�

q

B0,q,λ(x) 0

�

2
0

�

q

B2,q,λ(x)

�

2
1

�

q

B1,q,λ(x)

�

2
2

�

q

B0,q,λ(x)





























︸ ︷︷ ︸

Bq,λ(x)





























�

0
0

�

q

(1)1,λ 0 0

�

1
0

�

q

(1)2,λ

[2]q

�

1
1

�

q

(1)1,λ 0

�

2
0

�

q

(1)3,λ

[3]q

�

2
1

�

q

(1)2,λ

[2]q

�

2
2

�

q

(1)1,λ





























︸ ︷︷ ︸

Hq,λ

.

Definition 3.3. The generalized degenerate (n+ 1)× (n+ 1) q-Euler matrix E (r)q,λ(x) is defined by the entries

E (r)i, j,q,λ(x) =















�

i
j

�

q

E (r)i− j,q,λ(x), i ≥ j,

0, otherwise.

We denote by Eq,λ(x) the degenerate q-Euler matrix E (1)q,λ(x).

Definition 3.3 and the inversion-type formula (11) lead to the following result:

Theorem 3.6. The generalized degenerate q-Pascal matrix of the first kind Pq,λ[x] can be factorized in terms of Eq,λ(x) as follows:

Pq,λ[x] = Eq,λ(x)Tq,λ, (15)

where Tq,λ is an (n+ 1)× (n+ 1) invertible matrix with entries

Ti, j,q,λ =















�

i
j

�

q

�

1+ ai− j

�

(1)i− j,λ

2
, i ≥ j,

0, otherwise.
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Proof. Let us consider n ∈ N0 and 0≤ i, j ≤ n such that i ≥ j. From Definition 3.3 and the inversion-type formula (11), we have

p,i, jq,λ(x) =

�

i
j

�

q

(x)i− j,λ =

�

i
j

�

q

1
2

i− j
∑

k=0

�

i − j
k

�

q

(1+ ak) (1)k,λEi− j−k,q,λ(x)

=
i− j
∑

k=0

�

�

i − j
k

�

q

Ei− j−k,q,λ(x)

��

�

i
j

�

q

(1+ ak) (1)k,λ

2

�

. (16)

Since the right-hand member of (16) is the (i, j)-th entry of matrix product Eq,λ(x)Tq,λ, we conclude that (15) holds. Notice
that the matrix Tq,λ is a lower triangular matrix with nonnull determinant and hence, it is a nonsingular matrix.

Combining Theorems 3.5 and 3.6 gives the following connection formula.

Corollary 3.7. For any λ, x ∈ R, we have
Eq,λ(x) = Bq,λ(x)Hq,λT −1

q,λ .

4 Conclusion

Diverse kinds of q-Pascal matrices can be used to construct certain representations of quantum groups. These representations are
essential for understanding symmetries in quantum mechanics and quantum field theory in a non-commutative setting.

The aim of our research was to determine some novel properties of generalized degenerate q-Bernoulli and q-Euler polynomials
and their matrices. Firstly, we focused our attention on some inversion-type formulae for the generalized degenerate q-Bernoulli
and q-Euler polynomials and their matrices. Secondly, we introduced the generalized degenerate q-Pascal matrix of the first
kind and provided factorizations for the generalized degenerate q-Bernoulli and q-Euler polynomial matrices in terms of the
generalized degenerate q-Pascal matrix of the first kind.

Finally, it is noteworthy that under the suitable constraints of parameters associated with the generalized Apostol-type
polynomial matrices given in [26], it is possible to provide a λ-degenerate deformation for some q-analogues of these matrices.
The proof of this statement is not provided here; the interested reader is strongly encouraged to follow the above arguments to
prove it.
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