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Spectral Method for a Particular Case of the Heat
Convection-Diffusion Equation

Ahcene Lateli a · Amor Boutaghou b

Abstract

The purpose of this paper is to study the Legendre spectral method for solving a particular case of the
heat convection-diffusion equation, wich is formulated as a mixed initial boundary value problem within
the finite regular domain Λ = (−1, 1). To tackle this problem, we employ certain techniques to transform
it into a system of ordinary differential equations. Through matrix analysis, we derive a general term that
characterizes all the ordinary differential equations in this system. solving this general term, provides
the desired approximate solution, and we also present the error estimation.

Keywords: Heat convection-diffusion equation, Spectral method, Orthogonal polynomials, Error estimate.
MSC 2020 Classifications: 80A19, 65M70.

1 Introduction

The primary motivation of this work is the numerical analysis of discretization of a particular case of the heat convection-diffusion
equation with a source term, formulated by mixed initial-boundary value problem using Legendre spectral method, which
involves representing the solution in terms of truncation series. see also [1, 2, 5, 8, 10, 17, 18, 20, 21]. For more details and a
comprehensive analysis of spectral methods, we refer to [9, 11, 12, 13, 14, 15].

The problem under consideration is governed by the following equation:






∂t w(t, x)− ∂ 2
x w(t, x) + ∂x w(t, x) +w(t, x) =ψ(t, x), x ∈ Λ, t > 0

w(t,−1) = w(t, 1) = 0, t > 0
w(0, x) = g(x), x ∈ Λ

, (1)

where w(t, x) represents the temperature at the position x at time t, while ψ(t, x) and g(x) are known functions.
In this work, we propose an approximate solution to the inhomogeneous problem (1) using a truncated series expansion of

the form:

wN (t, x) =
N−1
∑

n=1

αn(t)`n(x) (2)

with

αn(t) =
N−1
∑

m=1

unm`m(t),

Where `n(x) are the Lagrangian interpolating polynomials defined at the points x j , with −1 ≤ x j ≤ 1 and 0 ≤ j ≤ N . These
polynomials satisfy the property `i(x j) = δi j with 0 ≤ i, j ≤ N . The discretization points x j , 0 ≤ j ≤ N are chosen as the
collocation points on the Gauss-Lobatto Legendre grid, and the grid formed by x j is denoted by ΣN+1.

With this choice of solution form (2), along with some additional techniques, we obtain a linear system which can be
expressed in matrix form as M Dα− Bα= MG, where M is a diagonal invertible matrix, B is a square, positive-definite matrix,
and D = d

d t is the time derivative operator. To simplify the system, we define α = Fν where F is an orthogonal matrix such that
F−1

�

M−1B
�

F = Γ , with Γ being a diagonal matrix. This results in a system of N − 1 ordinary differential equations.
We apply Lagrange’s method of undetermined coefficients to solve for each component νi(t) of ν. Finally, we express the

functions αn(t) and and compute the coefficients unm with 1≤ n, m≤ N − 1, yielding the desired approximate solution, see also
[5, 6, 19, 22, 23, 25].

aMMS Laboratory and LaMyBAM Laboratory, University of Mentouri 1, Algeria (ahcene.lateli@umc.edu.dz)
bThe National Higher School of Hydraulics, Blida, Algeria (boutaghou_a@yahoo.com)



Lateli · Boutaghou 113

2 Orthogonal polynomials

2.1 Properties

The Legendre polynomials Ln, where n≥ 0,are polynomials of degree n. These polynomials are orthogonal to each other in the
space:

L2 (Λ) =

�

ψ : Λ→ R,measurable /

∫

Λ

ψ2 (x) d x < +∞
�

.

The following properties are satisfied:
∫

Λ

Lm(x)Ln(x)d x =
1

n+ 1
2

δmn,

where δmn is the Kronecker delta.

hn (x) =
n (n+ 1)
2n+ 1

(Ln−1(x)− Ln+1(x)) , n> 0, (3)

Ln (x) =
−1

n (n+ 1)
h′n (x) , hn (x) =

�

1− x2
�

L
′

n (x) , n≥ 0, (4)

∫

Λ

h2
n (x) d x =

[2n(n+ 1)]2

(4n2 − 1)(2n+ 3)
. (5)

3 Continuous problem

The problem (1) formulated in L2 (Λ) as the pivot space, with the variational space defined as:

H1 (Λ) =
�

u ∈ L2 (Λ) / ∂x u ∈ L2(Λ)
	

.

The corresponding norms for these spaces are defined as follows:

‖u‖2
L2(Λ) =

∫

Λ

u2d x ,

‖u‖2
H1(Λ) =

∫

Λ

(u2 + (∂x u)2)d x .

3.1 Variational formulation

To derive the variational formulation for the continuous problem (1), we define the subspace of the variational space with zero
Dirichlet boundary conditions as:

V0 (Λ) =
�

w ∈ H1 (Λ) : w= 0 on ∂Λ, t > 0, w= g, at t = 0
	

. (6)

Next, we introduce the scalar product in L2 (Λ) as follows:

(ψ,φ) =

∫

Λ

ψ(t, x)φ(t, x)d x . (7)

The variational formulation of the problem (1) is then stated as:
Find w ∈ V0 (Λ) such that for all v ∈ V0 (Λ),

α(w, v) = 〈ψ, v〉 , (8)

where the bilinear form α(., .) is given by:

α(w, v) =

∫

Λ

�

∂t w− ∂ 2
x w+ ∂x w+w

�

vd x . (9)

By integrating by parts, this becomes:

α(w, v) =

∫

Λ

[∂t wv + ∂x w∂x v + ∂x wv +wv] d x . (10)
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4 Discrete form and space

Let N denote the discretization parameter for the problem (1). In the context of spectral methods, N represents the degree of the
polynomials used. The approximate space is generated by a finite-dimensional subspace of of L2 (Λ), P4N (Λ) is the approximate
space corresponding to V0 (Λ), where

P4N (Λ) =

¨

qn ∈ PN (Λ) : qn(t, x) = 0 on ∂Λ, qn(x , 0) =
N−1
∑

k=1

g(xk)`k(x)

«

.

Here, PN (Λ) represents the set of polynomials of degree less than or equal to N . Additionally, we consider the exact quadrature
formula and introduce a bilinear form αN which approximates the form α. We also approximate the scalar product (., .) by the
discrete forme (., .)N , see also [1, 3, 4, 6, 7, 9, 11, 19, 24].

4.1 Variational formulation of the discrete Problem

Firstly, we observe that the Lagrange polynomials `k(x), where 0≤ k ≤ N , form a basis for P4N (Λ). Accordingly, the exact solution
w to the problem (1) is approximated by the solution wI

N that belongs to P4N (Λ), with
�

wI
N − gN

�

belonging to P∇N (Λ), where

P∇N (Λ) = {qn ∈ PN (Λ) : qn(t, x) = 0 on ∂Λ} .

The variational problem is:
�

find wI
N ∈ P

4
N (Λ), s.t

∀vN ∈ P∇N (Λ),αN (wI
N , vN ) = (ψN , vN )N

, (11)

where

αN (w
I
N , vN ) =

N
∑

k=0

�

∂t w
I
N vN + ∂x wI

N∂x vN + ∂x wI
N vN +wI

N vN

�

(t, xk)ρk, (12)

with xk and ρk defined in proposition (4.1), and wI
N = wN + gN , where wN ∈ P∇N (Λ). The problem (11) is equivalent to the

following problem: Find wI
N in P4N (Λ) such that wN = wI

N − gN in P∇N (Λ), and for all vN ∈ P∇N (Λ):

αN (wN , vN ) = βN (gN , vN ), (13)

where:
βN (gN , vN ) = (ψN , vN )N −αN (gN , vN ). (14)

4.2 Existence and uniqueness of the solution

4.2.1 Gauss-Lobatto-Legendre quadrature

Proposition 4.1. There exists a unique set of N −1 nodes xk′ , where 1≤ k′ ≤ N −1, within the interval Λ, with boundary conditions
x0 = −1 and xN = 1. Additionally, there are N + 1 positive weights ρk′ , for 0≤ k′ ≤ N , such that the following exactness property
holds:

∀ψ ∈ P2N−1(Λ),

∫ 1

−1

ψ (x) d x =
N
∑

k′=0

ψ (xk′)ρk′ , (15)

where xk′ , for 1≤ k′ ≤ N − 1, represent the roots of the polynomial L
′

N , and the corresponding weights ρk′ are defined as follows:
¨

ρ0 = ρN =
2

N(N+1)

ρk′=
ρ0

L2
N (xk′)

, 1≤ k′ ≤ N − 1 .

Proof. See [2, 10, 11].

Definition 4.1. [1, 10]. We define the discrete inner product for all polynomials wN and vN in P4N (Λ) as:

(wN , vN )N =
N
∑

k′=0

uN (t, xk′)vN (t, xk′)ρk′ . (16)

Lemma 4.2. The polynomial hN−1 ∈ P0
N (Λ) verifies the double inequality:

‖hN−1‖
2
L2(Λ) ≤ (hN−1, hN−1)N ≤

3
2
‖hN−1‖

2
L2(Λ) . (17)

Here, the subspace P0
N (Λ) is defined as:

P0
N (Λ) = {pn ∈ PN (Λ) / pn(x) = 0 on ∂Λ} .
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Proof. Using equations (4) and (5) in (16) and applying the exact quadrature formula,we can derive the desired result. For
further details, see references [1, 6].

Proposition 4.3. For any polynomial hn in the space P0
n(Λ), the following inequality holds:

‖hn‖L2(Λ) ≤
1
n








h
′

n










L2(Λ)
≤ 3‖hn‖L2(Λ) . (18)

Proof. By using (3), (4) and (5), and applying integration by parts along with the Cauchy-Schwarz inequality, we can derive the
desired result.

The Lagrange polynomials ` j(x), j = 1, ..., N − 1, can be expressed in the following form:

` j(x) =
N−1
∑

n=0

γn jhn (x) ,

and using equation (4), we obtain:

` j(x) =
N−1
∑

n=0

λn j Ln (x) .

Proposition 4.4. The set of Legendre polynomials {Ln (x)} for n = 0, ..., N forms a basis for the space PN (Λ). Therefore, any

polynomial ψN ∈ PN (Λ) can be expressed as: ψN (x) =
N
∑

n=0
αn Ln(x), and the following inequality holds:

c3 log(2N + 1)≤ ‖ψ‖2
L2(Λ) ≤ c4 log(exp(2)(2N + 1)), (19)

where
�

c3, c4

�

=
�

min(α2
n

�

,max(α2
n)).

Proof. See [2, 6].

Proposition 4.5. For a positive integer m, the Sobolev space H s (Λ) is defined by:

H s (Λ) =

�

ψ ∈ L2 (Λ)/1≤ k′ ≤ s,
dk′

d x k′
ψ ∈ L2 (Λ)

�

,

with the corresponding norm given by:

‖ψ‖2
Hs(Λ) =

∫

Λ

s
∑

k′=0

�

dk′

d x k′
ψ

�2

(x) d x .

Proposition 4.6. The bilinear form αN (., .) defined in (13) satisfies respectively the following properties of continuity and ellipticity:

For all wN ,vN ∈ P∇N (Λ), |αN (wN , vN )| ≤
3
2

max (1, C2)
�

||wN ||H1
0 (Λ)

. ||vN ||H1
0 (Λ)

�

, (20)

∀wN ∈ P∇N (Λ), |αN (wN , wN )| ≥min(1, C1)
�

||wN ||
2
H1

0 (Λ)

�

. (21)

Proof. The continuity: We assume that the solution and its derivatives are bounded. Then, there exist two positive real constants
C1 and C2 such that:

C1 |wN (t, xk)| ≤ |∂t wN (t, xk)| ≤ C2 |wN (t, xk)| . (22)

Using lemma (4.2), the exact quadrature formula, and the Cauchy-Schwarz inequality, we obtain the desired results. For further
details, see also Bernardi et al. [12] and Boutaghou et al. [6].

The ellipticity: The bilinear form αN (wN , wN ) is given by:

αN (wN , wN ) =
N
∑

k=0

∂t wN (t, xk)wN (t, xk)ρk +
N
∑

k=0

∂x wN (t, xk)∂x wN (t, xk)ρk +
N
∑

k=0

∂x wN (t, xk)wN (t, xk)ρk

+
N
∑

k=0

wN (t, xk)wN (t, xk)ρk.

Using the exact quadrature formula, we can rewrite this as:

αN (wN , wN ) =
N
∑

k=0

∂t wN (t, xk)wN (t, xk)ρk +

∫ 1

−1

∂x wN (t, x)∂x wN (t, x)d x +
N
∑

k=0

∂x wN (t, xk)wN (t, xk)ρk

+
N
∑

k=0

wN (t, xk)wN (t, xk)ρk,
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from (22) and the orthogonality properties, we obtain:

|αN (wN , wN )| ≥
N

C1

∑

k=0
wN (t, xk)wN (t, xk)ρk +

∫ 1

−1
∂x wN (t, x)∂x wN (t, x)d x +

N
∑

k=0
wN (t, xk)wN (t, xk)ρk.

Using inequality (17), we can express this as:

|aN (wN , wN )| ≥min(1, C1)
�

||wN ||
2
H1

0 (Λ)

�

.

Thus, this inequality yields the desired result.

Proposition 4.7. ("The inequality of stability") For any continuous function g defined on Λ, the problem (13) has a unique solution
wN in P∇N (Λ), and Moreover, this solution satisfies "the stability inequality"::

‖uN (t, x)‖H1
0 (Λ)
≤ γ

�

‖ψN (t, x)‖L2(Λ) + ‖gN (x)‖L2(Λ)

�

,

where γ is a constant.

Proof. By equation (13), we obtain:

αN (wN , wN ) = (ψN , wN )N −αN (gN , wN )≤ |(ψN , wN )N |+ |αN (gN , wN )| ,

Next, applying inequality (17) and the Cauchy-Schwarz inequality, we obtain:

|(ψN , wN )N |+ |αN (gN , wN )| ≤
3
2
‖ψN (t, x)‖L2(Λ) .‖wN (t, x)‖L2(Λ) + ‖∂x gN (x)‖L2(Λ) .‖∂x wN (t, x)‖L2(Λ)

+‖∂x gN (x)‖L2(Λ) .‖wN (t, x)‖L2(Λ) +
3
2
‖gN (x)‖L2(Λ) .‖wN (t, x)‖L2(Λ) .

The terms ‖∂x gN (x)‖L2(Λ) and ‖∂x wN (t, x)‖L2(Λ) are bounded.Therefore, there exists a positive constant γ such that:
αN (wN , wN )≤ |(ψN , wN )N |+ |αN (gN , wN )| ≤ γ

�

‖ψN (t, x)‖L2(Λ) + ‖gN (x)‖L2(Λ)

�

‖wN (t, x)‖H1
0 (Λ)

.
Finally, using inequality (21), we obtain the desired result.

5 Numerical results

At the points xk for 1≤ k ≤ N − 1, the problem (1) is equivalent to the following system of equations:


















N−1
∑

n=1
`n(xk)α′n(t) +

�

`n(xk) + `′n(xk)− `′n(xk)
�

αn(t) =
N−1
∑

n=1
ψn(t)`n(xk) + g ′′N (xk)− g ′N (xk)− gN (xk) in Λ∩ΣN+1

wN (t, xk) = 0 on ∂Λ∩ΣN+1

ψ(t, x) =
N−1
∑

n=1
ψn(t)`n (x) , ψn(t) =

N−1
∑

j=1
ψ jn` j (t) , ψ jn =ψ

�

tn, x j

�

Since the functions `n(x)+`′n(x)−`
′′

n(x) for 1≤ n≤ N −1 are polynomials with degree N , we multiply both sides of the equation
by `m(xk)ρk and apply the sum. Using the quadrature formula, and varying m from 1 to N − 1, we obtain a linear system. This
system can be expressed in matrix:

M Dα− Bα= MG, (23)

where B is a square, positive-definite matrix of order N − 1, with elements defined as:

βmn = [−`n(xm)− `′n(xm) + `
′′

n(xm)]`m(xk)ρm, n, m= 1, ..., N − 1,

M is a diagonal, invertible matrix with elements defined as:

γmn =

�

ρn , m= n
0, m 6= n

, m, n= 1, ..., N − 1.

G is a known vector given by:

G= (ψ1(t) + g ′′N (x1)− g ′N (x1)− gN (x1),ψ2(t) + g ′′N (x2)− g ′N (x2)− gN (x2)

, ...,ψN−1(t) + g ′′N (xN−1)− g ′N (xN−1)− gN (xN−1))
T ,

α is the unknown vector:
α(t) = (α1(t),α2(t),α3(t), .....,αN−2(t),αN−1(t))

T ,

D = d
d t is the time derivative operator. Multiplying equation (23) by the invertible matrix M−1, we obtain:

Dα−M−1Bα= G , (24)
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the matrix M−1B has positive eigenvalues, and there exists an orthogonal, invertible matrix F such that:

F−1
�

M−1B
�

F = Γ ,

where Γ is a diagonal matrix whose elements are the eigenvalues λi = βii for i = 1, ..., N − 1 of the matrix M−1B, If we define
the vector ν such that:

α= Fν,

then the system (24) becomes:
F Dν− (M−1B)Fν= G, (25)

Multiplying equation (25) by the the invertible matrix F−1, we get:

Dν− Γν= F−1G. (26)

The matrix form (26) corresponds to N − 1 linear ordinary differential equations of the form:

ν′k(t)−λkνk(t) = hk(t), 1≤ k ≤ N − 1, (27)

where hk(t) is given by:

hk(t) =
N−1
∑

j=1

f −1
k, j

�

ψ j(t) + g ′′N (xk)− g ′N (xk)− gN (xk)
�

, 1≤ k ≤ N − 1, (28)

Here, f −1
k, j are the elements of the inverse matrix F−1. To solve the equations (27) using the Lagrange’s method [25], The solution

can be expressed in closed form as

νk(t) = eλk t

�∫ t

0

e−λkshk(s)ds+ dk

�

,

where dk is a constant to be determined from the boundary conditions. Thus, equation (5) can be written as:

νk(t) = eλk t

�

∫ t

0

e−λkshk(s)ds+
N−1
∑

j=1

f −1
k j gN (xk)

�

,

Finally, we obtain the functions:

αn(t) =
N−1
∑

j=1

fn j v j(t),

where fn j with 1≤ j, n≤ N − 1 are the elements of the matrix F , and the approximate solution is:

w(t, x) =
N−1
∑

n=1

N−1
∑

j=1

fn j

�

∫ t

0

e−λkshk(s)ds+
N−1
∑

j=1

f −1
k j g(xk)

�

eλk t`n(x).

Given that t is in the interval I = [0, T], we can consider the solution in the form:

w(t, x) =
N−1
∑

n=1

N−1
∑

j=1

un j`n (x)` j (t) , αn(t) =
N−1
∑

j=1

un j` j(t),

where the coefficients un j are determined by:

un j =
N−1
∑

j=1

fn j

�

∫ t j

0

e−λkshk(s)ds+
N−1
∑

j=1

f −1
k j gN (xk)

�

eλk t j ,

Thus, the approximate solution is:

wN (t, x) =
N−1
∑

n=1

N−1
∑

m=1

�

N−1
∑

j=1

fn j

�

∫ t j

0

e−λkshk(s)ds+
N−1
∑

j=1

f −1
k j gN (xk)

�

eλk t j

�

`n(x)`m (t) +
N−1
∑

n=1

gN (xn)`n (x) .

Using the expression (28), the approximate solution wN (t, x) can be written as:

wN (t, x) =
N−1
∑

n=1

N−1
∑

m=1

�

N−1
∑

j=1

fn j

�

∫ t j

0

e−λk(s−t j)
N−1
∑

j=1

f −1 (k, j)
�

ψ j(s) + g ′′N (xk)− g ′N (xk)− gN (xk)
�

�

ds

+

�

N−1
∑

j=1

f −1
k j g(xk)

�

eλk t j

�

`n(x)`m (t) +
N−1
∑

n=1

gN (xn)`n (x) ,
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5.1 Error estimate

Definition 5.1. Let P4N (Λ) be the polynomial space, which is dense in the space of continuous functions on Λ, and consequently
in V0 (Λ). This implies that any function w ∈ V0 (Λ) admits the following expansion:

w(t, x) =
∞
∑

k=1

∞
∑

l=1

α(k, l)hk(x)t l(t).

We know

Tn(t) =
n(n+ 1)

2(2n+ 1)
(pn−1 (t)− pn+1 (t)) , (29)

where

pn(t) = Ln(
2
T

t − 1), n≥ 0,

and using (29) then

w(t, x) =
∞
∑

k=1

∞
∑

l=1

γ(k, l)hk(x)pl(t).

Proposition 5.1. Let winH1
0 (Λ) be the exact solution and wN ∈ P∇N (Λ) be the approximate solution. The following error estimate

holds between these solutions:
‖w−wN‖L2(Λ) ≤ 3CN−1

�

‖(g − gN )‖L2(Λ) + ‖ψ−ψN‖L2(Λ)

�

,

C is a real positive constant.

Proof. We begin by using the ellipticity condition (21) and (18) to write the following expression:

N 2 ‖w−wN‖
2
L2(Λ) ≤ α(w−wN , w−wN ) = (ψ−ψN , w−wN )N −α(g − gN , w−wN ),

≤ C

��

�

�

�

∫

Λ

(ψ−ψN ) (w−wN ) d x

�

�

�

�

+ |α(g − gN , w−wN )|
�

. (30)

Where C is a real positive constant, applying the Cauchy-Schwarz inequality, we obtain:
�

�

�

�

∫

Λ

(ψ−ψN ) (w−wN ) d x

�

�

�

�

≤ ‖ψ−ψN‖L2(Λ) ‖w−wN‖L2(Λ) , (31)

thanks to a triangle inequality, this yields

|α(g − gN , w−wN )| ≤
�

�

�

�

∫

Λ

∂x (g − gN )∂x (w−wN ) d x

�

�

�

�

+

�

�

�

�

∫

Λ

∂t (g − gN ) (w−wN ) d x

�

�

�

�

+

�

�

�

�

∫

Λ

∂x (g − gN ) (w−wN ) d x

�

�

�

�

+

�

�

�

�

∫

Λ

(g − gN ) (w−wN ) d x

�

�

�

�

,

Note that since g does not depend on the time variable t the term involving ∂t (g − gN ) vanishes:
∫

Λ

∂t (g − gN ) (w−wN ) d x = 0.

Now, we apply the Cauchy-Schwarz inequality to each of these integrals:
�

�

�

�

∫

Λ

(g − gN ) (w−wN ) d x

�

�

�

�

≤ ‖(g − gN )‖L2(Λ) ‖(w−wN )‖L2(Λ) . (32)

We also apply the Cauchy-Schwarz inequality:
�

�

�

�

∫

Λ

∂x (g − gN )∂x (w−wN ) d x

�

�

�

�

≤ ‖∂x (g − gN )‖L2(Λ) ‖∂x (w−wN )‖L2(Λ) . (33)

We again apply the Cauchy-Schwarz inequality:
�

�

�

�

∫

Λ

∂x (g − gN ) (w−wN ) d x

�

�

�

�

≤ ‖∂x (g − gN )‖L2(Λ) ‖(w−wN )‖L2(Λ) . (34)

using (31), (32), (33), (34) and (18) into (30) , we get:

N 2 ‖w−wN‖
2
L2(Λ) ≤ 3CN

�

‖(g − gN )‖L2(Λ) + ‖ψ−ψN‖L2(Λ)

�

‖(w−wN )‖L2(Λ) .

This yields the desired result.
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5.2 Condition number

Definition 5.2. The condition number of a non-singular n× n matrix B is defined as:

kP (B) = ‖B‖P





B−1






P ,

where ‖B‖P is the spectral norm of B, which is given by: ρ =
�

BT B
�

1
2 .

Remark 1. The condition number of a matrix A gives a measure of how sensitive systems of equations, with coefficients matrix A,
are to small perturbations such as those caused by rounding. Then if the condition number of a matrix is large, the effect of
rounding error in the solution process may be serious [25]. To compute the condition number of different order of these matrix
we use the spectral norm, and all operations are made by the Maple, using [16].

5.3 Figure illustration

The Figures 1 and 2 present the behavior of the garithm of the condition number and the error as N vary from 3 to 10. In Figure
3, the variation of the functions αn(t) is presented as n changes from 3 to 10. Figures 4 and 5, display the true and approximate
solutions, w and wN respectively, when N = 10. We consider the true explicit solution: w(t, x) = sin(πx)exp(−( π10 )

2 t) and
ψ(t, x) = exp(−( π10 )

2 t)
�

(0.99π2 + 1) sin(πx) +π cos(πx)
�

.

Remark 2. This figure shows that the error decreases rapidly when N increass. Here we plot
�

N ,‖w−wN‖L2(Λ)

�

.

6 Conclusion

In this work, we proposed a numerical method for solving a specific case of the heat convection-diffusion equation, using the
Legendre spectral method. The primary objective was to reduce the two-dimensional problem to a one-dimensional domain,
leading to significant computational efficiency. As a result, the linear systems (23),(24),(25) and (26) are of size (N − 1), in
contrast to other methods where the matrix order is (N −1)2 (as seen in [10, 11]). This reduction in the size of the system allows
for faster computations while maintaining high accuracy in the approximated solution.

The results obtained from the numerical experiments show that the proposed method provides an efficient and reliable
solution to the problem, with the error estimates confirming the method’s accuracy. The spectral approach, combined with
Lagrange interpolation and Gauss-Lobatto nodes, demonstrates its capability to handle the problem efficiently, even in the
presence of complex boundary and initial conditions.

Looking ahead, there are several avenues for future research that could further enhance the applicability and performance of
this method. First, the proposed method could be extended to more complex, nonlinear convection-diffusion equations, which
would broaden its scope. Additionally, the technique could be adapted to handle problems with time-dependent boundary
conditions or higher-dimensional domains, which are common in real-world applications.

Another potential direction is the development of adaptive spectral methods, which could automatically refine the grid
in regions where the solution exhibits sharp gradients or singularities, further improving accuracy. Furthermore, exploring
parallelization strategies for solving the resulting linear systems could lead to significant computational savings, particularly in
large-scale simulations.

Lastly, it would be interesting to investigate the hybridization of the Legendre spectral method with other numerical techniques,
such as finite element or finite difference methods, to combine the strengths of each approach. This could provide more flexibility
and improve the method’s robustness in handling a wider range of physical problems.

In conclusion, the Legendre spectral method shows great promise for solving heat convection-diffusion equations, and
its future development could play a key role in advancing numerical methods for more complex scientific and engineering
applications.
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Figure 1: The condition number when N vary from 3 to 10

Figure 2: The behavior of the error when N vary from 3 to 10
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Figure 3: Plots of the functions αn(t), n vary from 1 to 9

Figure 4: The true solution w(t, x)
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Figure 5: The approximate solution wN (t, x) when N = 10
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