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Multivariate ϕ-Variational Approximation of Mellin-Type
Nonlinear Integral Operators via Summability Methods

İsmail Aslan a

Abstract

In this paper, we construct the nonlinear form of multidimensional Mellin-type integral operators
and improve them using summability methods. We utilize Tonelli sense convergence in ϕ-variation,
incorporating the Haar measure into our framework. Additionally, we study the rate of approximation
and provide a characterization theorem for functions that are absolutely continuous in the Tonelli sense.
Finally, we present illustrations of our approximations to support the theoretical findings.
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1 Introduction

Inspired by the works [15] and [6], which establish the one-dimensional nonlinear form and the multidimensional linear form,
respectively, our goal is to construct a multidimensional nonlinear form of Mellin-type integral operators in (Tonelli sense)
ϕ-variation [5, 31]. It is well known that such operators have significant applications in optical physics, signal analysis, and
engineering [18, 19, 20, 24, 32]. Additionally, by employing summability methods, we aim to develop a general form of these
operators. For insights into the effects of summability methods in one-dimensional nonlinear case, we refer to [12]. We also refer
to the recent papers in [21, 22, 23] for the effects of summability methods on approximation theory.

In the present paper, we consider Bell-type summability method. For a given family of infinite matrices with real or complex
entries A= {Aυ}=

��

aυnk

�	

υ∈N (k, n ∈ N) and for a given sequence u= (uk)k∈N , we call that u is A-summable to a number L, if
A-transform of u (that is,

∑∞
k=1aυnkuk) is finite for all n,υ ∈ N and

A− lim u := lim
n→∞

∞
∑

k=1
aυnkuk = L (uniformly in υ ∈ N) [16, 17]

holds. The summability method A is called regular, if for any uk → L implies
∑∞

k=1aυnkuk → L (uniformly in υ ∈ N). Regular
summability methods can be characterized by the following [17]:

A is regular ⇔

1) lim
n→∞

ank = 0 for each k ∈ N (uniformly in υ ∈ N)

2) lim
n→∞

∞
∑

k=1
aυnk = 1 (uniformly in υ ∈ N)

3) an,υ :=
∞
∑

k=1

�

�aυnk

�

�<∞ for all n,υ ∈ N and there

exists N , M ∈ N such that supn≥N ,υ∈N an,υ ≤ M .

(1)

Throughout the paper, we assume that A is regular summability method with nonnegative real entries. Here, we note that
beyond classical convergence, it is also possible to achieve different types of summability methods, such as Cesàro means and
convergence, by utilizing various types of regular matrices [16, 17, 27, 29].

Due to its suitability in the Mellin setting (see [6, 12, 15]), we use the Haar measure on the space RN
+ given by µ (A) :=

∫

A
1/ 〈t〉 dt together with L1

µ

�

RN
+

�

space given below

L1
µ

�

RN
+

�

:=

(

f : RN
+ → R| ‖ f ‖L1

µ
:=

∫

RN
+

| f | dµ=
∫

RN
+

| f (t)|
dt
〈t〉
<∞

)

.
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By 〈t〉 and
¬

t′j
¶

, we mean the multiplication ΠN
i=1 t i and ΠN

i=1,i 6= j t i respectively. We denote by Φ the class of all convex ϕ-
functions ϕ : R+0 → R

+
0 (ϕ- function means that ϕ is continuous, nondecreasing on R+0 , ϕ (0) = 0, ϕ (u) > 0 for u > 0 and

limu→∞ϕ (u) =∞) satisfying limu→0+ ϕ (u)/u= 0. From now on, we assume that ϕ ∈ Φ.
Let I be an N -dimensional interval such that I = ΠN

i=1 [ai , bi] ⊂ RN
+ . Then by the notation [a′j , b′j], we mean N−1 dimensional in-

tervalΠN
i=1,i 6= j [ai , bi] ⊂ RN−1

+ . Moreover, we use the following notation x = (x1, x2, · · · , xN ) and x′j :=
�

x1, x2, · · · , x j−1, x j+1, · · · , xN

�

.
Using the above notation, if we are interested in j-th coordinate of the interval I , vector x and function f (x), we write
I = [a′j , b′j]×

�

a j , b j

�

, x= (x′j , x j) and f (x′j , x j), respectively. We also use the symbol |·| for Euclidean norm of multidimensional
vectors.

We remind that there are different type of variations and hence their corresponding variational approximations [7, 9, 10, 25,
26, 28, 30, 33, 34]. In our study we consider Tonelli sense ϕ-variation which is defined as follows:
For a given function f : R+→ R, ϕ-variation of f on [a, b] ⊂ R+ is defined as follows:

Vϕ[a,b] [ f ] := sup
P

n
∑

i=1
ϕ (| f (si)− f (si−1)|) (see [35]),

where the supremum is taken over all the partitions P = {a = s0, s1, · · · , sn = b} of [a, b] . Moreover, ϕ-variation of a given
function f on R+ is defined as

Vϕ [ f ] := sup
[a,b]⊂R+

Vϕ[a,b] [ f ] (see [6]).

Considering these definitions, a function f : R+→ R is called bounded ϕ-variation, if there exists a λ > 0 such that Vϕ [λ f ] is
finite. Throughout the paper, the space of all functions of bounded ϕ-variation will be denoted by BVϕ (R+) .

Tonelli sense ϕ-variation in N -dimension is defined as follows [5, 6]:
Let f : RN

+ → R be given. Then for a given N -dimensional interval I ⊂ RN
+ , define Φϕ ( f , I) as follows

Φϕ ( f , I) :=

�

N
∑

j=1
[Φϕj ( f , I)]2

�
1
2

,

where Φϕj ( f , I) :=
∫ b′j

a′j
Vϕ[a j ,b j]

[ f (x′j ·)]dx′j/
¬

x′j
¶

. Here Vϕ[a j ,b j]
[ f (x′j ·)] denotes the one dimensional ϕ-variation of f on the interval

�

a j , b j

�

for each fixed x′j ∈ R
N−1
+ . Taking these definitions into account, N -dimensional ϕ-variation of f on the interval I ⊂ RN

+ is
given by

VϕI [ f ] := sup
m
∑

r=1
Φϕ ( f , Jr) ,

where {J1, J2, · · · , Jm} is a partition of I and the supremum is taken over all the partitions of I . By the above definition, multidi-
mensional ϕ-variation of f on RN

+ is defined as
Vϕ [ f ] = sup

I⊂RN
+

VϕI [ f ] .

Analogously to one dimensional case, f is called bounded ϕ-variation (in Tonelli sense), if there exists a λ > 0 such that Vϕ [λ f ]
is finite. The space of such functions will be denoted by BVϕ

�

RN
+

�

.
On the other hand, we also need the following definitions of absolute continuity. A function f : [a, b] ⊂ R+→ R is called

ϕ-absolutely continuous on [a, b], if one can find a λ > 0 satisfying that for all ε > 0 there exists a δ > 0 such that

m
∑

i=1
ϕ (λ | f (βi)− f (αi)|)< ε

for all finite collections of non-overlapping intervals [αi ,βi] ⊂ [a, b] , i = 1, 2, . . . , m, whenever

m
∑

i=1
ϕ (βi −αi)< δ.

A multidimensional counterpart of this definition is given by the following:
f : RN

+ → R is called locally ϕ-absolutely continuous if for any interval I = ΠN
i=1 [ai , bi] ⊂ RN

+ and for all j = 1,2, . . . , N ,
f (x′j ·) :

�

a j , b j

�

→ R are absolutely continuous for (uniformly) almost every x′j ∈ R
N−1
+ .

Now, f : RN
+ → R is called ϕ-absolutely continuous, if f ∈ BVϕ

�

RN
+

�

and f is locally ϕ-absolutely continuous. The space of
all ϕ-absolutely continuous functions will be denoted by ACϕ

�

RN
+

�

(see [5, 6]).
Let ϕ,η ∈ Φ and,ψ be ϕ-function. Then (ϕ,η,ψ) is called properly directed (see [2]), if for all µ ∈ (0,1) , there can be found

a Cµ > 0 such that
ϕ
�

Cµψ (|g|)
�

≤ η (µ |g|)

for all (Haar) measurable function g : R+→ R. From now on, we assume that (ϕ,η,ψ) is properly directed.
Some important properties of ϕ-variation are given below:
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Let f1, . . . , fn ∈ LN
µ
(R+) be given. Then if N = 1, there holds

Vϕ
�

n
∑

i=1
fi

�

≤
1
n

n
∑

i=1
Vϕ [nfi] , (2)

if N > 1, then

Vϕ
�

n
∑

i=1
fi

�

≤
1
p

n

n
∑

i=1
Vϕ [nfi] (3)

holds.

2 Approximation Theorem

Generalized nonlinear Mellin operator is defined as follows:

Tn,υ ( f ; r) =
∞
∑

k=1
aυnk

∫

RN
+

Lk (t)Hk ( f (rt))
dt
〈t〉

, (r ∈RN
+ , n,υ ∈ N),

where 〈t〉 := ΠN
i=1 t i and rt :=(r1 t1, r2 t2, · · · , rN tN ) for r, t ∈RN

+ . In the definition above, Lk : RN
+ → R is assumed to be Lk ∈ L1

µ

�

RN
+

�

and Hk : R→ R being Hk (0) = 0. We also assume that Hk is ψ-Lipschitz, that is,
there exists a number L > 0 such that

|Hk (x)−Hk (y)| ≤ Lψ (|x − y|) (4)

for all x , y ∈ R and k ∈ N, where ψ is a ϕ-function (see also [1]).
In order to prove our approximations, we need the following general form of the approximate identities:

(i) supk∈N ‖Lk‖L1
µ
= A<∞,

(ii) for any fixed 0< δ < 1

A− lim
∫

|1−t|≥δ
Lk (t)

dt
〈t〉
= 0,

where 1= (1, 1, · · · , 1) ∈ RN
+ ,

(iii)

A− lim
∫

RN
+

Lk (t)
dt
〈t〉
= 1,

and

(iv) denoting Gk (u) := Hk (u)− u for all u ∈ R,
for all γ > 0, there exists a λ > 0 such that

lim
k→∞

Vϕ [λGk]
ϕ (γm (J))

= 0 (uniformly in every proper bounded interval J ⊂ R)

where m (J) denotes the length of the interval J .

Lemma 2.1. Let ψ ◦ | f | ∈ L∞
µ

�

RN
+

�

and (i) holds. Then we have Tn,υ ( f ; r)<∞ for all r ∈ RN
+ . In addition, if (i) is satisfied and

ψ ◦ | f | ∈ L1
µ

�

RN
+

�

, then Tn,υ ( f ) ∈ L1
µ

�

RN
+

�

.

Proof. For any r ∈ RN
+ ,

�

�Tn,υ ( f ; r)
�

�≤
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)| |Hk ( f (rt))|
dt
〈t〉

≤ L
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|ψ (| f (rt)|)
dt
〈t〉

holds. Now since ψ ◦ | f | ∈ L∞
µ

�

RN
+

�

, from Hölder’s inequality and (i) there holds

�

�Tn,υ ( f ; r)
�

�≤ LA‖ψ ◦ | f |‖L∞µ

∞
∑

k=1
aυnk

and finally from (1), for every n,υ ∈ N we get
�

�Tn,υ ( f ; s)
�

�<∞.
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For the second part of the proof, if ψ ◦ | f | ∈ L1
µ

�

RN
+

�

then from (4), (i) and the Fubini-Tonelli theorem

∫

RN
+

�

�Tn,υ ( f ; r)
�

�

dr
〈r〉
≤ L

∫

RN
+

(

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|ψ (| f (rt)|)
dt
〈t〉

)

dr
〈r〉

= L
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|

(

∫

RN
+

ψ (| f (rt)|)
dr
〈r〉

)

dt
〈t〉

≤ LA‖ψ ◦ | f |‖L1
µ

∞
∑

k=1
aυnk <∞

holds.

Lemma 2.2. Let f ∈ BV η
�

RN
+

�

and (i) holds. Then there exists a γ > 0 such that

Vϕ
�

γTn,υ ( f )
�

≤ V η [µ f ]

for which V η [µ f ]<∞, which means Tn,υ maps from BV η
�

RN
+

�

to BVϕ
�

RN
+

�

.

Proof. Let {J1, J2, · · · , Jm} be a partition of the N -dimensional interval I = ΠN
j=1

�

a j , b j

�

⊂ RN
+ , where Jq = ΠN

j=1[
qa j ,

q b j] for

q = 1, · · · , m. Furthermore, let
¦

r0
j =

q a j , r1
j , · · · , rωj =

q b j

©

be a partition of the interval [qa j ,
q b j] for q = 1, · · · , m and j = 1, · · · , N .

Now, for all γ > 0 and r′j ∈ I ′j , from (4) we have

U j =
ω
∑

τ=1
ϕ
�

γ
�

�

�Tn,υ( f ; r′j , rτj )− Tn,υ( f ; r′j ,r
τ−1
j )

�

�

�

�

=
ω
∑

τ=1
ϕ

 

γ

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)Hk( f (r
′
jt
′
j , rτj t j))

dt
〈t〉
−

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)Hk( f (r
′
jt
′
j , rτ−1

j t j))
dt
〈t〉

�

�

�

�

�

!

≤
ω
∑

τ=1
ϕ

 

γ
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

�

�Hk( f (r
′
jt
′
j , rτj t j))−Hk( f (r

′
jt
′
j , rτ−1

j t j))
�

�

�

dt
〈t〉

!

≤
ω
∑

τ=1
ϕ

 

γL
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|ψ
�
�

�

� f (r′jt
′
j , rτj t j)− f (r′jt

′
j , rτ−1

j t j)
�

�

�

� dt
〈t〉

!

.

Considering Jensen’s inequality together with the regularity of A, from assumption (i)

U j ≤
1

an,υ

ω
∑

τ=1

∞
∑

k=1
aυnkϕ

 

γLan,υ

∫

RN
+

|Lk (t)|ψ
�
�

�

� f (r′jt
′
j , rτj t j)− f (r′jt

′
j , rτ−1

j t j)
�

�

�

� dt
〈t〉

!

≤
1

an,υA

ω
∑

τ=1

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|ϕ
�

γALan,υψ
�
�

�

� f (r′jt
′
j , rτj t j)− f (r′jt

′
j , rτ−1

j t j)
�

�

�

�� dt
〈t〉

yields, where an,υ (defined in (1)) is finite. On the other hand, since (ϕ,η,ψ) properly directed, for all µ ∈ (0, 1) we can find a
Cµ > 0 such that

U j ≤
1

an,υA

ω
∑

τ=1

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|η
�

µ
�

�

� f (r′jt
′
j , rτj t j)− f (r′jt

′
j , rτ−1

j t j)
�

�

�

� dt
〈t〉

and hence

U j ≤
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
η

[q a j ,q b j]
[µ f (r′jt

′
j , ·t j)]

dt
〈t〉

, (5)

where γ≤ Cµ/
�

ALan,υ

�

. Then from the Fubini-Tonelli theorem and (5), we obtain

Φ
ϕ

j

�

γTn,υ ( f ) , Jq

�

:=
b′j
∫

a′j

Vϕ[q a j ,q b j]
[γTn,υ( f ; r′j , ·)]

dr′j
¬

r′j
¶

≤
b′j
∫

a′j

 

1
an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
η

[q a j ,q b j]
[µ f (r′jt

′
j , ·t j)]

dt
〈t〉

!

dr′j
¬

r′j
¶

=
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|





q b′j
∫

q a′j

V η[q a j ,q b j]
[µ f (r′jt

′
j , ·t j)]

dr′j
¬

r′j
¶





dt
〈t〉

=
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
η

j

�

µ f (·t), Jq

� dt
〈t〉

.

Dolomites Research Notes on Approximation ISSN 2035-6803



Aslan 29

Then applying two times generalized Minkowski-inequality, one may easily get

Φϕ
�

γTn,υ ( f ) , Jq

�

:=

�

n
∑

j=1

�

Φ
ϕ

j

�

γTn,υ ( f ) , Jq

�

�2
�

1
2

≤





n
∑

j=1





1
an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
η

j

�

µ f (·t), Jq

� dt
〈t〉





2



1
2

≤
1

an,υA

∞
∑

k=1
aυnk





n
∑

j=1





∫

RN
+

|Lk (t)|Φ
η

j

�

µ f (·t), Jq

� dt
〈t〉





2



1
2

≤
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

n
∑

j=1

�

Φ
η

j

�

µ f (·t), Jq

�

�2
�

1
2 dt
〈t〉

=
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φη
�

µ f (·t), Jq

� dt
〈t〉

.

Then there holds

VϕI
�

γTn,υ ( f )
�

:= sup
{J1 ,J2 ,··· ,Jm}

m
∑

q=1
Φϕ
�

γTn,υ ( f ) , Jq

�

≤
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

sup
{J1 ,J2 ,··· ,Jm}

m
∑

k=1
Φη
�

µ f (·t), Jq

�

�

dt
〈t〉

=
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
ϕ
I [µ f (·t)]

dt
〈t〉

.

Considering (i) and (1)

Vϕ
�

γTn,υ ( f )
�

:= sup
I⊂RN

+

VϕI
�

γTn,υ ( f )
�

≤
1

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)| sup
I⊂RN

+

VϕI [µ f (·t)]
dt
〈t〉

holds. Here, notice that
sup
I⊂RN

+

VϕI [µ f (·t)] = Vϕ [µ f (·t)] = Vϕ [µ f ]

and hence we finally conclude that

Vϕ
�

γTn,υ ( f )
�

≤
Vϕ [µ f ]

an,υA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
dt
〈t〉

≤ Vϕ [µ f ]

holds, which completes the proof.

Main approximation theorem is given below.

Theorem 2.3. Assume that f ∈ ACϕ
�

RN
+

�

∩ BV η
�

RN
+

�

. If (i)− (iv) are satisfied, then there exists a λ > 0 satisfying that

lim
n→∞

Vϕ
�

λ
�

Tn,υ ( f )− f
��

= 0 uniformly in υ ∈ N.

Proof. Considering the similar notations in the previous lemma, it is possible to write for every λ > 0 that

U :=
ω
∑

τ=1
ϕ
�

λ
�

�

�Tn,υ( f ; r′j , rτj )− f (r′j , rτj )− Tn,υ( f ; r′j , rτ−1
j )− f (r′j , rτ−1

j )
�

�

�

�

=
ω
∑

τ=1
ϕ

 

λ

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
�

Hk( f (r
′
jt
′
j , rτj t j))− f (r′jt

′
j , rτj t j) −Hk( f (r

′
jt
′
j , rτ−1

j t j)) + f (r′jt
′
j , rτ−1

j t j)
� dt
〈t〉

+
∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
�

f (r′jt
′
j , rτj t j)− f (r′j , rτj )− f (r′jt

′
j , rτ−1

j t j) + f (r′j , rτj )
� dt
〈t〉

+

 

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

!

�

f (r′j , rτj )− f (r′j , rτ−1
j )

�

�

�

�

�

�

!

.
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Using the convexity of ϕ, we can easily see that

U ≤ 1
3

ω
∑

τ=1
ϕ

 

3λ
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

�

�Hk( f (r
′
jt
′
j , rτj t j))− f (r′jt

′
j , rτj t j) −Hk( f (r

′
jt
′
j , rτ−1

j t j)) + f (r′jt
′
j , rτ−1

j t j)
�

�

�

dt
〈t〉

�

+ 1
3

ω
∑

τ=1
ϕ

 

3λ
∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

�

� f (r′jt
′
j , rτj t j)− f (r′j , rτj ) − f (r′jt

′
j , rτ−1

j t j) + f (r′j , rτj )
�

�

�

dt
〈t〉

�

+ 1
3

ω
∑

τ=1
ϕ

 

3λ

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

�

�

� f (r′j , rτj )− f (r′j , rτ−1
j )

�

�

�

!

holds. Taking Jensen’s inequality (discrete and continuous forms) into account in the first two expression, from the convexity of
ϕ, (i) and (1) we obtain

U ≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
ω
∑

τ=1
ϕ
�

3MAλ
�

�

�Hk( f (r
′
jt
′
j , rτj t j))− f (r′jt

′
j , rτj t j) −Hk( f (r

′
jt
′
j , rτ−1

j t j)) + f (r′jt
′
j , rτ−1

j t j)
�

�

�

� dt
〈t〉

+ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
ω
∑

τ=1
ϕ
�

3MAλ
�

�

� f (r′jt
′
j , rτj t j)− f (r′j , rτj ) − f (r′jt

′
j , rτ−1

j t j) + f (r′j , rτj )
�

�

�

� dt
〈t〉

+ 1
3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

ω
∑

τ=1
ϕ
�

3λ
�

�

� f (r′j , rτj )− f (r′j , rτ−1
j )

�

�

�

�

for sufficiently large n ∈ N, where M comes from the regularity of A. Notice that from (i) , it is possible to find a number n0 such

that for all n≥ n0,
�

�

�

∑∞
k=1aυnk

∫

RN
+

Lk (t)
dt
〈t〉 − 1

�

�

�< 1 and supn≥N ,υ∈N
∑∞

k=1aυnk ≤ M . Now, if we take supremum over all the partitions

of the interval [qa j ,
q b j], we get

U ≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
ϕ

[q a j ,q b j]
[3MAλ (Hk ◦ f ) (r′jt

′
j , ·t j)− f (r′jt

′
j , ·t j)]

dt
〈t〉

+ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
ϕ

[q a j ,q b j ]
[3MAλ( f (r′jt

′
j , ·t j)− f (r′j , ·))]

dt
〈t〉

+
Vϕ
[q a j ,q b j ]

�

3λ f (r′j ,·)
�

3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

for sufficiently large n ∈ N. Then using the Fubini-Tonelli theorem, for every
j = 1, · · · , N

Φ
ϕ

j

�

λ
�

Tn,υ ( f )− f
�

, Jq

�

:=
b′j
∫

a′j

Vϕ[q a j ,q b j]
[λ(Tn,υ( f ; r′j , ·)− f (r′j , ·))]

dr′j
¬

r′j
¶

≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ(Hk ◦ f (·t)− f (·t)), Jq

� dt
〈t〉

+ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ( f (·t)− f ), Jq

� dt
〈t〉
+
Φ
ϕ
j (3λ f ,Jq)

3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

holds. Subsequently, by the Minkowski inequality, for every q = 1, · · · , m there holds

Φϕ
�

λ
�

Tn,υ ( f )− f
�

, Jq

�

:=

�

N
∑

j=1

�

Φ
ϕ

j

�

λ
�

Tn,υ ( f )− f
�

, Jq

�

�

�
1
2

≤ 1
3MA

(

N
∑

j=1

 

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ(Hk ◦ f (·t)− f (·t)), Jq

� dt
〈t〉

!2)
1
2

+ 1
3MA

(

N
∑

j=1

 

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ( f (·t)− f ), Jq

� dt
〈t〉

!2)
1
2

+ 1
3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

�

N
∑

j=1
[Φϕj

�

3λ f , Jq

�

]2
�

1
2

=: U1 + U2 + U3.
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Using generalized Minkowski inequality in U1 and U2 twice in each, we see that

U1 ≤
1

3MA

∞
∑

k=1
aυnk

(

N
∑

j=1

 

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ(Hk ◦ f (·t)− f (·t)), Jq

� dt
〈t〉

!2)
1
2

≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

N
∑

j=1
[Φϕj

�

3MAλ(Hk ◦ f (·t)− f (·t)), Jq

�

]2
�

1
2 dt
〈t〉

= 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φϕ
�

3MAλ(Hk ◦ f (·t)− f (·t)), Jq

� dt
〈t〉

and

U2 ≤
1

3MA

∞
∑

k=1
aυnk

(

N
∑

j=1

 

∫

RN
+

|Lk (t)|Φ
ϕ

j

�

3MAλ( f (·t)− f ), Jq

� dt
〈t〉

!2)
1
2

≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|
�

N
∑

j=1
[Φϕj

�

3MAλ( f (·t)− f ), Jq

�

]2
�

1
2 dt
〈t〉

= 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Φϕ
�

3MAλ( f (·t)− f ), Jq

� dt
〈t〉

.

Now, if we sum over q = 1, · · · , m and take the supremum over all possible partitions of {J1, J2, · · · , Jm} , we have the followings

VϕI
�

λ
�

Tn,υ ( f )− f
��

:= sup
{J1 ,J2 ,··· ,Jm}

m
∑

q=1
Φϕ
�

λ
�

Tn,υ ( f )− f
�

, Jq

�

≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
ϕ
I [3MAλ(Hk ◦ f (·t)− f (·t))]

dt
〈t〉

+ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|V
ϕ
I [3MAλ( f (·t)− f )]

dt
〈t〉
+ 1

3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

VϕI [3λ f ]

and since I ⊂ RN
+ is arbitrary, we get

Vϕ
�

λ
�

Tn,υ ( f )− f
��

≤ 1
3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Vϕ [3MAλ(Hk ◦ f (·t)− f (·t))]
dt
〈t〉
+ 1

3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Vϕ [3MAλ( f (·t)− f )]
dt
〈t〉

+ 1
3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

Vϕ [3λ f ]

=: V1 + V2 + V3.

Notice that Vϕ [3MAλ(Hk ◦ f (·t)− f (·t))] = Vϕ [3MAλ(Hk ◦ f − f )] for all t ∈RN
+ . Considering (iv) in Lemma 1 of [4], then

there exists a γ > 0 such that there exists a number k0 ∈ N satisfying

Vϕ [3MAλ(Hk ◦ f − f )]< ε (6)

for all k > k0 where λ is sufficiently small such that λ≤ γ/ (3MA) . Therefore, if we divide V1 as follows

V1 =
1

3MA

k0
∑

k=1
aυnkVϕ [3MAλ(Hk ◦ f − f )]

∫

RN
+

|Lk (t)|
dt
〈t〉
+ 1

3MA

∞
∑

k=k0+1
aυnkVϕ [3MAλ(Hk ◦ f − f )]

∫

RN
+

|Lk (t)|
dt
〈t〉

=: V 1
1 + V 2

1 ,

from (6), (i) and (1)

V 2
1 ≤

ε
3MA

∞
∑

k0+1
aυnk

∫

RN
+

|Lk (t)|
dt
〈t〉

≤ ε
3 .

On the other hand, it is not hard to see from (1) that

V 1
1 ≤

1
3M

k0
∑

k=1
aυnkVϕ [3MAλ(Hk ◦ f − f )]

≤ K
3M

k0
∑

k=1
aυnk <

Kk0
3M ε
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where K =maxk∈{1,··· ,k0} Vϕ [3MAλ(Hk ◦ f − f )] .
In V2, one can obtain from [5] that there exists a λ̄ > 0 such that for any ε > 0

Vϕ
�

λ̄( f (·t)− f )
�

< ε (7)

whenever
|1− t|< δ.

Now, dividing the integral in V2 as follows

V2 =
1

3MA

∞
∑

k=1
aυnk

∫

|1−t|<δ
|Lk (t)|Vϕ [3MAλ( f (·t)− f )]

dt
〈t〉

+ 1
3MA

∞
∑

k=1
aυnk

∫

|1−t|≥δ
|Lk (t)|Vϕ [3MAλ( f (·t)− f )]

dt
〈t〉

=: V 1
2 + V 2

2

from (7) there holds

V 1
2 <

ε
3MA

∞
∑

k=1
aυnk

∫

|1−t|<δ
|Lk (t)|

dt
〈t〉

≤ ε
3

for λ≤ λ̄/3MA. For V2, since from (3) Vϕ [3MAλ( f (·t)− f )]≤
p

2Vϕ [6MAλ f ], by the assumption (ii)

V 2
2 ≤

Vϕ[6MAλ f ]
p

2
3MA

∞
∑

k=1
aυnk

∫

|1−t|≥δ
|Lk (t)|

dt
〈t〉

<
Vϕ[6MAλ f ]

p
2

3MA ε

for sufficiently large n ∈ N.
Finally, directly from (iii) , we get

V3 <
Vϕ[3λ f ]

3 ε

for sufficiently large n ∈ N, which completes the proof.

3 Rate of Approximation

Now, we investigate the rate of approximation of our operators. To this end, we need certain assumptions:
Let α ∈ (0,1] . For any fixed 0< δ < 1,

(I)
∞
∑

k=1
aυnk

∫

|1−t|≥δ
|Lk (t)|

dt
〈t〉
= O

�

n−α
�

as n→∞ (uniformly in υ)

(II)
∞
∑

k=1
aυnk

∫

|1−t|<δ
|Lk (t)| |log t|α

dt
〈t〉
= O

�

n−α
�

as n→∞ (uniformly in υ)

(III)
∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1= O

�

n−α
�

as n→∞ (uniformly in υ)

(IV) for all γ > 0, there exists a λ > 0 such that

∞
∑

k=1
aυnk

Vϕ [λGk]
ϕ (γm (J))

= O
�

n−α
�

as n→∞ (uniformly in υ and every proper bounded interval J ⊂ R).

We also need the following class of ϕ-absolutely continuous functions.

VϕN Lip (α) :=
�

f ∈ ACϕ
�

RN
+

�

: ∃λ̄ > 0 s.t. Vϕ
�

λ̄ ( f (·t)− f )
�

= O (|log t|α) as |1− t| → 0
	

.

Theorem 3.1. Suppose that α ∈ (0, 1] and (I)− (IV) and (i) hold. If f ∈ VϕN Lip (α)∩BV η
�

RN
+

�

, then there exists a λ > 0 such that

Vϕ
�

λ
�

Tn,υ ( f )− f
��

= O
�

n−α
�

as n→∞ (uniformly in υ)

holds.
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Proof. Considering (i) , from (3) we have

Vϕ
�

λ
�

Tn,υ ( f )− f
��

≤ 1
3M

∞
∑

k=1
aυnkVϕ [3MAλ(Hk ◦ f − f )] + 1

3MA

∞
∑

k=1
aυnk

∫

RN
+

|Lk (t)|Vϕ [3MAλ( f (·t)− f )]
dt
〈t〉

+ 1
3

�

�

�

�

�

∞
∑

k=1
aυnk

∫

RN
+

Lk (t)
dt
〈t〉
− 1

�

�

�

�

�

Vϕ [3λ f ]

=: W1 +W2 +W3

for sufficiently large n ∈ N. In W1, from assumption (IV) and [4], for all γ > 0 there exists a λ̄ > 0 such that
∞
∑

k=1
aυnkVϕ [3MAλ(Hk ◦ f − f )]≤ RVϕ [γ f ]n−α

= O
�

n−α
�

as n→∞

for some R> 0, for which λ≤ λ̄/ (3MA) and Vϕ [γ f ]<∞. Therefore, we have

W1 = O
�

n−α
�

as n→∞.

Now, in W2, since f ∈ VϕN Lip (α) , ∃λ̃ > 0 scuh that there exists a number S,δ0 > 0 satisfying

Vϕ
�

λ̃ ( f (·t)− f )
�

≤ S |log t|α

whenever |1− t|< δ0. Taking this expression into account, if we divide the integral in W2 as follows

W2 =
1

3MA

∞
∑

k=1
aυnk

∫

|1−t|<δ0

|Lk (t)|Vϕ [3MAλ( f (·t)− f )]
dt
〈t〉
+ 1

3MA

∞
∑

k=1
aυnk

∫

|1−t|≥δ0

|Lk (t)|Vϕ [3MAλ( f (·t)− f )]
dt
〈t〉

=: W 1
2 +W 2

2

we may obtain from (II) that

W 1
2 ≤

S
3MA

∞
∑

k=1
aυnk

∫

|1−t|<δ0

|Lk (t)| |log t|α
dt
〈t〉

= O
�

n−α
�

as n→∞

for λ≤ λ̃/3MA. On the other hand, we know from (3) that

Vϕ [3MAλ( f (·t)− f )]≤
p

2Vϕ [6MAλ f ]

holds. Therefore, from (I)

W 2
2 ≤

Vϕ[6MAλ f ]
p

2
3MA

∞
∑

k=1
aυnk

∫

|1−t|≥δ0

|Lk (t)|
dt
〈t〉

= O
�

n−α
�

as n→∞.

Finally, from (III)
W3 = O

�

n−α
�

as n→∞.

4 Characterization of Absolute Continuity

We need the following assumption.

(V) For any N -dimensional interval I = ΠN
i=1 [ai , bi] ⊂ RN

+ and for all nonoverlapping intervals
��

qα j ,
q β j

�	

q=1,··· ,m of the one

dimensional interval
�

a j , b j

�

, there can be found a λ > 0 such that: for all ε > 0, ∃δ > 0 such that

m
∑

q=1

∞
∑

k=1
aυnkϕ(λ

�

�

�Lk(r
′
j ,

q β j)− Lk(r
′
j ,

q α j)
�

�

�)< ε

whenever
∑m

q=1ϕ(
qβ j −q α j)< δ for every j = 1, · · · , N .

(V′) For any N -dimensional interval I = ΠN
i=1 [ai , bi] ⊂ RN

+ and for all nonoverlapping intervals
��

qα j ,
q β j

�	

q=1,··· ,m of the one

dimensional interval
�

a j , b j

�

, there can be found a λ > 0 such that: for all ε > 0, ∃δ > 0 such that

m
∑

q=1

∞
∑

k=1
aυnkϕ(λ

�

�

�Lk(r
′
j ,

q β j)− Lk(r
′
j ,

q α j)
�

�

�)< ε

whenever
∑m

q=1ϕ(log(qβ j)− log(qα j))< δ for every j = 1, · · · , N .
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Remark 1. We remind that, from Proposition 3.3 in [8], one can clearly understand that conditions (V) and (V′) are equivalent.
We also remind that if A is row finite, that is, for all υ ∈ N, each row of Aυ contains finite number of nonzero terms, then the
conditions (V) and (V′) reduces to Lk ∈ ACϕloc

�

RN
+

�

or equivalently Lk ∈ log-ACϕloc

�

RN
+

�

defined in [8, 14].

Lemma 4.1. Assume that (i) holds and Lk satisfies (V) (or (V′)). If ψ ◦ | f | ∈ L1
µ

�

RN
+

�

and f ∈ BV η
�

RN
+

�

∩ ACϕ
�

RN
+

�

, then

Tn,υ ( f ) ∈ ACϕ
�

RN
+

�

.

Proof. Using the substitution rt= x in our operator, we immediately obtain

Tn,υ ( f ; r) =
∞
∑

k=1
aυnk

∫

RN
+

Lk

�x
r

�

Hk ( f (x))
dx
〈x〉

where x
r =

�

x1
r1

, · · · , xN
rN

�

. Let
��

qα j ,
q β j

�	

q=1,··· ,m be a partition of the j-th section
�

a j , b j

�

of ΠN
i=1 [ai , bi] ⊂ RN

+ such that

m
∑

q=1
ϕ(log(qβ j)− log(qα j))< δ for every j = 1, · · · , N .

Then since
m
∑

q=1
ϕ

�

log

�

x j

qβ j

�

− log

�

x j

qα j

��

< δ,

from (1), (4), (V′), Jensen’s inequality and Fubini-Tonelli theorem, one can easily observe that

m
∑

q=1
ϕ
�

λ
�

�

�Tn,υ( f ; r′j ,
q β j)− Tn,υ( f ; r′j ,

q α j

�

�

�

�

≤
m
∑

q=1
ϕ

 

λL
∞
∑

k=1
aυnk

∫

RN
+

�

�

�

�

�

Lk

�

x′j
r′j

,
x j

qβ j

�

− Lk

�

x′j
r′j

,
x j

qα j

�

�

�

�

�

�

ψ (| f (x)|)
dx
〈x〉

!

≤
1
M

m
∑

q=1

∞
∑

k=1
aυnkϕ

 

λM L
∫

RN
+

�

�

�

�

�

Lk

�

x′j
r′j

,
x j

qβ j

�

− Lk

�

x′j
r′j

,
x j

qα j

�

�

�

�

�

�

ψ (| f (x)|)
dx
〈x〉

!

≤
1

M ‖ψ ◦ | f |‖L1
µ

m
∑

q=1

∞
∑

k=1
aυnk

∫

RN
+

ψ (| f (x)|)ϕ

�

λM L ‖ψ ◦ | f |‖L1
µ

�

�

�

�

�

Lk

�

x′j
r′j

,
x j

qβ j

�

−Lk

�

x′j
r′j

,
x j

qα j

�

�

�

�

�

�

�

dx
〈x〉

<
ε

M
,

for sufficiently small λ > 0 and for every j = 1, · · · , N . On the other hand, we know from Lemma 2.2 that Tn,υ ( f ) ∈ BVϕ
�

RN
+

�

,
which means Tn,υ ( f ) ∈ ACϕ

�

RN
+

�

.

Theorem 4.2. Suppose that (I)− (V) hold. Suppose further that (ψ ◦ | f |) ∈ L1
µ

�

RN
+

�

and f ∈ BV η
�

RN
+

�

. Then there holds

f ∈ ACϕ
�

RN
+

�

⇐⇒ ∃µ > 0, lim
n→∞

Vϕ
�

µ
�

Tn,υ ( f )− f
��

= 0 uniformly in υ.

Proof. If f ∈ ACϕ
�

RN
+

�

, then from Theorem 2.3, we obtain the sufficiency part. For the necessity part, it is known from Proposition
4.3 in [8] that ACϕ

�

RN
+

�

is a closed subspace of BVϕ
�

RN
+

�

under the topology generated by convergence in ϕ-variation. Since
Tn,υ ( f ) ∈ ACϕ

�

RN
+

�

by the previous lemma, we finally have f ∈ ACϕ
�

RN
+

�

.

5 Applications

Now, we will demonstrate our kernels that satisfy Theorem 4.2 and present our main approximation theorem.
Let Lk : R2

+→ R be given by
Lk (t1, t2) := L̃k (t1) L̃k (t2) (8)

where L̃k : R+→ R defined by

L̃k (t) =

�

kt
2 −

k2 t
2 |t − 1| ; |t − 1| ≤ 1

k

0; otherwise.

The conditions of Theorem 4.2 are easily satisfied for A = {I}, the identity matrix. See Figure 1 for the characterization kernel in
(8).

Another example involves our main approximation theorem for N = 2. To this end, we consider the following kernel
Lk : R2

+→ R, defined as:

Lk (t1, t2) :=

�

k2 t1 t2; |t1 − 1| ≤ 1
2k and |t2 − 1| ≤ 1

2k

0; otherwise,
(9)
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Figure 1: The two-dimensional kernel function for characterization in (8).

and Hk : R→ R such that, Hk is given by

Hk (u) =

�

log
�

1+ u
k

�

; 0≤ u< 1
log

�

1+ 1
ku

�

; u≥ 1

on [0,∞) and extended it in the odd way ([4]). Then it is not hard to see that Lk satisfies (i)-(iii) for A= {I} and Hk satisfies
(iv) (see [4]). If we also assume that ψ (|u|) = |u|, then condition (4) is satisfied. The graph of the kernel in (9) is shown in
Figure 2. Now, using the above definitions and considering f (x , y) : R2

+→ R such that f (x , y) = arctan x arctan y , we obtain the
following approximations by means of Mellin-type nonlinear integral operator assuming A = {I}, the identity matrix, in Figure 3.
We should also note that, since classical nonlinear multidimensional approximation has not been previously investigated, we
illustrate our examples under the assumption A= {I}. However, it is not difficult to find non-trivial examples where classical
convergence fails, yet summability methods are effective (see, for instance, kernel (4.4) in [12]).
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Figure 2: The two-dimensional kernel function for approximation in (9).

6 Conclusion

In this paper, we prove approximation theorems for N -dimensional Mellin-type nonlinear integral operators under convergence
in ϕ-variation and generalize it with Bell-type summability method. Then we also give a general characterization theorem for the
space of (Tonelli sense) ϕ-absolutely continuous functions. If we select specific families of matrices, such as the Cesàro matrix
([27]), the almost convergence matrix ([27, 29]), or the identity matrix (see [13]), in place of A, all these results reduce to
Cesàro mean convergence, almost convergence, and classical convergence, respectively. On the other hand, it is also possible to
extend ϕ-variation theory to the Fϕ-variation, which is inspired by F -variation (see [3, 11]).
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