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Approximate solutions of a boundary value problem for delay
nonlinear difference equations with computer realization

Snezhana Hristova a · Rosen Hristev b

Abstract

A unique class of difference equations with non-instantaneous impulses is examined. These impulses begin
abruptly at specified initial time points and continue over given finite discrete intervals. Additionally, the
current state appears on the right side of the equation, preventing recursive solutions and necessitating
approximate methods. This paper proposes an algorithm that constructs two monotone sequences of
successive approximations toward the solution of the given problem. It is theoretically demonstrated that
both sequences converge to the solution. This algorithm has been implemented through a C# program
using a procedural programming approach and is applied to approximate specific examples, including a
modified Ricker model with non-instantaneous impulses.
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1 Introduction

In modeling, a key challenge often revolves around the concept of time. Some researchers view real systems as continuous-time,
using differential equation- based tools for simulation, while others consider real systems as discrete-time and therefore opt
for discrete-time simulation tools. In [1], the author highlights that unlike continuous-time first-order systems, which cannot
produce oscillatory behavior, discrete-time first-order systems can oscillate or even exhibit chaotic behavior. A discrete-time
version of an epidemic model is developed in [2], while pattern formation in a discrete-time predator-prey model is explored
in [3]. Interest in studying difference equations has grown recently, as seen in works like [4] and [5]. For instance, oscillation
and stability in first-order difference equations are examined in [6], while [7] investigates positive solutions for second-order
difference equations without impulses, and [4]demonstrates positive periodic solutions for second-order difference equations.

One of the challenges in difference equations lies in obtaining solutions, particularly when the current state appears non-
linearly on both sides of the equation ([8],[9]). An approximate solution method involves the approach of upper and lower
solutions combined with a monotone-iterative technique, used to construct two sequences of upper and lower solutions for
nonlinear, non- instantaneous impulsive difference equations. This method is applied to difference equations in [10], [11], and
impulsive difference equations in [12]

The main contributions of this paper could be summarized as follows:

- We examine a nonlinear boundary value problem for delay difference equations with non-instantaneous impulses, where
the current state is involved on both sides of the equation, preventing recursive solutions;

- We propose an algorithm to obtain two monotone sequences that approximate the solution: one increasing sequence of
lower solutions and one decreasing sequence of upper solutions;

- We prove the convergence of both sequences to the solution of the studied problem;

- We implement the proposed algorithm using a C# program developed in a procedural programming paradigm;

- We apply this algorithm to approximate solutions for specific examples, including a modified Ricker model with impulses.

2 Statement of the problem

Let the increasing sequence {νi}
p+1
i=0 : νi ∈ Z+, νi ≥ νi−1 + 3, i = 1,2, . . . , p and the sequence {di}

p
i=1 : di ∈ Z+, 1 ≤ di ≤

ni+1 − ni − 2, i = 1,2, . . . , p be given where Z+ is the set of all nonegative integers.
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We will define some discrete sets:

- Z[a, b] = {z ∈ Z+ : a ≤ z ≤ b}, a, b ∈ Z+, a < b;

- Ik = Z[νk + dk,νk+1 − 2], k ∈ Z[0, p− 1], Ip = Z[νp + dp,νp+1];

- Jk = Z[νk + 1,νk + dk − 1], k ∈ Z[1, p] where d0 = 0.

Consider the boundary value problem (BVP) for the nonlinear non-instantaneous impulsive difference equation (DE)

y(ν+ 1) = f (ν, y(ν), y(ν+ 1) for ν ∈
p
⋃

k=0

Ik,

y(νk) = F(k, y(νk − 1)), k ∈ Z[1, p],

y(ν) = g(ν, y(ν), y(νk)) for ν ∈ Jk, k ∈ Z[1, p],

y(ν0) = G(y(νp+1), y(ξ)),

(1)

where f :
⋃p

k=0 Ik ×R×R→ R, F : Z[1, p]×R→ R, g :
⋃p

k=1 Jk ×R×R→ R, ξ : ν0 + 1≤ ξ≤ νp is an integer, G : R×R→ R.

3 Preliminaries

Definition 1. The function α : Z[ν0,νp+1]→ R is called lower (upper) solutions of BVP for DE (1), if:

α(ν+ 1)≤ (≥) f (ν,α(ν),α(ν+ 1)), for ν ∈
p
⋃

k=0

Ik,

α(νk)≤ (≥)F(k,α(νk − 1)), k ∈ Z[1, p],

α(ν)≤ (≥)g(ν,α(ν),α(νk)), for ν ∈ Jk, k ∈ Z[1, p],

α(ν0)≤ (≥)G(α(νp+1),α(ξ)).

Consider the linear difference equations with non-instantaneous impulses

u(ν+ 1) =Qνu(ν) +σn, ν ∈
p
⋃

k=0

Ik,

u(νk) = Tku(νk − 1) +µk, k ∈ Z[1, p],

u(ν) = Lνu(νk) + γν,k, for n ∈ Jk, k ∈ Z[1, p],

(2)

with the initial value condition
u(ν0) = x0, (3)

where u, x0 ∈ R, Qν,σν for ν ∈
⋃p

k=0 Ik, Lν, ν ∈
⋃p

k=1 Jk, γν,k for n ∈ Jk, k ∈ Z[1, p] and Tk,µk : k ∈ Z[1, p], are given real
constants.

Note the initial value problem (2), (3) is in form of recurrence formulas and it is solved recursively in [13].
Lemma 1. ([13]) The initial value problem (2), (3) has an unique solution u(ν),ν ∈ Z[ν0,νp+1] such that

u(ν) =N (ν)
ν−1
∑

j=ν0−1

(
ν
∏

i= j+1

R(i))S j

ν−1
∏

i= j+1

Qi + N(ν)
n
∑

j=ν0

(
ν
∏

i= j+1

R(i))ζ( j)
ν−1
∏

i= j

Qi +τ(ν)

for ν ∈ Z[ν0,νp+1]

(4)

where

Qν =

¨

Qν for ν ∈
⋃p

k=0 Ik,

1 otherwise,
Sν =











x0 for ν= ν0 − 1,

σν for ν ∈
⋃p

k=0 Ik,

0 otherwise,

(5)

N (ν) =

¨

Lν for ν ∈
⋃p

k=1 Jk,

1 otherwise,
τ(ν) =

¨

γν,k for ν ∈ Jk, k ∈ Z[1, p],

0 otherwise,
(6)

R(ν) =











N (νk + dk) = Lνk+dk
for ν= νk + dk, k ∈ Z[1, p],

Tk for ν= νk, k ∈ Z[1, p],

1 otherwise,

(7)

ζ(n) =











τ(νk + dk) = γνk+dk ,k for ν= νk + dk + 1, k ∈ Z[1, p],

µk for ν= νk, k ∈ Z[1, p],

0 otherwise.

(8)
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Lemma 2. ([13]) Let µ : Z[ν0,νp+1]→ R satisfy the linear difference inequalities

µ(ν+ 1)≤Qνµ(ν), ν ∈
p
⋃

k=0

Ik,

µ(νk)≤ Tkµ(νk − 1), k ∈ Z[1, p],

µ(ν)≤Mνµ(ν) +Lνµ(νk), ν ∈ Jk, k ∈ Z[1, p],

µ(ν0)≤ 0,

where Qν > 0,
�

ν ∈
⋃p

k=0 Ik

�

, Tk > 0,
�

k ∈ Z[1, p]
�

and Lν > 0, Mν < 1,
�

ν ∈
⋃p

k=0 Jk

�

.
Then µ(ν)≤ 0 for every ν ∈ Z[ν0,νp+1].

4 Main results

Let the functions α,β : Z[ν0,νp+1]→ R be such that α(ν)≤ β(ν) for ν ∈ Z[ν0,νp+1]. We define the following sets

S(α,β) = {u : Z[ν0,νp+1]→ R : α(ν)≤ u(ν)≤ β(ν), ν ∈ Z[ν0,νp+1]}

Ω1(α,β) = {u ∈ R : min
ν∈
⋃p

k=0 Ik

α(ν)≤ u≤ max
ν∈
⋃p

k=0 Ik

β(ν)}

Ω2(α,β) = {u ∈ R : min
ν∈
⋃p−1

k=0 Ik

α(ν+ 1)≤ u≤ max
ν∈
⋃p−1

k=0 Ik

β(ν+ 1)}

Λ(α,β) = {u ∈ R : min
ν∈
⋃p

k=1 Jk

α(ν)≤ u≤ max
ν∈
⋃p

k=1 Jk

β(ν)}

Γ (α,β) = {y ∈ R : min
k∈Z[1,p]

α(νk)≤ y ≤ max
k∈Z[1,p]

β(νk)}

Υ (α,β) = {z ∈ R : min
k∈Z[1,p]

α(νk − 1)≤ z ≤ max
k∈Z[1,p]

β(νk − 1)}

Theorem 1. Let:

1. The functions α,β : Z[ν0,νp+1]→ R are lower and upper solutions of the BVP for DE (1), respectively, and the following
inequalities α(ν)≤ β(ν) hold for ν ∈ Z[ν0,νp+1].

2. The function f ∈ C(
⋃p

k=0 Ik × Ω1(α,β) × Ω2(α,β),R) and there exist functions K ∈ C((
⋃p

k=0 Ik, (−∞, 1)) and P ∈
C(
⋃p

k=0 Ik, (0,∞)) such that for any ν ∈
⋃p

k=0 Ik and ξ1,ξ2 ∈ Ω1(α,β), with ξ1 ≤ ξ2, and η3,η4 ∈ Ω2(α,β), with η3 ≤ η4

the inequality
f (ν,ξ1,η3)− f (ν,ξ2,η4)≤ P(ν)(ξ1 − ξ2) + K(ν)(η3 −η4)

holds.

3. The function F ∈ C(Z[1, p]×R,R) and there exists a function T ∈ C(Z[1, p], (0,∞)) such that for any ν ∈ Z[1, p] and
ξ1,ξ2 ∈ Υ (α,β) with z1 ≤ z2

F(ν,ξ1)− F(ν,ξ2)≤ T (ν)(ξ1 − ξ2).

4. The function g ∈ C(
⋃p

k=1 Jk × Λ(α,β) × Γ (α,β),R) and there exist functions M ∈ C(
⋃p

k=1 Jk, (−∞, 1)) and L ∈
C(
⋃p

k=1 Jk, (0,∞)) such that for any ν ∈
⋃p

k=1 Jk and ξ1,ξ2 ∈ Λ(α,β), with ξ1 ≤ ξ2, and η3,η4 ∈ Γ (α,β), with
η3 ≤ η4 the inequality

g(ν,ξ1,η3)− g(ν,ξ2,η4)≤ M(ν)(ξ1 − ξ2) + L(ν)(η3 −η4)

holds.

5. The function G ∈ C(S(α,β)× S(α,β),R).

6. The problem (1) has an unique solution u(n) ∈ S(α,β).

Then we could construct two sequences of functions {α( j)(ν)}∞0 and {β ( j)(ν)}∞0 , ν ∈ Z[ν0,νp+1] with α(0) = α and β (0) = β ,
any element of these sequences is a lower/upper solution of (1), the inequalities

α(ν)≤ α( j)(ν)≤ α( j+1)(ν)≤ β ( j+1)(ν)≤ β ( j)(ν)≤ β(ν), for ν ∈ Z[ν0,νp+1], j ∈ Z

hold and both sequences are convergent to the solution of BVP for DE (1).
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Proof. Let η ∈ S(α,β) be an arbitrary fixed function. Consider the following initial value problem for the scalar linear difference
equation

u(ν+ 1) = P(ν)u(ν) + K(ν)u(ν+ 1) +ψ(ν,η(ν),η(ν+ 1)), ν ∈
p
⋃

k=0

Ik,

u(νk) = T (k)u(νk − 1) +υ(k,η(νk − 1)), k ∈ Z[1, p],

u(ν) = M(ν)u(ν) + L(ν)u(νk) +Ξ(ν,η(ν),η(νk)), n ∈ Jk, k ∈ Z[1, p],

u(ν0) = G(η(νp+1),η(ξ)),

(9)

where

ψ(ν,µ,ρ) = f (ν,µ,ρ)− P(ν)µ− K(ν)ρ, ν ∈
p
⋃

k=0

Ik,

υ(ν,µ) = F(ν,µ)− T (ν)µ, ν ∈ Z[1, p]

Ξ(ν,µ,ρ) = g(ν,µ,ρ)−M(ν)µ− L(ν)ρ, ν ∈
p
⋃

k=1

Jk.

The problem (9) could be written in the following form

u(ν+ 1) =
P(ν)

1− K(ν)
u(ν) +

ψ(ν,η(ν),η(ν+ 1))
1− K(ν)

, ν ∈
p
⋃

k=0

Ik,

u(νk) = T (k)u(νk − 1) +υ(k,η(νk − 1)), k ∈ Z[1, p],

u(ν) =
L(ν)

1−M(ν)
u(νk) +

Ξ(ν,η(ν),η(νk))
1−M(]n)

, ν ∈ Jk, k ∈ Z[1, p],

u(ν0) = G(η(νp+1),η(ξ)).

(10)

According to Lemma 1 with
x0 = G(η(νp+1),η(ξ)),

σν =
ψ(ν,η(ν),η(ν+ 1))

1− K(ν)
, Qν =

P(ν)
1− K(ν)

, ν ∈
p
⋃

k=0

Ik,

γν,k =
Ξ(ν,η(ν),η(νk))

1−M(ν)
, Lν =

L(ν)
1−M(ν)

, for ν ∈ Jk, k ∈ Z[1, p],

µk = υ(k,η(νk − 1)), Tk = T (k), k ∈ Z[1, p],

the initial value problem (10) has an unique solution given by

u(ν) = N(ν)
ν−1
∑

j=ν0−1

(
ν
∏

i= j+1

R(i))S j

ν−1
∏

i= j+1

Qi + N(ν)
ν
∑

j=ν0

(
ν
∏

i= j+1

R(i))ζ( j)
ν−1
∏

i= j

Qi +τ(ν)

for ν ∈ Z[ν0,νp+1],

where

Qν =

¨

P(ν)
1−K(ν) for ν ∈

⋃p
k=0 Ik,

1 otherwise,
Sν =











G(η(νp+1),η(ξ)) for ν= ν0 − 1,
ψ(ν,η(ν),η(ν+1))

1−K(ν) for ν ∈
⋃p

k=0 Ik,

0 otherwise,

N(ν) =

¨ L(ν)
1−M(ν) , ν ∈
⋃p

k=1 Jk,

1 otherwise,
τ(ν) =

¨

Ξ(ν,η(ν),η(νk))
1−M(ν) , ν ∈ Jk, k ∈ Z[1, p],

0 otherwise,

R(ν) =











L(νk+dk)
1−M(νk+dk)

for ν= νk + dk + 1, k ∈ Z[1, p],

T (k) for ν= νk, k ∈ Z[1, p],

1 otherwise,

ζ(ν) =











Ξ(νk+dk ,η(νk+dk),η(νk))
1−M(νk+dk)

for ν= νk + dk + 1, k ∈ Z[1, p],

υ(k,η(νk − 1)) for ν= νk, k ∈ Z[1, p],

0 otherwise.
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Let η ∈ S(α,β). Define the operator W : S(α,β)→ S(α,β) by the equality Wη= u, where u is the unique solution of IVP (9)
for the function η.

We will prove that α ≤ Wα, β ≥ Wβ . Let α(1) is the unique solution of (9) with η = α. Denote Wα = α(1) and let
m(ν) = α(ν)−α(1)(ν), ν ∈ Z[ν0,νp+1].

Thus, m(ν0)≤ G(α(νp+1),α(ξ))− G(α(νp+1),α(ξ)) = 0.
Let ν ∈
⋃p

k=0 Ik. Then we get

m(ν+ 1) = α(ν+ 1)− P(ν)α(1)(ν)− K(ν)α(1)(ν+ 1)−ψ(ν,α(ν),α(ν+ 1))

≤ P(ν)(α(ν)−α(1)(ν)) + K(ν)(α(ν+ 1)−α(1)(ν+ 1)) = P(ν)m(ν) + K(ν)m(ν+ 1).

Hence m(ν+ 1)≤ P(ν)
1−K(ν) m(ν) for ν ∈

⋃p
k=0 Ik.

Let ν= νk. Then we have

m(νk)≤ F(k,α(νk − 1))− T (k)α(1)(νk − 1)− F(k,α(νk − 1)) + T (k)α(νk − 1) = T (k)m(νk − 1).

Let ν ∈
⋃p

k=1 Jk. Then we obtain

m(n)≤ g(n,α(n),α(nk))−M(n)α(1)(n)− L(n)α(1)(nk)

− g(n,α(n),α(nk)) +M(n)α(n) + L(n)α(nk)

= M(n)m(n) + L(n)m(nk).

Therefore, the inequalities (9) hold for m(ν) with Qν =
P(n)

1−K(n) , Tk = T(k),Mν = M(ν),Lν = L(ν). According to Lemma 2
m(n)≥ 0, ν ∈ Z[ν0,νp+1], i.e. α≤Wα. Similarly, β ≥Wβ .

We will prove that W is a nondecreasing operator in S(α,β). Let η1, η2 ∈ S(α,β : η1(ν)≤ η2(ν) for ν ∈ Z[ν0, np+1]. Denote
m= u(1) − u(2) where u(1) =Wη1 and u(2) =Wη2. It is easy to see that the function m(ν),ν ∈ Z[ν0,νp+1] is satisfying inequality
9 with µ(ν) = m(ν), Qν =

P(ν)
1−K(ν) , Tν = T (k), Mν = M(ν) and Lν = L(ν). According to Lemma 2 m(ν)≤ 0,ν ∈ Z[ν0,νp+1].

Consider a lower solution η ∈ S(α,β) of (1). Let m=Wη. According to the above proved η(ν)≤ m(ν), ν ∈ Z[ν0,νp+1]. It
is easy to show that the function m is a lower solution of (1). Analogously, if η ∈ S(α,β) is an upper solution of (1) then the
function m=Wη is an upper solution of (1).

Step by step we construct the sequences of functions {α( j)(ν)}∞0 and {β ( j)(ν)}∞0 by the equalities α(0) = α, β (0) = β , α( j) =
Wα( j−1), β ( j) =Wβ ( j−1). Also, any element α( j) and β ( j) is satisfying the equality 11 with η= α( j−1) and η= β ( j−1) respectively.

According to the proved above properties of the operator W, the claims of Theorem 1 are satisfied. Both sequences being
monotonic and bounded are convergent on Z[ν0,νp+1]. Denote the limits A(ν) = lims→∞ α

(s)(ν), B(ν) = lims→∞ β
(s)(ν).

By taking a limit in the equations for α( j) corresponding to (11) for s→∞ we obtain

A(ν) = N(ν)
ν−1
∑

j=ν0−1

(
ν
∏

i= j+1

R(i))
ψ( j, A( j), A( j + 1))

1− K( j)

ν−1
∏

i= j+1

P(i)
1− K(i)

+
n
∑

j=ν0

(
ν
∏

i= j+1

R(i))ζ( j)
ν−1
∏

i= j

P(i)
1− K(i)

+τ(ν), for ν ∈ Z[ν0,νp+1].

(11)

Equality (11) show the function A(n) is a solution of the boundary value problem for DE (1).
According to condition 5 A(ν)≡ u(ν)≡ B(ν), ν ∈ Z[ν0,νp+1].

5 Algorithm for construction the approximate solution

First we will construct an increasing sequence {α(s)}∞s=0 of lower solutions of BVP for DE (1):

Step 1. Start with the chosen lower solution α(0)(ν), ν ∈ Z[ν0,νp+1] of (1).

Step 2. Obtain the next approximation α(s)(ν), s = 1, ν ∈ Z[ν0,νp+1] by the linear recurrence formulas

α(s)(ν+ 1) =
P(ν)

1− K(ν)
α(s)(ν) +

ψ(ν,α(s−1)(ν),α(s−1)(ν+ 1))
1− K(ν)

, ν ∈
p
⋃

k=0

Ik,

α(s)(νk) = T (k)α(s)(νk − 1) +υ(k,α(s−1)(νk − 1)), k ∈ Z[1, p],

α(s)(ν) =
L(ν)

1−M(ν)
α(s)(νk) +

Ξ(ν,α(s−1)(ν),α(s−1)(νk))
1−M(ν)

, n ∈ Jk, k ∈ Z[1, p],

α(s)(ν0) = G(α(s−1)(νp+1),α
(s−1)(ξ)),

(12)
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Step 3. If maxν∈Z[ν0 ,νp+1] |α
(s)(ν)−α(s−1)(ν)|< ε for an initially given number ε > 0 we stop and the approximate solution of the

BVP for DE (1) is α(s), s ∈ Z[n0, np+1]. If the inequality is not satisfied, then we go to Step 2 with replacing s in the system
(12) by s+ 1.

The construction of a decreasing sequence {β (s)(ν)}∞s=0 of upper solutions of BVP for DE (1) is by the above algorithm replacing
α(s)(ν) by β (s)(ν) and starting by the chosen upper solution β (0)(ν), ν ∈ Z[ν0,νp+1] of (1) in Step 1.

6 Computer realization of the algorithm

6.1 Example 1.

We will apply the above algorithm to a particular problem.
Let I0 = Z[0,3], I1 = Z[7,9], I2 = Z[17,19], I3 = Z[26,30], νk = 5,11,20, for k = 1,2,3, J1 = Z[6,7], J2 =

Z[12,16], J3 = Z[21,25].
Consider the BVP for the following difference equation

x(ν) =
sin(x(ν)) + 0.9x(ν− 1)

n
+ 0.1

for ν ∈ Z[1, 4]∪Z[8, 10]∪Z[17, 19]∪Z[26, 30],

x(5) =
Æ

x(4) + 1, x(11) =
Æ

x(10) + 1, x(20) =
Æ

x(19) + 1,

x(ν) = x(5)e−2ν + ex(ν)−ν−3 for ν ∈ Z[6,7],

x(ν) = x(11)e−2ν + ex(ν)−ν−3 for ν ∈ Z[12,16],

x(ν) = x(20)e−2ν + ex(ν)−ν−3 for ν ∈ Z[21,25],

x(0) = 0.5
Æ

|x(30)x(20|,

(13)

Note that (13) could not be considered as linear recurrence formulas which could be easily solved and obtained the solution.
A lower solution of (13) is α0(ν) = 0, ν ∈ Z[0,29], because

0≤
sin(0) + 0.9(0)

ν
+ 0.1 for ν ∈ Z[1,4]∪Z[8,10]∪Z[17,19]∪Z[26,30],

0≤
p

1,

0≤ 0e−2ν + e0−ν−3 for ν ∈ Z[6, 7]∪Z[12,16]∪Z[21,25],

x(0) = 0.5
Æ

|1|,

and an upper solution of (13) is β0(ν) = 3, ν ∈ Z[0,29], because

3≥
sin(3) + 0.9(3)

ν
+ 0.1 for ν ∈ Z[1,4]∪Z[8,10]∪Z[17,19]∪Z[26,30],

3≥
p

3+ 1,

3≥ 3e−2ν + e−ν for ν ∈ Z[6, 7]∪Z[12, 16]∪Z[21, 25],

x(0) = 0.5
Æ

|9|,

The condition 2 of Theorem 1 is satisfied for the function f (ν, x , y) = 0.9x+sin(y)
ν +0.1 with P(ν) = 0.9

ν and K(ν) = − 1
ν because

for any x i , k = 1,2, 3,4 : 0≤ x1 ≤ x2 ≤ 3, 0≤ x3 ≤ x4 ≤ 3 the inequality

0.9x1 + sin(x3)
ν

−
0.9x2 + sin(x4)

ν
≤

0.9
ν
(x1 − x2)−

1
ν
(x3 − x4)

holds.
The condition 3 of Theorem 1 is satisfied for the function F(k, x) =

p
x + 1+ 0 with T (ν) = 0.25 because for any z1, z2 : 0≤

z1 ≤ z2 ≤ 3 we have F(k, z1)− F(k, z2) =
p

z1 + 1−
p

z2 + 1≤ 0.25(z1 − z2).
The condition 4 of Theorem 1 is satisfied for the function g(ν, x , y) = ex−ν+1 + ye−2ν with M(ν) = e−ν < 1 and L(ν) = e−2ν

because for any yi , i = 1, 2,3,4 : 0≤ y1 ≤ y2 ≤ 3, and 0≤ y3 ≤ y4 ≤ 3 the inequality

g(ν, y1, y3)− g(ν, y2, y4) = e−ν(e y1+1 − e y2+1) + e−2ν(y3 − y4)≤ e−ν(y1 − y2) + e−2ν(y3 − y4)+

holds.
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In this case the system (9) is reduced to the following system

u(ν) =
0.9
ν+ 1

u(ν− 1) +
sin(η(ν)) + 0.1ν+η(ν)

ν+ 1
for ν ∈ Z[1, 4]∪Z[8, 10]∪Z[17, 19]∪Z[26, 30],

u(5) =
Æ

η(4) + 1,

u(ν) =
e−2ν

1− e−ν
u(5) +

eη(ν)+1−ν − e−νη(ν)
1− e−ν

, ν ∈ Z[6, 7],

u(11) =
Æ

|η(10)|+ 1,

u(ν) =
e−2ν

1− e−ν
u(11) +

eη(ν)+1−ν − e−νη(ν)
1− e−ν

, ν ∈ Z[12,16],

u(20) =
Æ

|η(19)|+ 1

u(ν) =
e−2ν

1− e−ν
u(20) +

eη(ν)+1−ν − e−νη(ν)
1− e−ν

, ν ∈ Z[21,25],

u(0) = 0.5
Æ

|η(30)η(20))|.

6.1.1 Algorithm

First we will construct an increasing sequence {α(s)}∞s=0 of lower solutions of BVP for NIDE (13):

Step 1. Start with α(0)(ν) = 0, ν ∈ Z[0, 30].

Step 2. Obtain next approximation α(s)(ν), s = 1, ν ∈ Z[0,30] by the linear recurrence formulas

α(s)(0) = 0.5
Æ

|α(s−1)(30)α(s−1)(20))|,

α(s)(ν) =
0.9
ν+ 1

α(s)(ν− 1) +
sin(α(s−1)(ν)) + 0.1ν+α(s−1)(ν)

ν+ 1
for ν ∈ Z[1,4]∪Z[8, 10]∪Z[17, 19]∪Z[26,30],

α(s)(5)
Æ

|α(s−1)(4)|+ 1,

α(s)(ν) =
e−2ν

1− e−ν
α(s)(5) +

eα
(s−1)(ν)+1−ν − e−να(s−1)(ν)

1− e−ν
, ν ∈ Z[6, 7],

α(s)(11) =
Æ

|α(s−1)(10)|+ 1,

α(s)(ν) =
e−2ν

1− e−ν
α(s)(11) +

eα
(s−1)(ν)+1−ν − e−να(s−1)(ν)

1− e−ν
, ν ∈ Z[12, 16],

α(s)(20) =
Æ

|α(s−1)(19)|+ 1,

α(s)(ν) =
e−2ν

1− e−ν
α(s)(20) +

eα
(s−1)(ν)+1−ν − e−να(s−1)(ν)

1− e−ν
, ν ∈ Z[21, 25].

(14)

Step 3. If maxν∈Z[0,30] |α(s)(ν)−α(s−1)(ν)|< ε for an initially given number ε > 0 we stop and the approximate solution of BVP for
DE (13) is α(s), s ∈ Z[0, 30]. If the inequality is not satisfied, then we go to Step 2 with replacing s in the system (14) by
s+ 1.

We presented some values of the sequence α(s)(ν) of (13) in Table 1 and their graphs - on Figures 1 (continuously) and Figure 2
(discretely). From both, the table and the graphs, it could be seen the sequence is increasing one.

5 10 15 20 25 30
Index

0.1

0.2

0.3

0.4

Value
αs(n)

α1

α2

α23

Figure 1. Graphs of some lower solutions of (13) (lines).

0 5 10 15 20 25 30
Index

0.05

0.10

0.15

Value
αs(n) (Interval: 0 to 0.18)

α1

α2

α23

Figure 2. Graphs of some lower solutions of (13) (discretely).
The above described algorithm gives us a procedure to construction of a decreasing sequence {β (s)(n)}∞s=0 of upper solutions of
BVP for DE (13) by α(s)(ν) by β (s)(ν) and starting with β (0)(ν) = 3, ν ∈ Z[0,30] in Step 1.
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ν α1 α2 α3 α4 . . . α23

ν= 0 0 0.15785 0.16692 0.16766 . . . 0.16773
ν= 1 0.05 0.17102 0.29572 0.41902 . . . 1.17079
ν= 2 0.08167 0.17239 0.27002 0.37130 . . . 1.06311
ν= 3 0.09337 0.16044 0.21580 0.26603 . . . 0.60935
ν= 4 0.09681 0.14757 0.17777 0.19880 . . . 0.31427

. . . . . . . . . . . . . . . . . . . . .
ν= 26 0.09630 0.10342 0.10395 0.10399 . . . 0.10399
ν= 27 0.09952 0.10686 0.10740 0.10743 . . . 0.10744
n= 28 0.09964 0.10673 0.10724 0.10727 . . . 0.10728
ν= 29 0.09966 0.10651 0.10698 0.10701 . . . 0.10701
ν= 30 0.09967 0.10629 0.10673 0.10676 . . . 0.10676

Table 1: Values of lower solutions of (13).

Some values of the sequence of upper solutions β (s)(ν) are given in Table 2 and graphs are on Figures 3 (continuously) and
Figure 4 (discretly). From both, the table and the graphs, it could be seen the sequence β (s)(ν) is decreasing one.

ν β1 β2 β3 β4 . . . β16

ν= 0 1.50000 0.31948 0.17839 0.16867 . . . 0.16773
ν= 1 2.29556 1.71587 1.48296 1.36545 . . . 1.17477
ν= 2 1.80237 1.50666 1.34642 1.25009 . . . 1.06726
ν= 3 1.26581 0.96891 0.82624 0.74668 . . . 0.61206
ν= 4 0.93607 0.60267 0.46262 0.39619 . . . 0.31538

. . . . . . . . . . . . . . . . . . . . .
ν= 26 0.21263 0.11199 0.10458 0.10404 . . . 0.10399
ν= 27 0.21545 0.11536 0.10802 0.10748 . . . 0.10744
ν= 28 0.21155 0.11467 0.10780 0.10731 . . . 0.10728
ν= 29 0.20772 0.11390 0.10749 0.10704 . . . 0.10701
n= 30 0.20413 0.11321 0.10719 0.10679 . . . 0.10676

Table 2: Values of upper solutions of (13).
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Figure 3. Graphs of some upper solutions of (13) (lines).
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Figure 4. Graphs of some upper solutions of (13) (discretely).
Also, from both Table 1 and Table 2 it could be seen that both sequences of lower and upper solutions, respectively, have one and
the same limit, which is the solution of the studied model.

The solution of (13), obtained by the suggested algorithm is

x(n) =(0.16773, 1.17079,1.06311, 0.60935, 0.314266,1.14631, 0.00394,0, 00144,

0.11443,0.12533, 0.12361,1.06001, 1.0189 ∗ 10−05, 3.7484 ∗ 10−06,

1.3789 ∗ 10−06, 5.0727 ∗ 10−07, 1.8661 ∗ 10−07, 0.10624,

0.11149,0.11112, 1.05410,1.2619 ∗ 10−09, 4.6422 ∗ 10−10

1.7078 ∗ 10−10, 6.2825 ∗ 10−11, 2.3112 ∗ 10−11, 0.10399

0.10744,0.10728, 0.10701,0.10676).
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The solutions of the appropriate linear recursive system (14), obtained by the suggested algorithm, was calculated using a
C# program created through a procedural programming paradigm. The procedural paradigm is preferred when solving this type
of linear equations due to its straightforward and efficient handling of step-by-step computations.

In the computation, the value of the error ε was taken as 0.001.
The program was run on an Intel platform supported by an Intel Core i5-1335U processor, requiring 19 ms to compute the

sequence of lower solutions α and the sequence of upper solutions β . In the study we made attempted to rewrite the algorithm
using an object-oriented programming paradigm. As a result, the CPU time increased nearly threefold, taking 58 milliseconds for
the calculation of α on the same platform, and 52 milliseconds for β .

When increasing the accuracy to ε = 0.000001, reaching the final solution for α required 48 iterations and 33 ms of CPU time
if procedural programming paradigm are used and 92 ms for object-oriented programming paradigm, while for β required 41
iterations and 37 ms of CPU time for procedural programming paradigm and 98 ms for object-oriented programming paradigm.

CAS Wolfram Mathematica was used to graph Figure 1 -Figure 4.

6.2 Example 2. Ricker model with impulses

Consider the Ricker population model which gives us the expected number x(ν+ 1) (or density) of the number of individuals in
generation ν as a function of the number of individuals in the previous generation. The classical Ricker model was introduced in
1954 by Ricker [14] in the connection with the stock and the recruitment in fisheries. The classical model was used to predict the
number of fish that will be present in a fishery. Recently it was generalized and applied for modeling various problems (see, for
example [15] for modeling two species as a part of competition model, [16] for stochastic generalization).

We will modify this model, assuming that there will be external influence on some generations, i.e. non-instantaneous
impulses will be applied.

Let the initial generation is ν0 = 0, and every fourth generation will be squared by an external perturbation and will
continue to be the same number of individuals of as at the recently perturbed generation for three generations additionally, i.e.
I0 = Z[1, 3], I1 = Z[8, 10], I2 = Z[15, 17], I3 = Z[22, 24], nk = 4, 11, 18, for k = 1, 2, 3, J1 = Z[5, 7], J2 = Z[12, 14], J3 =
Z[19,21].

Then we model the situation by

x(ν) = x(ν− 1)er e−
r
L x(ν−1) for ν ∈ Z[1, 3]∪Z[8,10]∪Z[15,17]∪Z[22,24],

x(4) =
Æ

x(3), x(11) =
Æ

x(10), x(18) =
Æ

x(17),

x(ν) = x(4) for ν ∈ Z[5, 7],

x(n) = x(11) for ν ∈ Z[12,14],

x(ν) = x(18) for ν ∈ Z[19, 21],

x(0) =
Æ

x(24),

(15)

where r is the intrinsic growth rate and L as the carrying capacity of the environment.
Let for example L = 10000 and r = 0.9.
The function x(ν) = 1, ν ∈ Z[0, 24] is a lower solution of (15) because

1≤ e0.9(1− 1
10000 1) for ν ∈ Z[1, 3]∪Z[8, 10]∪Z[15, 17]∪Z[22, 24],

1=
p

1.

The function x(ν) = 10001, ν ∈ Z[0, 24] is an upper solution of (15) because

10001≥ 10001e0.9(1− 1
10000 10001) for ν ∈ Z[1,3]∪Z[8,10]∪Z[15,17]∪Z[22,24],

10001≥
p

10001.

Consider the function f (ν, x) = xe0.9(1− 1
10000 x). For any x i , k = 1,2 : 1≤ x1 ≤ x2 ≤ 10001 we obtain the inequalities

f (ν, x1)− f (ν, x2)≤ f ′(ν,ξ)(x1 − x2) = e0.9(1− 1
10000 ξ)(1−

0.9
10000

ξ)(x1 − x2)

≤ e0.9(1− 1
10000 10001)(1−

0.9
10000

10001)(x1 − x2).

Therefore, the condition 2 of Theorem 1 is satisfied for f (ν, x) = xe0.9e−
0.9

10000 x with P(ν) = e0.9(1− 1
10000 10001)(1− 0.9

10000 10001)
and K(ν) = 0.
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6.2.1 Algorithm

First we will construct an increasing sequence {α(s)}∞s=0 of lower solutions of BVP for NIDE (15):

Step 1. Start with α(0)(ν) = 1, ν ∈ Z[0, 24].

Step 2. Obtain next approximation α(s)(ν), s = 1, ν ∈ Z[0,24] by the linear recurrence formulas

α(s)(ν) = e0.9(1− 1
10000 10001)(1−

0.9
10000

10001)
�

α(s)(ν− 1)−α(s−1)(ν− 1)
�

+α(s−1)(ν− 1)e0.9(1− 1
10000 α

(s−1)(ν−1))

for ν ∈ Z[1,3]∪Z[8, 10]∪Z[15, 17]∪Z[22, 24],

α(s)(4) =
Æ

α(s)(3), x(11) =
Æ

α(s)(10), x(18) =
Æ

α(s)(17),

α(s)(ν) = α(s)(4) for ν ∈ Z[5, 7],

α(s)(ν) = α(s)(11) for ν ∈ Z[12, 14],

α(s)(ν) = α(s)(18) for n ∈ Z[19,21],

α(s)(0) =
Æ

α(s−1)(24),

(16)

Step 3. If maxν∈Z[0,24] |α(s)(ν)− α(s−1)(ν)| < ε for an initially given number ε > 0 we stop and the approximate solution of the
boundary value problem for the nonlinear difference equation with non-instantaneous impulses (15) is α(s), s ∈ Z[0, 24].
If the inequality is not satisfied, then we go to Step 2 with replacing s in the system (16) by s+ 1.

Some values of the sequence of lower solutions α(s)(n) are given in Table 3 and graphs are on Figure 5 (with lines) and
Figures 5 (with points). From both, the table and the graphs it could be seen the sequence is increasing one.

ν α1 α2 α3 α4 . . . α58

ν= 0 1 1.61875 2.60680 4.00183 . . . 14.69428
ν= 1 2.45938 2.52120 4.07961 6.54956 . . . 36.09426
ν= 2 2.60518 6.05394 6.35542 10.27730 . . . 88.48944
ν= 3 2.61974 6.75073 14.91230 16.01467 . . . 215.92181
ν= 4 1.61856 2.59822 3.86164 4.00183 . . . 14.69428

. . . . . . . . . . . . . . . . . . . . .
ν= 20 1.61875 2.60680 4.00183 5.08628 . . . 14.69430
ν= 21 1.61875 2.60680 4.00183 5.08628 . . . 14.69430
ν= 22 2.52120 4.07961 6.54956 9.94772 . . . 36.09433
ν= 23 2.61135 6.35542 10.27730 16.43930 . . . 88.48964
ν= 24 2.62036 6.79541 16.01467 25.87029 . . . 215.92243

Table 3: Values of lower solutions of (15)
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Figure 5. Graphs of some lower solutions of (15) (lines).
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Figure 6. Graphs of some lower solutions of (15) (discretely).
The construction of a decreasing sequence {β (s)(ν)}∞s=0 of upper solutions of BVP for DE (15) is by the above algorithm

replacing α(s)(ν) by β (s)(ν) and starting by β (0)(ν) = 10001, n ∈ Z[0, 24] in Step 1.
Some values of the sequence of upper solutions β (s)(ν) are given in Table 4 and graphs are on Figure 7 (with lines) and

Figure 8 (with points). It could be seen the sequence is decreasing one.
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ν β1 β2 β3 β4 . . . β57

ν= 0 100.00500 99.95063 99.48368 94.89020 . . . 14.69451
ν= 1 9010.98056 243.76325 243.59070 242.05042 . . . 36.09500
ν= 2 9901.19601 8973.99042 586.53326 585.99054 . . . 88.49175
ν= 3 9990.12943 9897.00485 9004.20622 1368.40589 . . . 215.92872
ν= 4 99.95063 99.48369 94.89050 36.99197 . . . 14.69451

. . . . . . . . . . . . . . . . . . . . .
ν= 20 99.95063 99.48368 94.89020 36.96958 . . . 14.69449
ν= 21 99.95063 99.48368 94.89020 36.96958 . . . 14.69449
ν= 22 9010.97513 243.59070 242.05042 225.62119 . . . 36.09490
ν= 23 9901.19547 8973.97261 585.99054 580.87753 . . . 88.49142
ν= 24 9990.12938 9897.00307 9004.15002 1366.74986 . . . 215.92798

Table 4: Values of upper solutions of (15)

Also, from Table 3 and Table 4 it could be seen that both sequences of lower and upper solutions , respectively, have one and
the same limit, which is the solution of the studied model.
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Figure 7. Graphs of some upper solutions of (15) (lines).
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Figure 8. Graphs of some upper solutions of (15) (discretely).
The solution of (15), obtained by the suggested algorithm is

x(ν) =(14.694, 36.094,88.489, 215.922, 14.694,14.694, 14.694,14.694, 36.094,88.489,

215.922,14.694, 14.694,14.694, 14.694,36.094, 88.490,215.922, 14.694,14.694,

14.694,14.694, 36.094,88.490, 215.922).

The solution of (16), obtained by the suggested algorithm, was calculated using a C# program. In the computation, the value
of the error was taken ε = 0.001. The program was run on an Intel platform supported by an Intel Core i5-1335U processor,
requiring 70 ms in procedural programming paradigm, and 160 ms for object-oriented programming paradigm to compute the
sequence of lower solutions α and the sequence of upper solutions β . When increasing the accuracy to ε = 0.000001, then
the sequence of lower solutions α and the sequence of upper solutions β required 88 iterations and 125 ms of CPU time for
procedural programming paradigm and 283 ms for object-oriented programming paradigm. CAS Wolfram Mathematica was used
to plot Figure 5 - Figure 8.

7 Conclusions

The main purpose of this paper is suggesting an effective algorithm for approximate solving a nonlinear boundary value problem
for a scalar difference equation with so called non-instantaneous impulses. These impulses are characterized that the duration of
their acting is not negligible. The main characteristic of the considered discrete equation is the presence of the current state
in both sides of the equations. It does not allow us to solve the equation recursively step by step. It requires to be build an
approximate method for its solutions. The suggested algorithm is based on the application of the method of lower ad upper
solution. Two monotone sequences of discrete valued functions are constructed. The convergence of these sequences, consisting
of lower and upper solutions of the given problem, is proved theoretically. The effectiveness of the suggested algorithm is
illustrated on two examples. They are solved by the application of C# program creating through a procedural programming
paradigm. One of the examples is modification of Ricker model with non-instantaneous impulses. The computerized algorithm
could be applied to study discrete models of some other processes and phenomena characterized by long lasting changes.
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