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Abstract

This study focuses on solving finite minimax problems. A new reformulation for the minimax problems is
established based on indicator functions. The relations between the original and reformulated problems
are investigated. Based on the new formulation of minimax problems, a new smoothing approach is
proposed via the approximation of the indicator functions. A new algorithm is developed to solve the
reformulated and smoothed problems. Finally, the performance of the algorithm is illustrated on some
test problems, and the comparison of the obtained numerical results with the other methods is presented.
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1 Introduction

The minimax problem is a prominent non-smooth optimization problem that finds extensive application areas such as data fitting
[1], engineering design [2], vehicle routing [3], portfolio selection [4], structural optimization [5], resource allocation [6], and
others [7, 8, 9, 10, 11]. On the other hand, minimax problems are often used to address situations where uncertainty exists. The
goal in uncertainty problems is to minimize the impact of the worst-case scenario and thus ensure robustness against unknown or
unpredictable factors. Minimax problems are a subset of uncertainty problems that focus on worst-case optimization. When
the decision maker exhibits risk aversion or the measurement of uncertainty is imprecise, they serve as valuable tools. Minimax
techniques can be used to better balance robustness and performance in larger uncertainty problems [12, 13, 14, 15, 16, 17].

The minimax problem is stated as follows:
min
x∈Rn

f (x), (1)

where
f (x) =max

j∈J
f j(x) (2)

and f j : Rn → R, j ∈ J = {1, 2, . . . , m} are continuously differentiable. The problem (1) is difficult to solve since the objective
function defined in (2) may be non-differentiable [18]. The invention of an efficient algorithm to address the finite minimax
problem is of fundamental importance. In [19], a highly efficient approach for addressing minimax problems with reference to the
aggregate method is introduced. An analogous method has been outlined in [20] in which a penalty function is constructed. Many
algorithms have been developed in order to solve the problem (1), such as sub-gradient-based methods [21], bundle-methods
[22], homotopy methods [23], and smoothing methods [24, 25, 26]. In recent years, many interesting methods have been
developed to solve various variants of the problem (1) in [27, 28, 29, 30].

In this article, it is focused on the application of smoothing techniques specifically designed for non-smooth functions.
Smoothing techniques enable the application of existing gradient-based methods for addressing finite minimax problems [31].
The concept of smoothing approaches involves the approximation of original, non-smooth functions through the application
of smooth functions [32, 33, 34]. The approximation is regulated by adjustable parameters. A smoothing function f̃ε(x) is
applied to f (x), utilizing a smoothing parameter ε > 0. This approach transforms the minimax problems into a sequence of
smooth optimization problems represented as minx∈Rn f̃ε(x) through the implementation of smoothing techniques. Given specific
appropriate assumptions, the solutions to minx∈Rn f̃ε(x) converge to a solution of the original minimax problem as the smoothing
parameter tends towards 0. Two significant categories of smoothing techniques exist. The initial technique is referred to as local
smoothing, which involves the process of smoothing the original function within an appropriate vicinity of the kink points. The
second technique, referred to as global smoothing, involves constructing smooth functions that serve as approximations of the
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original function throughout the entire domain. It is a challenging endeavor to create a smoothing function for the function f (x)
that is described in equation (2) since it contains a great deal of kink points. There have been suggestions made for alternate
formulations in order to overcome these issues. Here is a list of some of them in chronological order. This is the restated version
of the function f (x) that can be found in [35] by

f (x) = f1(x) +max{ f2(x)− f1(x) +max{ (3)

. . .max{ fm−1(x)− fm−2(x) +max{ fm(x)− fm−1(x), 0}, 0} . . . , 0}, 0},

and a smoothing approach is proposed for addressing minimax problems for the first time. The initial local smoothing technique
is introduced in [36] for addressing minimax problems through the formulation (3). Nonetheless, the aforementioned formula is
beneficial; however, implementing it through computer programming becomes complex when m is large. The alternative penalty
form with a smooth approximation is presented in [37] as follows:

F(x ,ε) = ε ln
m
∑

j=1

exp

�

f j(x)

ε

�

, (4)

where ε is a smoothing parameter. The formula (4) has the important advantage of including both the penalty term and the
smoothing term at the same time. It is effectively employed in numerous gradient-based algorithms [38]. However, when ε is too
small, the numerical stability becomes uncontrollable due to an exponential term. A different intriguing representation of f (x) is
provided as

F(x , t) = t +
m
∑

j=1

max{ f j(x)− t, 0} (5)

by adding a new variable t and the relation
f (x) =min

t∈R
F(x , t)

is proved by [39, 40, 41]. Furthermore, the hyperbolic smoothing method introduced by [42, 43] is utilized to address min-max
problems in [40, 41] by referencing formula (5). The smoothing variant of F(x , t) incorporates two factors: the variable t and
the smoothing factor ε, which could increase the computing cost as these parameters are modified. In recent years, much focus
has been directed on smoothing approaches, with innovative smoothing techniques being developed and effectively implemented
for numerous non-smooth issues [44, 45, 46, 47]. However, min-max problems have not been investigated with these new
generation smoothing techniques. This study reformulates the function f (x) in (2) to facilitate the application of new generation
smoothing techniques for solving problem (1). The new formula is simple to comprehend; it contains no complex terms that
would hinder numerical calculations, and it does not require additional parameters for adjustment. This study investigates the
relationships between the original and reformulated functions concerning optimal points to demonstrate the equivalence of the
original and proposed formulas. We present a novel smoothing technique, drawing inspiration from the work of [46, 48, 49], and
elucidate its beneficial properties when applied to the reformulated function. We propose a novel algorithm for the numerical
solution of the reformulated and smoothed problem. We analyze several numerical examples to demonstrate the algorithm’s
efficiency.The subsequent section presents foundational information regarding smoothing techniques. In Section 3, a novel
formulation of the min-max problem is proposed. In Section 4, we introduce a new generation smoothing technique derived
from the new formulation and examine the convergence properties of this technique. In Section 5, the minimization algorithm
designed to identify an approximate solution for the problem (1) is presented. In Section 6, the application of the algorithms to
significant test problems is demonstrated. The conclusion section provides final remarks.

2 Preliminaries

In this paper, the notation ‖x‖ =
�∑n

k=1 x2
k

�
1
2 denotes the Euclidean norm in Rn. Let f be an integrable function then,

L1[a, b]−norm of f is defined by

‖ f ‖L1[a,b] =

∫ b

a

| f (t)|d t.

The sub-differential of the function f at the point x0 is defined as ∂ f (x0) = conv
�

∇ f j(x0) : j ∈ { j ∈ N : f j(x0) = f (x0)}
	

where
conv is a convex hull of a set. A point x0 ∈ Rn is called a stationary point of f if 0 ∈ ∂ f (x0). Additionally, x∗k represents the k−th,
while x∗ denotes the global minimizer. The definition of smoothing function function is give as follows:

Definition 2.1. [31] Let h be a continuous function defined on Rn to R. The function h̃ : Rn ×R+ → R is called a smoothing
function of h(x), if h̃(·,ε) is continuously differentiable in Rn for any fixed β , and for any x ∈ Rn,

lim
y→x ,ε→0

h̃(y,ε) = h(x).
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The smoothing functions are generally focus on “max” function

q(t) =max{t, 0}

for t ∈ R due to existence of “max” function at the core of the problem. The first smoothing function (defined by Bertsekas
[35]) is the following:

q̃(t,ε,β) =











t − (1−ε)2
2β , (1−ε)

β ≤ t,
y t + 1

2β t2, −ε
β ≤ t ≤ (1−ε)

β ,
−ε2

2β , t ≤ −ε
β ,

(6)

where ε and β parameters with 0< ε < 1 and β > 0. Zang [36] proposed the following smoothing function

q̃(t,ε) =

�

q(t), |t| ≥ ε,
ρ(t,ε), |t| ≤ ε,

(7)

where ε > 0 and ρ(t,ε) = 1
4ε t2 + 1

2 t + 1
4ε. The smoothing functions (6) and (7) are used with formula (3). The exponential

smoothing is defined as
q̃(t,ε) = ε ln(1+ e

x
ε ), (8)

where ε > 0 and it is used with the formula (4). In [42], the hyperbolic smoothing technique is defined as

q̃(t,ε) =
x +
p

x2 + ε2

2
, (9)

where ε > 0 and it is used with the formula (5) in [40]. In [46], a new generation smoothing technique is introduced, for the
first time. In the beginning, the max function re-stated as

q(t) =max{t, 0}= tχA(t), (10)

where

χA(t)

�

0, x < 0,
1, x ≥ 0.

The function χA(t) is smoothed by the help of smoothing techniques given in [46] and applied to minimax problem by considering
the formula (5) in [49].

3 A New Formulation for the Minimax Problems

In this section, we first present a new reformulation of the problem (1) with the help of indicator functions as an alternative to
the formulations (3), (4) and (5). Let us define the following function:

F(x) =
m
∑

j=1

f j(x)χA j
(x), (11)

where χA j
(x) function is the indicator function of the set A j defined by

χA j
(x) =

�

0, x 6∈ A j ,
1, x ∈ A j ,

where

A1 = {x ∈ Rn : f1(x)≥ fi(x), i = 2,3, . . . , m} ,

A2 = {x ∈ (Rn \ A1) : f2(x)≥ fi(x), i = 1, 3,4, . . . , m} ,

...

Am =
�

x ∈
�

Rn \ (∪m−1
k=1 Ak)

�

: fm(x)≥ fi(x), i = 1, 2, . . . , m− 1
	

.

Remark 1. The collection
�

A j

	m

j=1
is defined as A j ∩ Ai = ; for i, j = 1,2, . . . , m and j 6= i. For any kink point x0 ∈ Rn such that

f j(x0) = fi(x0), if the point x0 ∈ A j then x0 6∈ Ai .
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Based on the Remark 1, the set A j is also defined as

A j =
m
⋂

i=1
i 6= j

B ji ,

where B ji =
�

x ∈ Rn : f j(x)> fi(x)
	

∪
�

x0 ∈ Rn : f j(x0) = fi(x0) and j < i
	

. Therefore, we have

χA j
(x) =

m
∏

i=1
i 6= j

χB ji
(x), (12)

where

χB ji
(x) =

�

0, x 6∈ B ji ,
1, x ∈ B ji .

The function χB ji
(x) is called as Improved Indicator Function (IIF). Note that once the function χB ji

(x) is defined, the IIF of Bi j is
defined as χBi j

(x) = 1−χB ji
(x). Finally, we obtain

F(x) =
m
∑

j=1

f j(x)
m
∏

i=1
i 6= j

χB ji
(x). (13)

The formula (13) is called as Improved Indicator Function Model (IIFM) at the rest of the paper. Now, we investigate the
equivalence of the formulation IIFM to f (x) in (2). Let m= 2, it is easy to see that f (x) = F(x) for any point x ∈ Rn such that
f1(x) 6= f2(x). Let x0 ∈ Rn be a kink point such that f1(x0) = f2(x0) = f (x). According to formulation (12), χA1

(x) = χB12
(x)

and χA2
(x) = χB21

= 1− χB12
(x) are obtained. Therefore, we have χA1

(x0) = 1 and χA2
(x0) = 0, and f (x0) = f1(x0) = F(x0).

The following lemma states equivalence of f (x) and F(x) for m≥ 2.

Lemma 3.1. Assume that the functions f (x) is defined as in (2) and F(x) is defined as in (13). Then

f (x) = F(x),

for all x ∈ Rn.

Proof. For any x0 ∈ Rn, there exists an index j0 such that f (x0) = f j0(x0). That means, f j0(x0) ≥ f j(x0) for all j = 1,2, . . . , m.
Therefore, we have x0 ∈ A j0 = ∩

m
i=1
i 6= j0

B j0 i . By considering IIF, we obtain

χA j0
(x0) =

m
∏

i=1
i 6= j0

χB j0 i
(x0) = 1,

and χA j
(x0) = 0 for j 6= j0. It can be easily concluded that

F(x0) = f j0(x0)χA j0
(x0) +

m
∑

j 6= j0
j=1

f j(x0)χA j
(x0)

= f j0(x0).

Theorem 3.2. Assume that the functions f (x) is defined as in (2) and F(x) is defined as in (13). A point x∗ ∈ Rn is a stationary
point of f if and only if it is a stationary point of F(x).

Proof. By considering the Lemma 3.1, the proof is obtained easily.

Theorem 3.3. Assume that the functions f (x) is defined as in (2) and F(x) is defined as in (13). A point x∗ ∈ Rn is a local minimizer
of f if and only if it is a local minimizer of F(x).

Proof. By considering the Lemma 3.1, the proof is obtained easily.

The Theorems 3.2 and 3.3 states the equivalence of the formulas f (x) and IIFM and given in (2) and (13), respectively.

Dolomites Research Notes on Approximation ISSN 2035-6803



Yilmaz 101

4 A New Smoothing Approach

In this section, we propose a new smoothing approach for the function described in (13). It is easy to see that the function F(x)
may have non-smooth structure. Indeed, the non-smoothness of F(x) is originated from the existence of the χB ji

(x) since f j(x)
are continuously differentiable for j = 1, . . . , m. The idea for eliminating this lack is that if the IIF χB ji

(x) is smoothed, then the
function F(x) becomes smooth. First, we define the smoothing function for indicator functions.

Definition 4.1. [49] Let h be a semi-continuous function (upper or lower) defined on R to R. The function g̃ : R×R+→ R is
called a smoothing function of g(t), if h̃(·,ε) is continuously differentiable in Rn for any fixed ε, and for any t ∈ R,

lim
z→t,β→0

g̃(z,ε) = h(t).

New generation smoothing techniques have been studied in [46, 48]. For the first time, they are applied to solve minimax
problems in [49]. We now re-define the IIF as

χB ji
(t) =

�

0, t < 0,
1, t ≥ 0,

where t = f j(x)− fi(x). In the following, we propose a new smoothing function of IIF as

χ̃B ji
(t,ε) =







0, t ≤ −ε,
R(t,ε), −ε ≤ t ≤ ε,
1, t ≥ ε,

(14)

where R(t,ε) = 1
2π sin(πε t) + t

2ε +
1
2 and ε > 0. The function R(t,ε) is called smooth transition function. It is designed in

order to supply twice continuously differentiability between the pieces of IIF. Therefore, χB ji
(t,ε) is second-order continuously

differentiable. We have

χ̃ ′B ji
(t,ε) =







0, t ≤ −ε,
R′(t,ε), −ε ≤ t ≤ ε,
0, t ≥ ε,

(15)

where R′(t,ε) = 1
2ε

�

cos
�

πt
ε

�

+ 1
�

and

χ̃ ′′B ji
(t,ε) =







0, t ≤ −ε,
R′′(t,ε), −ε ≤ t ≤ ε,
0, t ≥ ε,

(16)

where R′′(t,ε) = − π
2ε2 sin

�

πt
ε

�

.
Another useful property of the smoothing function of the IIF is χ̃B ji

= 1− χ̃Bi j
. The relation between χB ji

(t) and its smoothing
function χ̃B ji

(t,ε) is investigated at the following lemmas.

Lemma 4.1. Assume that χB ji
(t) is an IIF of the set B ji ⊂ Rn and χ̃B ji

(t,ε) is a smoothing function of χB ji
(t). Then, we have

|χ̃B ji
(t,ε)−χB ji

(t)| ≤
1
2

,

for any ε > 0.

Proof. Since we have χ̃B ji
(t,ε) = χB ji

(t) for t ≤ −ε and t ≥ ε, we discuss the cases −ε ≤ t ≤ 0 and 0 ≤ t ≤ ε. For −ε ≤ t ≤ 0,
we obtain

�

�

�χ̃B ji
(t,ε)−χB ji

(t)
�

�

�= |R(t,ε)| ≤
1
2

,

and for 0≤ t ≤ ε
�

�

�χ̃B ji
(t,ε)−χB ji

(t)
�

�

�= |R(t,ε)− 1| ≤
1
2

.

Therefore, the proof is completed.

Lemma 4.2. Assume that χB ji
(t) is an IIF of the set B ji ⊂ Rn and χ̃B ji

(t,ε) is the smoothing function. Then, we have

‖χ̃B ji
(t,ε)−χB ji

(t)‖L1(R) ≤
ε

2
,

for any ε > 0.
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Proof. Since we have χ̃B ji
(t,ε) = χB ji

(t) for t ≤ −ε and t ≥ ε, we deal with the case −ε ≤ t ≤ ε. For −ε ≤ t ≤ ε,





χ̃B ji
(t,ε)−χB ji

(t)






L1(R)
=

∫ ε

−ε

�

�

�χ̃B ji
(t,ε)−χB ji

(t)
�

�

� d t

=

∫ 0

−ε
|R(t,ε)| d t +

∫ ε

0

|R(t,ε)− 1| d t

=
� ε

4
−
ε

π2

�

+
� ε

4
−
ε

π2

�

<
ε

2
.

Therefore, the proof is completed.

Based on the new formulation and smoothing technique we define the smoothing function of the objective function F(x) as

F̃(x ,ε) =
m
∑

j=1

f j(x)
m
∏

i=1
i 6= j

χ̃B ji
(t ji ,ε),

where t ji = f j(x)− fi(x) and the problem given in (1) is re-defined as

min
x∈Rn

F̃ (x ,ε) , (17)

for ε > 0. First, we introduce the case m= 2 and obtain the following results.

Theorem 4.3. Let x ∈ Rn, ε > 0
|F(x)− F̃(x ,ε)| ≤

ε

2
.

Proof. Since t1 = −t2, χ̃B12
(t1,ε) = χB12

(t1) and χ̃B21
(t2,ε) = χB21

(t2) for t1 ≤ −ε and t1 ≥ ε, we only concern with the case
−ε ≤ t1 ≤ ε for ε > 0. For −ε ≤ t1 ≤ ε we obtain

|F(x)− F̃(x ,ε)| = | f1(x)χB12
(t1) + f2(x)χB21

(t2)

−
�

f1(x)χ̃B12
(t1,ε) + f2(x)χ̃B21

(t2,ε)
�

|.

Without loss of generality, we assume that x ∈ B12 then we have χB12
(t1) = 1 and χB21

(t2) = 0 and

|F(x)− F̃(x ,ε)| =
�

� f1(x)
�

1− χ̃B12
(t1,ε)

�

+ f2(x)
�

χ̃B21
(t2,ε)

��

�

= | f1(x)− f2(x)|
�

�χ̃B21
(t2,ε)

�

� .

Since | f1(x)− f2(x)| ≤ ε and χ̃B21
(t2,ε) takes the value at most 1

2 , we have

|F(x)− F̃(x ,ε)| ≤
ε

2
.

Thus, the proof is completed.

Theorem 4.4. Let ε > 0 and x ∈ Rn

‖F̃(x ,ε)− F(x)‖L1 ≤ ε2.

Proof. Since t1 = −t2 and χ̃B12
(t1,ε) = χB12

(t1) and χ̃B21
(t2,ε) = χB21

(t2) for t1 ≤ −ε and t1 ≥ ε, we need to consider the case
−ε ≤ t1 ≤ ε for ε > 0. For −ε ≤ t1 ≤ ε, we obtain

‖F̃(x ,ε)− F(x)‖L1 =

∫ ε

−ε

�

� f1(x)χ̃B12
(t1,ε) + f2(x)χ̃B21

(t2,ε)

−
�

f1(x)χB12
(t1) + f1(x)χB21

(t2)
��

� d t

=

∫ ε

−ε

�

� f1(x)
�

χ̃B12
(t1,ε)−χB12

(t1)
�

+ f2(x)
�

χ̃B21
(t2,ε)−χB21

(t2)
��

� d t

=

∫ ε

−ε
| f1(x)− f2(x)|

�

�χ̃B12
(t1,ε)−χB12

(t1)
�

� d t.

Since | f1(x)− f2(x)| ≤ ε and from Lemma 4.2, we have

‖F̃(x ,ε)− F(x)‖L1 ≤ ε2.

Thus, the proof is completed.

Dolomites Research Notes on Approximation ISSN 2035-6803



Yilmaz 103

The Theorems 4.3 and 4.4 are verify theoretically that the proposed approach is a smoothing approach. In order to visualize
the smoothing process we give the following example:

Example 4.1. Let the function f is defined as

f (x) =max{ f1(x), f2(x)},

where f1(x) = e−x − 1 and f2(x) = 3x . It can be easily computed that there is knot point at x = 0, the function f is continuous
but non-differentiable and ∂ f (0) = [−1,3]. According to the concept of the sub-differential, the point x0 = 0 is the stationary
point. The graph of the function f can be imagined by considering the max function of f1 and f2 at Fig. 1 (a) (red and solid). By
applying the above smoothing technique the smoothing function F̃(x ,ε) of f is obtained as

F̃(x ,ε) = f1(x)χ̃B12
(t1,ε) + f2(x)χ̃B21

(t2,ε),

where B12 = {x ∈ R : f1(x)≥ f2(x)}, B21 = Bc
12 and t1 = −t2 = f1(x)− f2(x) for x ∈ R. The graph of the function F(x ,ε) is

illustrated in Fig. 1 (a) (green and dashed). In fact, we obtain an outer approximation to original function by the help of the
above smoothing approach. We can deduce that for any function f (x) =max{ f1(x), f2(x)}, the inequality f (x) = F(x)≥ F̃(x ,ε)
holds. Indeed, for t1 = f1(x)− f2(x)≥ 0, we have

F(x)− F(x ,ε) = f1(x)− ( f1(x)χ̃B12
(t1,ε) + f2(x)χ̃B21

(−t1,ε)

= f1(x)(1− χ̃B12
(t1,ε))− f2(1− χ̃B12

(t1,ε))

= ( f1(x)− f2(x))(1− χ̃B12
(t1,ε)).

Since (1− χ̃B12
(t,ε))≥ 0 and f1(x)− f2(x)≥ 0, we obtain F(x)≥ F(x ,ε). The same result is obtained for t1 < 0. In Fig. 2 , we
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Figure 1: (a) The red graph is the graph of f (x), the green and dashed one is the graph of F̃(x , 1), the
blue and dotted one is the graph of hyperbolic smoothing function h̃(x , 1), the cyan and dotted-dashed
one is the graph of exponential smoothing function ẽ(x , 1) and the magenta and dashed one is the
graph of local smoothing function l̃(x , 1) and, (b) The graphs of difference functions are presented as
f (x)− F̃(x , 1), f (x)− f̃ (x , 1), f (x)− ẽ(x , 1) and f (x)− l̃(x , 1), respectively.

illustrate the graph of smoothing functions that we mentioned in the introduction in a single framework in order to compare
them visually. When the same value of ε = 0.2 is chosen for all smoothing approaches, the best approximation is achieved by our
smoothing approach. Moreover, in Figure 1, we illustrate the other smoothing functions, such as hyperbolic [42], exponential
[37], and the local smoothing approach in [36], by considering the same parameter value ε = 1 for all approaches. Moreover, in
Figure 1 (a), we illustrate the other smoothing functions, such as hyperbolic [42], exponential [37], and the local smoothing
approach in [36], by considering the same parameter value ε for all approaches.

According to Fig. 2 (a), choosing smaller ε values produces better approximations to the original function. The differences
between the original function and the smoothing function with different parameter values are illustrated in Fig. 2 (a).

Let us continue giving the results about the degree of approximation of the the smoothing approach. Now, we present the
convergence results for any finite value of m.

Theorem 4.5. Let x ∈ Rn, ε > 0
�

�F(x)− F̃(x ,ε)
�

�≤ ε.
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Figure 2: (a) The blue graph is the graph of f (x), the red and dotted one is the graph of F̃(x , 1) and
the green and dotted one is the graph of F̃(x , 1), and (b) The blue graph is the graph of f (x), the red
one is the graph of F̃(x , 0.2), the green one is the graph of exponential smoothing with ε = 0.2 and the
yellow one is the graph of hyperbolic smoothing function with ε = 0.2.

Proof. For any x ∈ Rn, we have

�

�F(x)− F̃(x ,ε)
�

�=

�

�

�

�

�

�

�

m
∑

j=1

f j(x)
m
∏

i=1
i 6= j

χB ji
(t ji)−

m
∑

j=1

f j(x)
m
∏

i=1
i 6= j

χ̃B ji
(t ji ,ε)

�

�

�

�

�

�

�

.

For a fixed x ∈ Rn there exists j0 ∈ {1,2, . . . , m} such that F(x) = f (x) = f j0(x) and f j0(x) ≥ f j(x) for all j ∈ {1,2, . . . , m}. We
obtain

�

�F(x)− F̃(x ,ε)
�

� =

�

�

�

�

�

�

�

f j0(x)−
m
∑

j=1

f j(x)
m
∏

i=1
i 6= j

χ̃B ji
(t ji ,ε)

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

f j0(x)− f j0(x)
m
∏

i=1
i 6= j0

χ̃B j0 i
(t j0 i ,ε)−

m
∑

j=1
j 6= j0

f j(x)
m
∏

i=1
i 6= j

χ̃B ji
(t ji ,ε)

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

f j0(x)



1−
m
∏

i=1
i 6= j0

χ̃B j0 i
(t j0 i ,ε)



−
m
∑

j=1
j 6= j0

f j(x)
m
∏

i=1
i 6= j

χ̃B ji
(t ji ,ε)

�

�

�

�

�

�

�

.

Let us construct the set K =
�

k ∈ {1,2, . . . , m} : | f j0(x)− fk(x)|< ε, x ∈ Rn
	

. It can be concluded that χ̃Bi j0
(t i j0 ,ε) ≤ 1

2 and

χ̃B j0 i
(t j0 i ,ε)≥

1
2 for i ∈ K . Without loss of generality assume that f j0 ≥ fk1

≥ fk2
· · · ≥ fkp

such that p = card(K). Then, we have
∏p

i=1
ki 6= j0

χ̃B j0ki
(t j0ki

,ε)≥ 1
2p . Therefore

�

�F(x)− F̃(x ,ε)
�

� ≤
�

�

�

�

�

1−
1
2p

�

f j0(x)−
�

1
2

fk1
(x) +

1
22

fk2
(x)

+ · · ·+
1
2p

fkp
(x)
�

�

�

�

�

≤
1
2
| f j0(x)− fk1

(x)|+
1
22
| f j0(x)− fk2

(x)|

+ · · ·+
1
2p
| f j0(x)− fk2

(x)|

≤ ε.

Thus, the proof is completed.
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Theorem 4.6. Suppose that the point x∗ is an optimal solution for the problem (1) and x is an optimal solution for the problem
(17). Then,

|F(x∗)− F̃(x ,ε)| ≤ ε.

Proof. Since F( x̄)≥ F(x∗)≥ F̃( x̄ ,ε), we have

|F(x∗)− F̃( x̄ ,ε)| ≤ |F( x̄)− F̃( x̄ ,ε)|.

By the help of Theorem 4.3 and 4.5, we obtain

|F( x̄)− F̃( x̄ ,ε)| ≤ ε.

It completes the proof.

Theorem 4.7. Let
�

ε j

	

→ 0 and x k be a solution of (17). Assume that x is an accumulation point of
�

x k
	

. Then x is an optimal
solution for (1).

Proof. By considering the Theorem 4.6, the proof is obtained.

5 Algorithm and Minimization Procedure

In this section the new algorithm is given to solve min-max problem defined in (1). We propose to use smoothed version of the
problem (17) instead of the problem given in (1).

Algorithm 1 Improved Indicator Smoothing Algorithm (IISA)

1: Input: x0, ε0, q, τ← 10−4, k← 0 and i = 0.
2: while ‖∇F̃(x k,εk)‖> τ do
3: Solve the problem (17) by using gradient-based solver by considering x k as an initial point. x k+1← argmin F̃ (x ,ε).
4: x k ← x k+1, εk ← qεk.
5: i = i + 1.
6: end while
7: Output: x k, f (x k), i.

In the application process of IISA, the starting point x0 is chosen randomly, the smoothing parameter varepsilon0 leq1, and the
parameter q is selected, such as 0< q < 1. The variable i is used for counting the number of iterations. The convergence of IISA
is stated by the following theorem:

Theorem 5.1. Suppose the set
argmin

x∈Rn
F̃(x ,ε) 6= ;,

for ε ∈ (0,ε0]. Let x k be generated by IISA. If {x k} has an accumulation point, then the accumulation point of {x k} is the solution for
(1).

Proof. Let us define the set L(x0) = {x ∈ Rn : f (x)≤ f (x0)} for starting point x0. Let x be an accumulation point of {x k} and
L(x0) is bounded. We first show that x ∈ L(x0). Since

F̃(x0,ε)≥ F̃(x k,ε),

and according to Theorem 4.6, we have f (x0) ≥ f (x k) and x k ∈ L(x0). Since L(x0) is bounded we obtain x ∈ L(x0). By the
Theorem 4.7, x is the solution for (1).

6 Numerical Examples

This section is devoted to present the numerical results of IISA on some test problems. We apply the IISA by using MATLAB on PC
with configuration of Intel Core i5, 8GB RAM. We consider the BFGS method as a local search for Algorithm I and the parameters
are selected as ε0 = 10−1 and q = 10−1. It is accepted that the problem is solved, if the accuracy 10−4 with respect to function
value is obtained.

We consider a class of 15 different test problems for numerical test procedure of the proposed and competing algorithms. The
details of the test problems are given as follows:
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Problem 1. [20] f (x) = max
1≤ j<2

f j(x) where f j : R2→ R and

f1(x) = −x1 − x2,

f2(x) = −x1 − x2 +
�

x2
1 + x2

2 − 1
�

,

the global minimum value of the objective function f is f ∗ = −
p

2.

Problem 2. [20] f (x) = max
1≤ j<4

f j(x) where f j : R2→ R and

f1(x) = 10(x2 − x2
1),

f2(x) = − f1(x),

f3(x) = 1− x1,

f4(x) = − f3(x),

the global minimum value of the objective function f is f ∗ = 0.

Problem 3. [24] f (x) = max
1≤ j<m

f j(x) where f j : R3→ R

f j(x) = sin t j − (x3 t2
j + x2 t j + x1), j = 1, . . . ,

m
2

f j(x) = − f j− m
2
(x), j =

m
2
+ 1, . . . , m,

and

t j =
j − 1

�

m
2 − 1

� , j = 1, . . . ,
m
2

.

The global minimum value of objective function f is f ∗ = −4.50481× 10−3.

Problem 4. [24] f (x) = max
1≤ j<3

f j(x) where f j : R2→ R and

f1(x) = (x1)
2 + (x2)

2,

f2(x) = (2− x1)
2 + (2− x2)

2,

f3(x) = 2exp(−x1 + x2),

the global minimum value of the objective function f is f ∗ = 1.9522.

Problem 5. [24] f (x) = max
1≤ j<2

f j(x) where f j : R2→ R and

f1(x) =
�

x1 −
q

x2
1 + x2

2 cos(x2
1 + x2

2)
�2
+ 0.005(x2

1 + x2
2),

f2(x) =
�

x1 −
q

x2
1 + x2

2 sin(x2
1 + x2

2)
�2
+ 0.005(x2

1 + x2
2),

the global minimum value of the objective function f is f ∗ = 0.

Problem 6. [24] f (x) = max
1≤ j≤50

f j(x) where f j : R200→ R and

f j(x) = x2
4( j−1)+1 + x2

4( j−1)+2 + x2
4( j−1)+3 + x2

4 j , j = 1, . . . , 50.

the global minimum value of the objective function f is f ∗ = 0.

Problem 7. [51] f (x) = max
1≤ j≤2

f j(x) where f j : R2→ R and

f1(x) = x2
1 + (x2 − 1)2 + x2 − 1,

f2(x) = −x2
1 − (x2 − 1)2 + x2 + 1,

the global minimum value of the objective function f is f ∗ = 0.

Problem 8. [51] f (x) = max
1≤ j≤3

f j(x) where f j : R2→ R and

f1(x) =
1
2

�

x1 +
10x1

x1 + 0.1
+ 2x2

2

�

,

f2(x) =
1
2

�

−x1 +
10x1

x1 + 0.1
+ 2x2

2

�

,

f3(x) =
1
2

�

x1 −
10x1

x1 + 0.1
+ 2x2

2

�

,

the global minimum value of the objective function f is f ∗ = 0.
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Problem 9. [51] f (x) = max
1≤ j≤3

f j(x) where f j : R2→ R and

f1(x) = 5x1 + x2,

f2(x) = −5x1 + x2,

f3(x) = x2
1 + x2

2 + 4x2,

the global minimum value of the objective function f is f ∗ = −3.

Problem 10. [51] f (x) = max
1≤ j≤6

f j(x) where f j : R3→ R and

f1(x) = x2
1 + x2

2 + x2
3 − 1,

f2(x) = x2
1 + x2

2 + (x3 − 2)2,

f3(x) = x1 + x2 + x3 − 1,

f4(x) = x1 + x2 − x3 + 1,

f5(x) = 2x3
1 + 6x2

2 + 2(5x3 − x1 + 1)2,

f6(x) = x2
1 − 9x3,

the global minimum value of the objective function f is f ∗ = 3.5997.

Problem 11. [51] f (x) = max
1≤ j≤4

f j(x) where f j : R4→ R and

f1(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

f2(x) = f1(x) + 10
�

x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8
�

,

f3(x) = f1(x) + 10
�

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10
�

,

f4(x) = f1(x) + 10
�

2x2
1 + 2x2

2 + x2
3 + 2x1 − x2 − x4 − 5

�

,

the global minimum value of the objective function f is f ∗ = −44.

Problem 12. [51] f (x) = max
1≤ j≤5

f j(x) where f j : R7→ R and

f1(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5

+7x2
6 + x4

7 − 4x6 x7 − 10x6 + 8x7,

f2(x) = f1(x) + 10
�

2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 − 127

�

,

f3(x) = f1(x) + 10
�

7x1 + 3x2 + 10x2
3 + x4 − x5 − 282

�

,

f4(x) = f1(x) + 10
�

23x1 + x2
2 + 6x2

6 − 8x7 − 196
�

,

f5(x) = f1(x) + 10
�

4x2
1 + x2

2 − 3x1 x2 + 2x2
3 + 5x6 − 11x7

�

,

the global minimum value of the objective function f is f ∗ = 680.63006.

Problem 13. [52] f (x) = max
1≤ j<m

f j(x) where f j : R2→ R and

f j(x) = x2
1 + 2x1 t2

j + exp(x1 + x2)− exp(t j),

t j =
j

(q−1) , j = 0, 1, . . . , m− 1. The global minimum value of objective function f is f ∗ = −1.

Problem 14. [52] f (x) = max
1≤i, j<m

fi, j(x) where fi, j : R4→ R

fi, j(x) =
(t i − x i)2

x2
3

+
(r j − x2)2

x2
4

− 4,

and t i =
ip

m−1 , t j =
jp

m−1 , i, j = 0,1, . . . , m− 1. The global minimum value of the objective function f is f ∗ = −4.
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Table 1: The numerical results of IISA and comparison with other smoothing-based algorithms

IISA HSA ESA LSA
Problem No. n m iter f eval f .val Time i ter f .eval f .val Time i ter f .eval f .val Time i ter f .eval f .val Time

1 2 2 17 105 -1.4142 0.012893 37 165 -1.4141 0.021611 23 96 -1.4017 0.011118 22 132 -1.4142 0.017186
2 2 4 13 54 2.064e-10 0.0073957 15 177 3.9525e-05 0.019457 12 63 0.22583 0.013994 19 138 0.00026929 0.014859

3
3 50 48 384 4.5078e-03 0.078041 72 412 0.0045894 0.11084 18 92 15.932 0.010434 85 436 0.0047682 0.035897
3 102 42 452 4.5078e-03 0.25947 100 552 0.0046054 0.2563 12 76 0.75344 0.012377 72 424 0.0046188 0.036451
3 202 24 396 4.5078e-03 0.78225 94 588 0.0048985 0.49994 18 92 21.618 0.015659 84 484 0.0048512 0.057917

4 2 3 24 132 1.9522 0.011758 24 150 1.9523 0.022188 40 178 1.9557 0.014741 24 141 1.9523 0.014551
5 2 2 6 27 1.1925e-06 0.0045825 98 486 0.11791 0.046196 181 831 0.68103 0.044065 130 651 0.11725 0.043132
6 200 50 31 7627 2.3018e-05 1.8152 38 9045 1.25e-05 2.3575 63 13869 1.5932 0.42376 105 22914 4.6415e-05 0.98944
7 2 2 12 93 -3.1668e-05 0.014047 30 144 3.2009e-05 0.015785 21 120 0.0028801 0.010926 10 117 2.4997e-05 0.0094584
8 2 3 9 93 -3.245e-06 0.013506 14 114 0.0089623 0.030249 13 103 0.006643 0.011662 13 129 1.4419e-05 0.012287
9 2 3 20 207 -2.9999 0.037632 15 123 -3 0.020384 16 150 -2.9944 0.017181 26 144 -2.9999 0.042089
10 3 6 26 292 3.5997 0.026583 92 628 3.6011 0.054323 46 308 3.6016 0.02028 22 220 3.5999 0.015759
11 4 4 56 605 -44 0.027176 139 995 -43.724 0.060258 87 520 -41.318 0.019938 71 545 -44 0.022625
12 7 5 19 992 678.38 0.031834 88 1568 699.36 0.079701 144 1395 678.87 0.039893 56 1008 678.39 0.032223

13

2 10 16 69 -1 0.018347 57 198 -0.99997 0.028444 38 141 -0.5515 0.015934 35 114 -1 0.01382
2 100 12 66 -1 0.036296 69 264 -0.99997 0.14551 38 141 0.34575 0.019128 32 111 -1 0.015179
2 1000 25 162 -1 0.8954 73 267 -0.9999 1.0409 37 138 1.2795 0.036004 33 120 -1 0.039464
2 2000 23 156 -1 4.0921 76 279 -1 9.2256 40 147 1.5616 0.13991 33 120 -1 0.15908

14

4 10 3 45 -4 0.012911 3 50 -3.9999 0.014949 5 35 -2.1245 0.012607 7 35 -3.9999 0.011161
4 100 4 29 -4 0.028304 6 35 -4 0.031669 5 25 -0.24906 0.011407 5 25 -3.9999 0.011997
4 1000 3 26 -4 1.4376 8 105 -4 1.4704 6 35 1.6264 0.35892 6 38 -3.9999 0.33996
4 2000 4 31 -4 5.739 10 120 -4 5.7936 4 40 2.191 1.583 4 35 -3.9999 1.3395

15 10 9 26 1397 24.302 0.042677 76 1782 59.329 0.13034 110 1719 25.54 0.050532 93 2321 24.307 0.057021

Problem 15. [53] f (x) = max
1≤ j≤9

f j(x) where f j : R10→ R and

f1(x) = x2
1 + x2

2 + x1 x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2

+5x2
7 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

f2(x) = f1(x) + 10
�

3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120

�

,

f3(x) = f1(x) + 10
�

5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40

�

,

f4(x) = f1(x) + 10
�

0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2
5 − x6 − 30

�

,

f5(x) = f1(x) + 10
�

x2
1 + 2(x2 − 2)2 − 2x1 x2 + 14x5 − 6x6

�

,

f6(x) = f1(x) + 10
�

4x1 + 5x2 − 3x7 + 9x8 − 105
�

,

f7(x) = f1(x) + 10
�

10x1 − 8x2 − 17x7 + 2x8

�

,

f8(x) = f1(x) + 10
�

−3x1 + 6x2 + 12(x9 − 8)2 − 7x10

�

,

f9(x) = f1(x) + 10
�

−8x1 + 2x2 + 5x9 − 2x10 − 12
�

,

the global minimum value of the objective function f is f ∗ = 24.31.

Based on the above test problems, 23 different test cases were created, varying in dimension (n) from 2 to 200 and in number
of functions (m) from 2 to 2000. IISA has been applied to these test cases, and total iteration numbers “iter”, total function
evaluations “feval”, function values ”f.val”, and the CPU time in seconds “Time” outputs are reported for each test case. The test
results are illustrated in Tables 1 and 2.

In Table 1, the obtained numerical results from IISA are compared with Algorithm I with hyperbolic smoothing used in [40, 42]
with min-max formula (5) called as (HSA), Algorithm I with exponential smoothing used in [37, 50] with min-max formula (4)
called as (ESA) and Algorithm I with local smoothing used in [36] with min-max formula (3) called as (LSA). Moreover, we
compare our numerical results with existing techniques in MATLAB, such as “fmincon” and “fminimax” in Table 2. We have
considered randomly generated initial points for each test case.

It can be seen from the Table 1 that IISA presents better results than smoothing based algorithms such as HSA, ESA ans LSA
at the rate of 70% considering all test cases in terms of total number of iterations. In terms of total function evaluations, IISA
presents better results than the ESA and HSA at the rate of 50% considering all test problems. Moreover, by using IISA and
LSA the correct solutions are obtained for all test problems but by using HSA and ESA the solutions are not close to desired
results. Moreover, if anyone compares IISA with the ESA and HSA in terms of CPU time, it is seen that IISA is faster than than
ESA and HSA at the rate of 50% considering all test cases. Conversely, the use of the ESA is complicated due to the presence of
the exponential term. As the smoothing parameter ε→ 0+, the exponential function exp

�

f j (x)
ε

�

attains significantly large values.
Therefore the function “fminunc” gives error and can not continue. The HSA is easy to control and it is possible to obtain the
results with desired precision but it is slower than IISA and LSA.

It can be seen from the Table 2 that IISA presents better results than the existing algorithms fmincon and fminimax in MATLAB
at the rate of 50% considering all test cases in terms of total number of iterations and total function evaluations. Moreover,
if anyone compares IISA with the fmincon and fminimax in terms of CPU time, it is seen that IISA is advantageous than the
competing algorithms.
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Table 2: The comparison of the numerical results with “fmincon” and “fminimax”

IISA fmincon fminimax
Problem No. n m iter f eval f .val Time i ter f .eval f .val Time i ter f .eval f .val Time
1 2 2 17 105 -1.4142 0.012893 75 138 -1.4142 0.018358 8 39 -1.4142 0.094444
2 2 4 13 54 2.064e-10 0.0073957 45 87 3.3295e-05 0.009955 3 14 0 0.015573
3 3 50 48 384 4.5078e-03 0.078041 83 149 0.004502 0.0039533 4 23 0.0044998 0.016172

3 102 42 452 4.5078e-03 0.25947 331 597 0.0045078 0.025262 12 67 0.0045048 0.045712
3 202 24 396 4.5078e-03 0.78225 133 240 0.0045107 0.017561 4 23 0.0045048 0.017019

4 2 3 24 132 1.9522 0.011758 44 82 1.9522 0.002018 6 30 1.9522 0.015722
5 2 2 6 27 1.1925e-06 0.0045825 1078 2000 0.1136 0.034323 262 1514 0.069661 0.22193
6 200 50 31 7627 2.3018e-05 1.8152 1.8759e+05 2e+05 3.9912 19.035 18 3653 7.4717e-07 1.4107
7 2 2 12 93 -3.1668e-05 0.014047 19 37 0 0.0009014 1 4 0 0.0083114
8 2 3 9 93 -3.245e-06 0.013506 22 45 0 0.0015607 1 4 0 0.009223
9 2 3 20 207 -2.9999 0.037632 56 101 -3 0.0034867 11 54 -3 0.039539
10 3 6 26 292 3.5997 0.026583 168 301 3.5997 0.0036002 11 65 3.5997 0.053047
11 4 4 56 605 -44 0.027176 274 463 -44 0.0034339 14 101 -44 0.017314
12 7 5 19 992 678.38 0.031834 3696 5682 691.97 0.049013 53 604 678.38 0.08168

13

2 10 16 69 -1 0.018347 96 198 -1 0.0048375 21 106 -1 0.055151
2 100 12 66 -1 0.036296 96 198 -1 0.0088764 21 106 -1 0.081506
2 1000 25 162 -1 0.8954 96 198 -1 0.039701 21 106 -1 0.22788
2 2000 23 156 -1 4.0921 96 198 -1 0.16211 21 106 -1 1.0186

14

4 10 3 45 -4 0.012911 52 100 -4 0.0044919 5 34 -4 0.017266
4 100 4 29 -4 0.028304 55 149 -4 0.017905 2 13 -4 0.012339
4 1000 3 26 -4 1.4376 53 98 -4 0.81922 4 27 -4 0.24937
4 2000 4 31 -4 5.739 52 100 -4 3.4243 4 27 -4 1.0047

15 10 9 26 1397 24.302 0.042677 4787 7219 29.366 0.079395 26 341 24.306 0.075346

7 Conclusion

In this study, a new reformulation of the finite minimax problems is presented based on the multiplication of the indicator
functions for each variable. The equivalence between the original and reformulated problem is proved theoretically. A new
smoothing function for the indicator function is introduced, and it is applied for the reformulated problem as a special case.
By this reformulation and smoothing technique, the objective function of the minimax problem given in (2) has an alternative
formulation to the literature. Moreover, a new smoothing approximation technique has been added to the literature for such a
non-smooth problem. A new algorithm for solving reformulated and smoothed finite minimax problems is developed, and the
convergence of the algorithm has been investigated theoretically. Moreover, the efficiency of the algorithm is demonstrated on
some numerical examples, numerically. According to the comparison of the results with the other methods, it is shown that our
approach is competitive with well-known prestigious approaches.

For future studies, the methodology can be adapted for penalty formulation of the constrained problem and the results can be
compared with the well-known penalty forms. The methodology can be also extended to semi-infinite minimization process
[54, 55].
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