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Abstract

In this paper, we construct the nonlinear form of multidimensional Mellin-type integral operators
and improve them using summability methods. We utilize Tonelli sense convergence in (-variation,
incorporating the Haar measure into our framework. Additionally, we study the rate of approximation
and provide a characterization theorem for functions that are absolutely continuous in the Tonelli sense.
Finally, we present illustrations of our approximations to support the theoretical findings.
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1 Introduction

Inspired by the works [15] and [6], which establish the one-dimensional nonlinear form and the multidimensional linear form,
respectively, our goal is to construct a multidimensional nonlinear form of Mellin-type integral operators in (Tonelli sense)
p-variation [5, 31]. It is well known that such operators have significant applications in optical physics, signal analysis, and
engineering [18, 19, 20, 24, 32]. Additionally, by employing summability methods, we aim to develop a general form of these
operators. For insights into the effects of summability methods in one-dimensional nonlinear case, we refer to [12]. We also refer
to the recent papers in [21, 22, 23] for the effects of summability methods on approximation theory.

In the present paper, we consider Bell-type summability method. For a given family of infinite matrices with real or complex
entries A= {A"} = {[aﬁk]}veN (k,n € N) and for a given sequence u = (u; )y, We call that u is A-summable to a number L, if
A-transform of u (that is, Z:Zla;’kuk) is finite for all n,v € N and

oo

A—limu := lim Za;’kuk = L (uniformly in v €N) [16, 17]

n—00 ;7

holds. The summability method A is called regulay, if for any u;, — L implies Z;:zla;jkuk — L (uniformly in v € N). Regular
summability methods can be characterized by the following [17]:

1) lirgo a, =0 for each k € N (uniformly in v € N)
oo
. v . .
2) nlirgo k;lank =1 (uniformly in v € N)

(o]
3)a,, = kzl

exists N, M € N such that sup, .y ey Qpp < M.

nv —

A is regular & (€))]

ay | < oo for all n,v € N and there

Throughout the paper, we assume that A is regular summability method with nonnegative real entries. Here, we note that
beyond classical convergence, it is also possible to achieve different types of summability methods, such as Cesaro means and
convergence, by utilizing various types of regular matrices [16, 17, 27, 29].

Due to its suitability in the Mellin setting (see [6, 12, 15]), we use the Haar measure on the space ]Rf given by u (A) :=
f ,1/ (t) dt together with L; (RY) space given below

L, (RY):= {f:RLV—HRI £ :=flf|du=flf(t)|<%<00}-
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By (t) and <t;.>, we mean the multiplication IV ¢; and I} Ligili respectively. We denote by & the class of all convex ¢-
functions ¢ : Ry — Ry (- function means that ¢ is continuous, nondecreasing on Ry, ¢ (0) = 0, ¢ (u) > 0 for u > 0 and
lim,_, o, ¢ (1) = o0) satisfying lim,_,;+ ¢ (1) /u = 0. From now on, we assume that ¢ € &.

Let I be an N-dimensional interval such that I = ITY_ [a;, b;] € RY. Then by the notation [a}, b}], we mean N—1 dimensional in-
terval H?]:Li;éj [a;, b;] € RY~'. Moreover, we use the following notation x = (x, X5, -, xy) and x;. = (xl, X5ttt 5 X1, X115 xN) .
Using the above notation, if we are interested in j-th coordinate of the interval I, vector x and function f (x), we write
I= [a;, b;] X [aj, bj], X= (x;,xj) and f (x;,xj), respectively. We also use the symbol || for Euclidean norm of multidimensional
vectors.

We remind that there are different type of variations and hence their corresponding variational approximations [7, 9, 10, 25,
26, 28, 30, 33, 34]. In our study we consider Tonelli sense y-variation which is defined as follows:

For a given function f : R, — R, p-variation of f on [a, b] C R, is defined as follows:

VLT3 5P 23 (1 (5 = f (sn)) Gsee [35D,

where the supremum is taken over all the partitions P = {a =s,,s;,"** ,s, = b} of [a, b]. Moreover, g-variation of a given
function f on R, is defined as

Ve[fli= sup V7, [f] (see[6D.

[a,b]cR
Considering these definitions, a function f : R, — R is called bounded ¢-variation, if there exists a A > 0 such that V¥ [Af] is
finite. Throughout the paper, the space of all functions of bounded ¢-variation will be denoted by BV¥ (R_).
Tonelli sense p-variation in N-dimension is defined as follows [5, 6]:
Let f : ]Rf — R be given. Then for a given N-dimensional interval I C Rﬂ\r’ , define ¥ (f,I) as follows

1
2

5
=1

Y (f,1):= (Z[¢f (f,I)]z)

where <I>;." (f,D):= faljj V[“" . ][ f (x;.-)]dx;. / <x;> Here V¥ . ][ f (x;.')] denotes the one dimensional ¢-variation of f on the interval
i Lajb) aj,b;

[

[aj, b j] for each fixed x;. S R’J\r"l. Taking these definitions into account, N-dimensional -variation of f on the interval I C RY is

given by
V7 [f1:=sup 3,97 (f,J,),
r=1

where {J;,J,, - ,J,,} is a partition of I and the supremum is taken over all the partitions of I. By the above definition, multidi-
mensional g-variation of f on Rf is defined as
VeIF1= sup V7 [£].
IcRY

Analogously to one dimensional case, f is called bounded y-variation (in Tonelli sense), if there exists a A > 0 such that V¥ [Af]
is finite. The space of such functions will be denoted by BVY (Rf)

On the other hand, we also need the following definitions of absolute continuity. A function f : [a,b] C R, — R is called
(p-absolutely continuous on [a, b], if one can find a A > 0 satisfying that for all ¢ > 0 there exists a 6 > 0 such that

2eAlfB)—flad)<e
i=1
for all finite collections of non-overlapping intervals [a;, ;] C [a, b], i =1,2,...,m, whenever
2eBi—a)<b.
i=1

A multidimensional counterpart of this definition is given by the following:

f: ]Rf — R is called locally p-absolutely continuous if for any interval I = 1'[?’:1 [a;,b;] C Rf and for all j = 1,2,...,N,
f (x;a) : [a b j] — R are absolutely continuous for (uniformly) almost every x;. S ]Rﬂ‘r"l.

Now, f : Rf — R is called y-absolutely continuous, if f € BV¥ (Rﬂ\r’) and f is locally y-absolutely continuous. The space of
all p-absolutely continuous functions will be denoted by AC¥ (Rﬁf) (see [5, 6]).

Let ¢, n € ® and, v be p-function. Then (p, n,)) is called properly directed (see [2]), if for all u € (0, 1), there can be found
a C, > 0 such that

e(Cpgh) <n(ulgh

for all (Haar) measurable function g : R, — R. From now on, we assume that (¢, n,)) is properly directed.
Some important properties of ¢-variation are given below:
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Let fy,...,f, € Lﬁ’ (R,) be given. Then if N = 1, there holds

n 1 n
v |:Zfi:| < =2 v?Infl, 2
i=1 ni=
if N > 1, then
n 1 n
Ve | < —= . V¥ [nf; 3
[gf] ﬁi:zl [nf;] 3
holds.

2 Approximation Theorem

Generalized nonlinear Mellin operator is defined as follows:

S dt
Too (F3s1)= Y07, [ L H(f (1)) 75, (rERY, n,v €N),
e (t)
k=1 Ry
where (t) :=II_, t; and 1t :=(ry £y, 75 t, -, Ty ty) for r, t ERY. In the definition above, L, : R} — Risassumedtobe L, € L, (RY)

and H;, : R — R being H; (0) = 0. We also assume that H, is ¢-Lipschitz, that is,
there exists a number L > 0 such that

[H () —H (V) < Ly (|x — y ) @
for all x,y € R and k € N, where 1) is a ¢-function (see also [1]).
In order to prove our approximations, we need the following general form of the approximate identities:
(1) SUPgen ”Lk”L‘lJ =A< o009,

(ii) for any fixed0 <6 <1

A-lim | L o,
1-t>5 (t)
where 1=(1,1,---,1) €RY,
(iii)
A-lim [ L) & =1,
2B
and

(iv) denoting G, (u) :=H, (u)—uforallu e R,
for all y > 0, there exists a A > 0 such that

VY [AG]

im —————

k=oo ¢ (ym(J))

where m (J) denotes the length of the interval J.

=0 (uniformly in every proper bounded interval J C R)

Lemma 2.1. Lety o|f]| € L;’" (]Rf) and (i) holds. Then we have T, (f;1) < 0o forall r € ]Rf. In addition, if (i) is satisfied and
Yolfle L, (RY), then 7, (f) € L} (RY).

Proof. ForanyreRY,

dt
{t)

dt
)

7.0 (30 < kﬁ:a:k [ 1L O1H, (f @)
SLga:jkf ILe (D19 (If (D))

holds. Now since ¢ o |f| € L® (Rﬂ\r’ ) , from Hoélder’s inequality and (i) there holds

| o0 (300 S LAl 0 [f Il 20 pICH

and finally from (1), for every n, v € N we get
| 7o (f58)] < 00.
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For the second part of the proof, if ¢ o |f| € L,i (RID then from (4), (i) and the Fubini-Tonelli theorem

dr
(r)
dt
(t)

fl’rn,v(f;r)lf <Lf {Zankf |Lk(t)|w(|f(rt)|)<>}
RY Ay

—Lzankf Ly (t)l{fw(lf (rt)]) r )}

< 1Al o [fllly Ya2, < 00
k=1
holds. H

Lemma 2.2. Let f € BV" (Ri’) and (i) holds. Then there exists a v > 0 such that

Ve [y Ton (] <V [uf]

for which V' [uf ] < oo, which means T, maps from BV" (Rﬂ‘:) to BV¥ (]Rﬂ‘:)

Proof. Let {J;,J,, -+ ,J,,} be a partition of the N-dimensional interval I = l'I [aj, b]] C ]Ri’, where J, = l'I?’Zl[qa}-,q b;] for
q=1,---,m.Furthermore, let {r;’ =1 aj,rjl,--' ,r}?" =1 bj} be a partition of the 1nterva1 [Ya;,%b;]forg=1,---,mandj=1,---,N.
Now, for all y > 0 and r’. el ’,, from (4) we have

Me

T2 ) =T (f30r )

q
Il
—

o(r
Sal, Juomye GrTe) T - S SO 1)

(

(yLZankf L @1 (|F e, e

Il
Me

Y

Q
Il
-

IA
Me

o ”"f |Lk(t)|‘H’<(f(r] T E)—H(f (e, 1t))’%)

d
%)

Considering Jensen’s inequality together with the regularity of A, from assumption (i)

q
Il
—

ﬂMe

k=1 RN

nv T=1k=1

dt
LY Sane (rLa,wf L @1 (|Faie rFep-Fag,r )| ) @)
)E
(t)
yields, where a, , (defined in (1)) is finite. On the other hand, since (¢, n,) properly directed, for all u € (0,1) we can find a
C, > 0 such that

kf |Lk (t)lw(YALan u‘l’ ’f(l‘]t],r] tl)_f(r]t}’r;r ' j)

r—lk 1

w o0 dt
nvATZlkzlanka |Lk (t)|n |f(rJtJ’rJ tl) f(l']tj,r’] j) )w
and hence d
! ¢/ t
= kzlankaN L OVl 4 0 @8 0D 5 ©

wherey < C,/ (ALa,w). Then from the Fubini-Tonelli theorem and (5), we obtain

dr’

y
@f (Y']—n,u (f),Jq) = \I/‘V[iaj’qu][’)/'];’v(f;r;’ )]m
ﬂ. ]

ST

%&.

o d dr’
(an Z nk,[; |Lk(t)|V[ZGJ’qu][Mf(r;t;’.t])]_t) :

a

(SN

qb’ /

r.
nkf |Lk(t)| f [q ap; ][,U'f( it )]<r_’ T\
J

= AklnkﬂLk(t)Mb”(uf(t) )”
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Then applying two times generalized Minkowski-inequality, one may easily get

1

8% (vT..0 (F),1) :=(i[¢f (T (f),Jq)]Z)
Jj=1

>

j=1

an UAk

Za

an ’UAk 1

1 " N
< a, AL :k_[] |Lk (t)|()§ [@7 (‘uf(.t)’“,q):l )

Zankf L (012" (uf (1),

Tl’UAk 1

Then there holds

m
P

Jm}q=1

Vo [rTow ()] =

sup
Ul Jo,e

anv k=1

1
Akl

RN

RN
Considering (i) and (1)
Ve [y T ()] =

ICRY

nvAk 1

holds. Here, notice that

Zankf |Li (01 @] (1f (1),

Zank ILAC]

a2, [ 1L (01 [uf (0] %

[T

1 )<)

[T

2| [ L @1e] (uf (0,7 )

]RN

()

1

j=1

)()

(rTan (F),J,)

( sup
Ja,

Y (uf (),

o I} k=1

)i

(t)

sup V* [y 7, ()]

a’, [ 1Ly (0] sup A [uf (912 e >

RY ICR

sup V¥ [uf (0)]= V¥ [uf ()] =V* [uf]

N
IcRY

and hence we finally conclude that

vl TEH S 015
nU = ]RN
S Ve [uf]

holds, which completes the proof.

Main approximation theorem is given below.

Theorem 2.3. Assume that f € ACY (RY)nBV" (RY). If (i) —

-f)l=

Jlim V¥ [A(T,,. (f)

Proof. Considering the similar notations in the previous lem

(iv) are satisfied, then there exists a A > 0 satisfying that

0 uniformly in v € N.

ma, it is possible to write for every A > 0 that

U= B (A Toulfit) D)= F ) = Toulfitri )= £ 7))
= ﬁlgo( E nkak(t)[Hk(f(r Vi) — FEE,rT) —H (W T ) + f(E, 1)}%

+§a:;kka(t)[f(r;t;,rftj)—f( )= FY,

)[f(,,J) £

x dt
+(l§1ankR£]Lk (t) (t)

]’J

d
J’J t)+f(J’J] :

(t)
)

‘L'
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Using the convexity of ¢, we can easily see that

Uiy (sxzankf Ly (0)]

H(f (r] t},r} t;) = f(x] t]’rj t;) Hk(f(l‘ t,rr )+ f( t},rjT 't)

W)

7=1 k=

dt
@)
+§iw(3xzankfuk(t)|\f( P F T~ )+ F

it 1; it j? ]
w
+1¥ 032
771

)

holds. Taking Jensen’s inequality (discrete and continuous forms) into account in the first two expression, from the convexity of
¢, (i) and (1) we obtain
dt
) (t)

Z ank f Lk (t)
RY

=1

—1||r - fr

J’J

mgank f |Lk(t)|zso (3MA2 |rF g, e D)= £ i) —HF T ) + (e r )

P Ji J
)dt
(t)

3MAZank f |Lk(t)|z<p(3MAx(f(rJ L)~ f(E D) —f (T )+ ()

Jj

for sufficiently large n € N, where M comes from the regularity of A. Notice that from (i), it is possible to find a number n, such

that for all n > n,, ‘Zk 1%k f RY Ly (t) de 1‘ < 1and sup,sy yex Zk 1@ < M. Now, if we take supremum over all the partitions
of the interval [?a;,? b;], we get

Z ay, f Ly (t)

(sx(f(J, )= f(, 1T

J’J

8

dt

(®

U 3 5 flLk(t)l o5, BMAA(Hi 0 )W, 1) = f (Wt )]

8

+ iz 230 ,,kf 1L OV, o [BMAAS (18, €)= (X, ))J%

[qa Qb][ﬂf(r )]
b Zankak(t)
&g, O

for sufficiently large n € N. Then using the Fubini-Tonelli theorem, for every
j=1,---,N

r/

)

a2, [ 1L, (0187 (3MAA(H, o £ () — £ (0),7,) &

&7 (A(To (=), ) f[q o T 555, = F O, DI

IA
g
M8

k=1 (t)
+ 57 2 ] 140018} (825 (01, oFE P nkak(t)——

holds. Subsequently, by the Minkowski inequality, for every g =1,--- ,m there holds

¥ (AT () £).9,) = {z (o7 (1 -1).8)]}

3MA {Z (:Zoza:ljkf |L’< (t)H)jw (3MAMf('t)_f)’Jq) %) }

||M2

(i L (9]¢ (3MAAH, o f () — f(.t)),Jq)%) }

Z ank f Lk (t)

k=1 ]RN

{é[@f (3Af,J, )]2}

= U, + U, +Us.
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Using generalized Minkowski inequality in U; and U, twice in each, we see that

U Sﬁiaﬁk{Z(I L (0] @ (3MAA(H, o f () — £ (1)), J, d—>) }
= j=1 RY
< k§ kf|Lk(t)|{zl[¢“’(3MAA(Hkof(t) FCON )]} f—>
:72 nkf Ly ()] @7 (SMAA(Hy o f () — £ (-1)),J,) ft;

and

Uzsﬁiazk{ 1(f|Lk(t)|‘I>“’(3MA7L(f(t) L, f—)}
dt

—3MAZankf|Lk(t)|{2[‘1>“’(3MA/1(f(t) fJ )]} t

o

SMAZIankf | (6] @7 (3MAACF () — ), )(§

Now, if we sum over ¢ = 1,--- ,m and take the supremum over all possible partitions of {J;,J,,- -+ ,J,,}, we have the followings

VI A(Taw (F)=F)] = sup ZW( (Tow ()= £),7,)

{I1.d2, JIm} =1
< #i_o] nkf |Le (O] V¥ [3BMAA(H, © £ (-£) — £ (-1))] %
sMAZankf 1L (O1V; [BMAA(F () — f)]ﬂJr nkf (t)——l v/ 1341

and since I C R’i is arbitrary, we get

3MAZank f 1L (O] V¥ [BMAACF (1) — )]

(t)

Ve A (T (F)—F)] < Tia [ 1L (] V¥ [3MAA(H, o f (- Fe)] 4 T )

Zankak (t) —1|V¢[3Af]

k=1 " gN

=V, +V, + V.

Notice that V¥ [3MAA(H, o f (-t) — f (-t))] = V¥ [BMAA(H, o f — f)] for all t €RY. Considering (iv) in Lemma 1 of [4], then
there exists a y > 0 such that there exists a number k, € N satisfying

VY [BMAA(H, o f —f)]<e¢ (6)
for all k > k, where A is sufficiently small such that A < y/(3MA). Therefore, if we divide V; as follows

[ee]

i= 3MAZa V¢ [BMAA(H o f — f)] f|Lk(t)|w+3MAk akV“’ [3MAA(H o f — )] [ |Lk(t)|6

=V'+V7,
from (6), (i) and (1)
£ S v dt
Vl2 < 3va Z ankf L ()] w
ko+1 RII

<

Wi,

On the other hand, it is not hard to see from (1) that

K 3o o Kk
< Zlank <3 €

Dolomites Research Notes on Approximation ISSN 2035-6803
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where K = maXye(; ... ,} V¥ [BMAA(H o f — f)].
In V,, one can obtain from [5] that there exists a A > 0 such that for any & > 0

Ve[AF(D—f)]<e )

whenever
[1—t| <6.

Now, dividing the integral in V, as follows

Vz:ﬁxiaﬁk J |Lk(t)|V“"[3MA7L(f(-t)—f)]%
k=1 |1-t|<5
+W1A§afik J |Lk(t)|V“’[3MA7L(f(-t)—f)]%
k=1 |1-t|>5
=:V21+V22

from (7) there holds

1 £ < v dt
v, < 3MAZank f Ly (O)] E
k=1 " 1-t<s

<

wlm

for A < A/3MA. For V,, since from (3) V¥ [3MAA(f (-t) — f)] < ¥/2V¥ [6MAAf ], by the assumption (ii)

i V2 - v dt

vy < FEEIE S e [ L@l

k=1 |1-t/>6 {t)

VP[6MAAF1V2
< E7ad
for sufficiently large n € N.
Finally, directly from (iii), we get
V< mg

for sufficiently large n € N, which completes the proof. O

3 Rate of Approximation

Now, we investigate the rate of approximation of our operators. To this end, we need certain assumptions:
Let a € (0,1]. For any fixed 0 < § < 1,

0))
Za;’k f |L, (B)] dat =0 (n“‘) as n — oo (uniformly in v)
k=1 |1-t|>6 (t)
(I
>.al, f |L, (©)| [log t|* dt = O(n_“) as n — oo (uniformly in v)
k=1 |1—t|<é (t)
(111

Zaﬁk f L, (t) E —1=0 (n‘“) as n — oo (uniformly in v)
k=1 RN <t>

(Iv) for all y > 0, there exists a A > 0 such that
x VY [AG]

v

k=1a”"m =0 (n‘“) as n — oo (uniformly in v and every proper bounded interval J C R).
We also need the following class of ¢-absolutely continuous functions.
Vi Lip () :={f eAC*® (RY): 31> 0s.t. V¥ [A(f () —f)]=0(logt|*) as [1—t| > 0}.
Theorem 3.1. Suppose that a € (0,1] and (I)—(IV) and (i) hold. If f € V¥ Lip (a)NBV" (]R’i) , then there exists a A > 0 such that
744 [A (7;w (f)—f)] =0 (n’“) as n — oo (uniformly in v)

holds.

Dolomites Research Notes on Approximation ISSN 2035-6803
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Proof. Considering (i), from (3) we have

VAT, (F)—f)] < 3MZankW[3MAA(Hkof f)]+3MAZank f 1L (O1VF [3MAACF (1) — )] 2

RY

+1 ia:kak(t)ﬂ—l Ve [3Af]
k=1 gy (t)

=W, + W, + W,

for sufficiently large n € N. In W,, from assumption (IV) and [4], for all y > 0 there exists a A > 0 such that

[ee]

>.ay VY [BMAA(H, o f — f)I<RV? [yfIn"®

k=1

:O(n_“) asn— oo
for some R > 0, for which A < A/ (3MA) and V¥ [yf] < co. Therefore, we have
W, = O(n’”‘) asn — 0o.

Now, in W,, since f €V Lip (a), 34 > 0 scuh that there exists a number S, §, > 0 satisfying

VE[A(f () —=f)] < S logt]*

whenever |1 —t| < §,. Taking this expression into account, if we divide the integral in W, as follows

W=t S0l [ IL(O]V* [BMAACF (1) — f)] P S [ LIV [3MAA (1) — )] X

k=1 |1-t|<§, k=1 \1 t|>8q
_. ! 2
= W2 +W2

we may obtain from (II) that

= %ga:k‘17J<50 |Li (©)] [log t|* ©
=O(n_“) asn— oo
for A < i/ 3MA. On the other hand, we know from (3) that
VP [BMAA(F(-t) — £)] < V2V¥ [6MAAS]

holds. Therefore, from (I)

w2 < VP [6MAAF1V2 e v f IL (t)l
2 = 3MA Aok k (t)
k=1 = |1-t]>5,

=O(n_“) asn— 00.

Finally, from (III)
W, = O(n_“) asn— oo.

4 Characterization of Absolute Continuity

We need the following assumption.

(V) For any N-dimensional interval I = II}_ [a;, b;] C RY and for all nonoverlapping intervals {[q a;,’ ﬁj]}q

dimensional interval [a], bJ] there can be found a A > 0 such that: for all £ > 0, 36 > 0 such that

Z Z:ank‘,"()L Lk(r ﬁj)_Lk(r;«:q a))<e

=1k=1

whenever Z;”:lap(qﬁj —%a;)< o forevery j=1,--- ,N

(V') For any N-dimensional interval I = H?’: la;, b1 c Rf and for all nonoverlapping intervals {[qaj,q ﬂj]}qzl

dimensional interval [aj, bl] there can be found a A > 0 such that: for all £ > 0, 36 > 0 such that

Zzank‘P(A Ly (r, ﬁj)_Lk(r/"qaj))<E

=1k=1

whenever Zglzlap(log(qﬂj)—log(qaj)) <6 forevery j=1,---,N.

(t)

(t)

_ of the one
=1,--,m

of the one
m
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Remark 1. We remind that, from Proposition 3.3 in [8], one can clearly understand that conditions (V) and (V') are equivalent.
We also remind that if A is row finite, that is, for all v € N, each row of A¥ contains finite number of nonzero terms, then the
conditions (V) and (V') reduces to L, € AC, (]RN ) or equivalently L, € log-AC;/_ (]RID defined in [8, 14].

loc

Lemma 4.1. Assume that (i) holds and L, satisfies (V) (or (V')). Ifpo|f| € L; (Rﬂ\r’) and f € BV" (]R’D NACY (Rf), then
Tow (f) €ACY (RY).

Proof. Using the substitution rt = x in our operator, we immediately obtain

S v X dx
7:1,1) (f; r) = ]ElankR'JI:\r] Lk (;)Hk (f (X)) @

X1

where ¥ = (;,m . rN) Let {[ a;,l! /Sj]} o be a partition of the j-th section [a b; :| of l'Ill,V:1 [a;,b;]C ]Rﬂ\r’ such that

iEe]

Z ¢(log(?p;) —log(“a;)) < & for every j=1,--- ,N.

$o(on(2) ()=

from (1), (4), (V'), Jensen’s inequality and Fubini-Tonelli theorem, one can easily observe that

X, x. X’ X;
L2, =~ |-L |2
k r/:qﬁ k l'/’
N J J J

m oo
a; )S ZW(ALZa:kf
X/. X X/
v r} a; r; qa

1 .\ 1
= Mllwo|f|||L1§,(ZlankR£¢(|f (x)l)so( MLy o |fll

_1 X_;_ dx
k r)da, (x)

<
for sufficiently small 2 > 0 and for every j = 1,--- ,N. On the other hand, we know from Lemma 2.2 that 7, , (f) € BV¥ (Rf ) s
which means 7, , (f) € AC¥ (]RID . O

Then since

320 (AT 310 B) ~ To 30 P17 0D ))
q=1

{x)

“(5%)
/’qﬁ]

Y (If (x )I)—)

£
M,

Theorem 4.2. Suppose that (I) — (V) hold. Suppose further that (o |f) € L (RY) and f € BV"(RY). Then there holds
f eAC? (]R’D < Ju>0, lirgo ve [,u.(Tn’U (f)—f)] = 0 uniformly in v.

Proof. If f € AC¥ (]R’X ) , then from Theorem 2.3, we obtain the sufficiency part. For the necessity part, it is known from Proposition
4.3 in [8] that AC¥ (]Rf ) is a closed subspace of BV¥ (Rf ) under the topology generated by convergence in p-variation. Since
Tow (f) €ACY (RY) by the previous lemma, we finally have f € AC* (RY). O

5 Applications

Now, we will demonstrate our kernels that satisfy Theorem 4.2 and present our main approximation theorem.
Let L; : R — R be given by ) )
Ly (1, t5) := Ly (£1) Ly (£3) (®

kt Kt 1
~ _———= — . —_ < =
(6) { S —Srle=1]; =1 <

; otherwise.

where I, : R, — R defined by

The conditions of Theorem 4.2 are easily satisfied for A = {I}, the identity matrix. See Figure 1 for the characterization kernel in
(8.

Another example involves our main approximation theorem for N = 2. To this end, we consider the following kernel
Ly : R? - R, defined as:
K*tity; |t;—1] < o and [t,— 1| < 5%
0; otherwise,

Ly (ty, tz) = { (C)]
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Ls(t1,t2)

LB(t1’t2) I'1III'(t1’.|:2)

Figure 1: The two-dimensional kernel function for characterization in (8).

and H; : R — R such that, H, is given by

log(1+4%); o0<u<1

Hk(u):{ log(1+ﬁ); u=1

on [0, 00) and extended it in the odd way ([4]). Then it is not hard to see that L, satisfies (i)-(iii) for A = {I} and H, satisfies
(iv) (see [4]). If we also assume that 1) (|u|) = |u|, then condition (4) is satisfied. The graph of the kernel in (9) is shown in
Figure 2. Now, using the above definitions and considering f (x, y) : ]Ri — R such that f (x, y) = arctan x arctan y, we obtain the
following approximations by means of Mellin-type nonlinear integral operator assuming .A = {I}, the identity matrix, in Figure 3.
We should also note that, since classical nonlinear multidimensional approximation has not been previously investigated, we
illustrate our examples under the assumption A = {I}. However, it is not difficult to find non-trivial examples where classical
convergence fails, yet summability methods are effective (see, for instance, kernel (4.4) in [12]).
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L?{t,l,tz)

0.8 0.8
y 0.8 X y 0.8 X
L9“1 ’t2) I'12“1 ’tZ}
100 - 150
100
M
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0.
1.2
0.8 0.8
y 0.8 M y 0.8

Figure 2: The two-dimensional kernel function for approximation in (9).

6 Conclusion

In this paper, we prove approximation theorems for N-dimensional Mellin-type nonlinear integral operators under convergence
in @-variation and generalize it with Bell-type summability method. Then we also give a general characterization theorem for the
space of (Tonelli sense) ¢-absolutely continuous functions. If we select specific families of matrices, such as the Cesaro matrix
([27D), the almost convergence matrix ([27, 29]), or the identity matrix (see [13]), in place of .4, all these results reduce to
Cesaro mean convergence, almost convergence, and classical convergence, respectively. On the other hand, it is also possible to
extend p-variation theory to the F¥-variation, which is inspired by F-variation (see [3, 11]).
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