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Study of systems of Hammerstein integral equations of the first
kind
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Abstract

The article addresses systems of Hammerstein integral equations of the first kind, in which the determinant
of the non-diagonal matrix-kernel is identically equal to zero.The class of problems under consideration
has fundamental differences from standard cases: the solution may not exist, be non-unique, or depend
on high derivatives of the input data. In terms of matrix pencils, sufficient conditions for the local
existence of a unique solution in the class of continuous functions are formulated. Illustrative examples
are given. Difficulties arising in the construction of numerical methods for solving these problems are
discussed.
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1 Introduction

The article is devoted to the study of the existence and uniqueness of solutions to systems of integral equations of the first kind
∫ t

0

K(t,τ)G(x(τ),τ) dτ= f (t), 0≤ τ≤ t ≤ 1, (1)

where K(t,τ) is a given (n× n) matrix, f (t) and x(t) are given and unknown n-dimensional vector functions. It is assumed that
the initial condition x0 is given for this system. Vector function G(.) : D −→ Rn, D ⊂ Rn+1. Such problem statements are usually
called systems of Hammerstein integral equations of the first kind. By the solution we understand any vector x(t) that turns (1)
into an identity and satisfies the condition

x(0) = x0. (2)

Nowadays, a qualitative theory (conditions for the existence of a unique solution in various classes of functions) has been
developed for various classes of integral equations of the second kind and some classes of linear equations of the first kind. A
historical overview and an extensive bibliography can be found in the monographs [1],[2],[3],[4],[5].

If the system (1) is linear, i.e., has the form
∫ t

0

K(t,τ)x(τ) dτ= f (t), 0≤ τ≤ t ≤ 1, (3)

where K(t,τ), f (t) are differentiable with respect to t r times and

K ( j)
t j (t,τ) |τ=t ≡ 0, f (r)(t) |t=0 = 0, j = 0,1, · · · , r − 1,

det K (r)t r (t,τ) |τ=t 6= 0 ∀t ∈ [0, 1],

then, differentiating (3) with respect to t r times and multiplying the resulting system by (K (r)t r (t,τ)
�

�

τ=t)−1 , we obtain an system
of integral equations of the second kind. Note that we do not specify initial conditions (2) in this case.

For n= 1 and for the conditions
K(t, t) 6= 0 ∀t ∈ [0,1], f (0) = 0,

it is well known (see, for example, [6]) that there is a unique continuous solution to this problem when K(t, t), K ′t(t,τ), f ′(t)
are continuous functions.
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Approaches to the numerical solution of such problems can be found in the monographs [1],[2],[3] (collocation and multi-step
methods), [4] (block methods), PhD thesis [7]. Also the monographs [5] and [8] present results on this topic.

In the article [9] sufficient conditions for the existence of a unique solution to the problem (3) are formulated under certain
requirements on the matrix pencil λK(t,τ) + K ′t(t,τ)|τ=t , the right-hand part f (t) and f ′(t).

Differentiating (3) with respect to t, we have

A(t)x(t) +

∫ t

0

B(t,τ)x(τ) dτ= φ(t), 0≤ τ≤ t ≤ 1, (4)

where A(t) = K(t, t), B(t,τ) = K ′t(t,τ)|τ=t ,φ(t) = f ′(t). When det A(t) ≡ 0, but A(t) is not identically zero matrix, we have
systems of Volterra integral equations that are called equations of the fourth kind [10], [11], integral analogs of singular systems
of ordinary differential equations [12], degenerate systems of integral equations of Volterra type [13], integral-algebraic equations
[14], [15].

At present, the theory and numerical methods for solving such equations are at the very beginning of their development. The
number of publications on this topic is only a few dozen. We note both the first articles [12], [14], [13] and publications that
contain results obtained quite recently [11], [16], [17]. It is also worth noting that the importance of qualitative research and
the construction of numerical methods for solving systems (4) is emphasized in the fifth chapter of [1].

The special case (1) with n = 1, K(t, t) 6= 0,∀t ∈ [0,1] and G′x(x , t) 6= 0 in the neighborhood of the point (x0, 0) was
considered in [1] (Chapter 3).

The authors are not aware of the results of the study of (1) with condition det K(t, t) ≡ 0, where K(t, t) is not identically
zero matrix. It is this fact that motivated the investigation presented below.

2 Statement of the problem and its properties

Consider problem (1) under the assumption that the input elements have the smoothness required for performing the calculations
and the initial conditions are specified correctly. Let us start with the characteristic features of problem (1) with condition (2).
Even in the linear case, these systems may have no solution, have several solutions, and are unstable to perturbations of the input
data, i.e., they belong to the class of ill-posed problems.

Let us give examples illustrating these facts.

Example 2.1.
∫ t

0

�

a(t −τ)p b(t −τ)p+1

c(t −τ)p+1 d(t −τ)p+2

��

x1(τ)
x2(τ)

�

dτ=

�

f1(t)
f2(t)

�

, (5)

where p is a natural number.

Differentiating (5) i times and substituting t = 0, we obtain that

f (i)1 (t)|t=0 = f (i)2 (t)|t=0 = 0, i = 0,1, · · · , p.

After p+ 1 differentiations we have
ax1(0) = f (p+1)

1 (0)/p!, f (p+1)
2 (0) = 0.

and after p+ 1 differentiations of the second equation

ax1(0) = f (p+2)
2 (0)/(p+ 2)!

is obtained. After p + 2 differentiations of the first equation and p + 3 differentiations of the second equation, we have
differential-algebraic equation (DAEs) of the form

�

a 0
c 0

��

x1(t)
x2(t)

�
′

+

�

0 b(p+ 1)
0 d(p+ 2)

��

x1(t)
x2(t)

�

dτ=

�

f (p+2)
1 (t)/p!

f (p+3)
2 (t)/(p+ 1)!

�

.

For the existence of a unique solution to this DAE, the condition ad(p + 2) − bc(p + 1) 6= 0 is necessary. Otherwise,
even the homogeneous DAE, and therefore the homogeneous system (5) have a set of solutions of the form x1(t) = v(t),
x2(t) = −av

′
(t)/(b(p+ 1)), where v(t) is an arbitrary function from the class C1.

Examples illustrating the instability of Volterra integral equations of the first kind to perturbations of the input data can be
found in [8].

Since system (1) is nonlinear, its study for the existence and uniqueness of a solution in the neighborhood of the initial point
(x0, 0) is much more difficult than that of system (3). In particular, (1) can have multiple solutions. This makes it impossible to
apply standard reasoning (the implicit function theorem [18]).

Let’s give a fairly simple example.
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Example 2.2.
∫ t

0

�

x2
1(τ) + x2

2(τ)
(t −τ)(−x2

1(τ) + x2(τ)

�

dτ=

�

t
−t2/2

�

,

which is equivalent to a system of finite-dimensional equations

�

x2
1(t) + x2

2(t) = 1
−x2

1(t) + x2(t) = −1
. (6)

This system has three solutions (x1(t), x2(t)) are equal to (1, 0), (−1, 0) and (0,−1). For (6), the Jacobian matrix has the form
�

2x1(t) 2x2(t)
−2x1(t) 1

�

and is degenerate for the solution (0,−1). This, in turn, does not make it possible to investigate the existence of a unique solution
in the neighborhood of the initial point (to apply the implicit function theorem to study the original problem).

Before formulating sufficient conditions for the existence of a unique solution of (1), we present some auxiliary information.

3 Nonlinear integral equations and matrix pencils

Consider a system of integral equations of the form

U(x(t), t) +

∫ t

0

L(t,τ)U(x(τ,τ) dτ= g(t), 0≤ τ≤ t ≤ 1, (7)

where U(x(t), t) : D→ Rn, D ⊂ Rn+1, L(t,τ) is an (n× n)-matrix with continuous elements, g(t) is a given, x(t) is an unknown
n-dimensional vector function. Initial conditions (2) are given for (7). We denote W (x(t), t) = ∂

∂ x U(x , t) as the Jacobian matrix.

Proposition 3.1. If the following conditions hold for problem (7):

1. The elements g(t), W (x(t), t) and L(t,τ) are continuous functions in the neighborhood of the point (x0, 0);

2. U(x0, 0) = g(0);

3. det W (x0, 0) 6= 0.

Then problem (7) with condition (2) has a unique continuous solution in the neighborhood of (x0, 0).

The proof is based on the fact that the vector function U(x(t), t) is expressed uniquely by the elements L(t,τ) and g(t) (see,
for example, [6]) by virtue of the first condition of the proposition. The implicit function theorem ([18]), the second and third
conditions guarantee us the existence of a unique solution of (7) in the neighborhood of the point (x0, 0).

Next we need some information from the theory of matrix pencils.

Definition 3.1. [19] The expression λA+ B, where λ is a scalar, A and B are matrices of the same dimension is called a matrix
pencil. If the matrices are square and det(λA+ B) 6= 0, then the pencil is called regular. Otherwise, matrices A and B are
rectangular, or det(λA+ B)≡ 0, the pencil is called singular.

Definition 3.2. [20] A pencil λA(t) + B(t) of variable matrices satisfies the "rank-degree" criterion on the interval [0,1] if
rankA(t) = k = cons∀t ∈ [0, 1] and det(λA(t)+B(t)) = a0(t)λk+a1(t)λk−1+ · · ·+ak(t), where the function a0(t) 6= 0∀t ∈ [0, 1].

Lemma 3.2. [20] If the elements of the matrix A(t) belong to the class Cm
[0,1] and rankA(t) = k = cons∀t ∈ [0, 1], then there exists

an (n× n) non-singular for any t ∈ [0,1] matrix P(t) with elements from Cm
[0,1] such that

P(t)A(t) =

�

A1(t)
0

�

,

where A1(t) is a (k× n) matrix and rankA(t) = k = cons∀t ∈ [0,1].

Lemma 3.3. [13] Let (n× n) matrices A(t) and B(t) have block form

A(t) =

�

A1(t)
0

�

, B(t) =

�

B1(t)
B2(t)

�

,

where A1(t), B1(t) are (k× n) matrices, B2(t) is ((n− k)× n) matrix and the matrix pencil λA(t) + B(t) satisfies the "rank-degree"
criterion. Then

det

�

A1(t)
B2(t)

�

6= 0∀t ∈ [0, 1].

Using these results, we formulate sufficient conditions for the existence of a unique solution to system (1) in the neighborhood
of the point (x0, 0).
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Proposition 3.4. If the following conditions hold for system (1) with condition (2):

1. The elements K(t,τ), K
′

t (t,τ), K
′′

t t(t,τ), f (t), f
′
(t), f

′′
(t) are continuous functions;

2. f (0) = 0;

3. K(0,0)G(x0, 0) = f
′
(0);

4. the matrix pencil λK(t, t) + K
′

t (t,τ)|τ=t satisfies the “rank-degree” criterion;

5. det(∂ /∂ x)G(x , t) 6= 0 in the neighborhood of the point (x0, 0).

Then this system of integral equations has a unique continuous solution.

Proof. Substituting t = 0 into (1), we obtain f (0) = 0 (condition 2).
By virtue of condition 1, we can act on (1) with the operator d/d t. As a result we have

K(t, t)G(x(t), t) +

∫ t

0

K
′

t (t,τ)G(x(τ),τ) dτ= f
′
(t). (8)

Substituting t = 0 and x0 into (8), we have K(0, 0)G(x0, 0) = f
′
(0). This identity holds according to the third condition.

We multiply (8) by a non-singular ∀t ∈ [0, 1] matrix P(t), which vanishes the rows of the matrix K(t, t) (such a matrix exists
from Lemma 3.2). We will have a system of integral equations of block form

�

K1(t)
0

�

G(x(t), t) +

∫ t

0

�

L1(t,τ)
L2(t,τ)

�

G(x(τ),τ)dτ=

�

ψ1(t)
ψ2(t)

�

, (9)

where K1(t) and L1(t,τ) are (k×n)matrices, rankK1 = k = const∀t ∈ [0, 1], L2(t,τ) is an ((n−k)×n)-matrix, (ψ>1 (t),ψ
>
2 (t))

> =
P(t) f

′
(t).

According to the fourth condition of the proposition, the matrix pencil λ

�

K1(t)
0

�

+

�

L1(t, t)
L2(t, t)

�

satisfies the "rank-degree"

criterion. Differentiating the second block row of (9) (this is possible by the first condition), we obtain
�

K1(t)
L2(t, t)

�

G(x(t), t) +

∫ t

0

�

L1(t,τ)
L
′

2(t,τ)

�

G(x(τ),τ)dτ=

�

ψ1(t)
ψ
′

2(t)

�

. (10)

According Lemma 3.3,

det

�

K1(t)
L2(t, t)

�

6= 0∀t ∈ [0,1].

Therefore, (10) can be written as (7). From proposition 3.1 and the fifth condition it follows that (10), and therefore the original
system has a unique solution. The proposition 3.4 is proved.

Note that example 2.2 satisfies the conditions of the proposition 3.4 when choosing the initial conditions x0 = (1, 0)>, x0 =
(−1,0)>, but does not satisfy them when choosing the initial condition x0 = (0,−1)> (the condition det(∂ /∂ x)G(x , t) 6= 0 is
violated).

Since the matrix pencil λK(t, t) + K
′

t (t,τ)|τ=t does not satisfy the "rank-degree" criterion, the conditions of the proposition
3.4 do not hold for example 2.1.

4 Numerical method

Note that numerical methods for solving integral equations of the first kind (n= 1) are currently much less developed than their
qualitative research. Due to the fact that the differentiation operation is approximately defined in the C metric, the functions are
related to ill-posed problems. The original equation is usually not differentiated to obtain an equation of the second kind, but
methods are constructed that take into account their specificity.

The class of problems under consideration that satisfy the conditions of proposition 2 includes equations with a degree of
instability [8] equal to one or two. We write it in the form of a system of linear integral equations

∫ t

0

�

K11(t,τ) 0
0 K22(t,τ)

��

u(τ)
v(τ)

�

dτ=

�

φ(t)
ψ(t)

�

, 0≤ τ≤ t ≤ 1, (11)

x(t) = (u(t), v(t))>, f (t) = (φ(t),ψ(t))>,

where the functions K11(t,τ),K22(t,τ), φ(t),ψ(t) have the smoothness required to carry out all calculations and satisfy the
conditions:

K11(t, t) 6= 0 ∀t ∈ [0,1], φ(0) = 0; (12)
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K22(t, t)≡ 0 (K22)
′

t(t,τ)|τ=t 6= 0 ∀t ∈ [0, 1], ψ(0) =ψ
′
(0) = 0. (13)

There are quite a lot of works on numerical methods for solving the first equation (11) with condition (12). An extensive
bibliography is presented in [1],[2],[3],[5],[8]. The theory of numerical solution of the second equation (11) with condition
(13) is less developed, algorithms can be found in [7], [4]. Note that many implicit multi-step methods are unstable for the first
equation (11), while explicit methods are the opposite. The simplest methods based on the quadrature formula of the left (right)
points do not converge to the exact solution of these equations. To illustrate this fact, it is enough to consider an algorithm based
on the quadrature formula of the left point for the simplest equation

∫ t

0
(t − τ)v(τ)dτ = exp(t)− 1− t, the exact solution of

which is v(t) = exp(t). For this equation, this method gives an error 1/2+O(h) at the first point, where h is the discretization
step. Therefore, we will consider an algorithm based on the quadrature formula of the midpoint and linearization. We introduce
on the segment [0,1] the grid t i = ih,i = 1, 2, ..., N ,h= 1/N and denote

Ki j−1/2 = K(t i , t j − h/2), fi = f (t i), x j−1/2 ≈ x(t j − h/2),

G j−1/2 = G(x j−1/2, t j − h/2),

Wi−1/2 =
∂

∂ x
G(x i−1/2, t i−1/2)

�

�

�x=xi−1/2
, i = 1,2, ..., N , j = 1, 2, ..., i

A method based on the midpoint rule for (1) has the form:

h
i
∑

j=1

Ki j−1/2G(x j−1/2, t j−1/2) = fi . (14)

A separate study will be devoted to convergence, software implementation and self-regularization property of this algorithm.

5 Concluding Remarks

The article singles out the class of systems of Hammerstein integral equations of the first kind. Sufficient conditions for the
existence of a unique solution to such problems are given. In the future, it is planned to study the stability and convergence rate
of both algorithm (14) and other numerical methods for solving such equations. Multi-step methods based on explicit quadrature
formulas and block methods will be considered, some of which are given in [3].
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