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Abstract

The aim of this work is to prove two kinds of Bernstein type inequalities on certain cuspidal sets. The
first one is related to the plurisubharmonic extremal function. The second type concerns star-shaped,
centrally symmetric domains and uses the Euclidean distance (in directions parallel to the system axis)
from the boundary.

1 Introduction

Let Pd
n be the class of all algebraic polynomials in d variables with real coefficients of degree at most n. Further, let C(Ω) be the

real space of all real valued continuous functions f defined on a compact set Ω ⊂ Rd with the norm ‖ f ‖Ω := supx∈Ω | f (x)|, and
let Ls(Ω), 1≤ s <∞, be the space of all Lebesgue-measurable functions f on Ω ⊂ Rd such that

‖ f ‖Ls(Ω) :=

�∫

Ω

| f (x)|s d x

�1/s

<∞ if 1≤ s <∞.

We denote by Dj the partial derivative with respect to the variable x j , whereas the rth-order partial derivative is denoted by D(r)j .
Moreover, N = {1, 2, 3, . . .}. Throughout this paper, we adopt the convention that the letter c denotes a constant that depends on
fixed parameters, such as d, s but independent of the degree n of polynomials.

The classical Bernstein inequality, for univariate algebraic polynomials of degree n, gives the following sharp upper bound for
their derivatives:

‖
p

1− x2p′n(x)‖[−1,1] ≤ n‖pn‖[−1,1]. (1)

It is well known (see [19]) that Bernstein’s inequality holds for higher derivatives i.e. there exists a constant c(r) depending only
on r such that

‖(
p

1− x2)r p(r)n (x)‖[−1,1] ≤ c(r)nr‖pn‖[−1,1]. (2)

It is also well known (see for instance [8]) that inequalities (1) and (2) extend to the Ls norm on [−1,1] with some constants
depending on s

‖
p

1− x2p′n(x)‖Ls([−1,1]) ≤ c(s)n‖pn‖Ls([−1,1]), (3)

‖(
p

1− x2)r p(r)n (x)‖Ls([−1,1]) ≤ c̃(s)c̃(r)nr‖pn‖Ls([−1,1]). (4)

The inequalities mentioned above, along with their many extensions (see, for example, [3, 5, 6, 7, 8, 9, 10, 11, 12, 13], and the
survey [18] ), hold a fundamental position in various realms of analysis and approximation theory.

In order to understand the principal claims, we discuss known results that are relevant and related to our work. Let E be a
compact set in Cm. Define

VE(z) := sup{u(z) : u ∈ L, u≤ 0 on E}, z ∈ Cm,

where L is the Lelong class of plurisubharmonic (briefly, psh) functions in Cm with logarithmic growth: u(z)< const+ log(1+ |z|),
see, for example [15], page 184. Then the upper semieontinuous regularization V ∗E (z) := lim supξ→z VE(ξ) is called the (Siciak)
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extremal function of E. Let K be a compact set in Rd with nonempty interior. Then, by Theorem 1.4 from [1] (see also [2]), the
following inequalities hold for every x ∈ int(K) and p ∈ Pd

n :

|Dj p(x)| ≤ nD+j VK(x)(‖p‖2
K − p2(x))1/2, (5)

where D+j VE(x) := lim inf
ε→0+

VE (x+iεe j )
ε for j = 1, . . . , d, and {e1, . . . , ed} is the standard orthogonal basis in Rd . If K is the closure of

an open bounded subset of Rd , then the above inequality implies that










Dj p

D+,∗
j VK











K

≤ n‖p‖K for every p ∈ Pd
n , (6)

where D+,∗
j VK(y) := lim supx→y D+j VK(x). Moreover, it was shown therein (see Theorem 3.7 in [1]) that if K is a compact, convex

subset of Rd such that 0 ∈ int(K), then there is a constant c(K)> 0 such that, for every polynomial p ∈ Pd
n , we have the Bernstein

inequality

|Dj p(x)| ≤ c(K)n(dist(x ,∂ K))−1/2(‖p‖2
K − p2(x))1/2, for x ∈ int(K), j = 1, . . . , d, (7)

where ∂ K is the boundary of K . The inequality (7) yields




(dist(x ,∂ K))
1
2 Dj p







K
≤ c(K)n‖p‖K . (8)

In a recent paper, Kroó [17] (see also [16]) extended the inequality (8) to the case of the Ls space, and considering the model case
of a convex polytope, verified that the Euclidean distance to the boundary cannot be replaced by an essentially larger function. In
another recent paper [14] (see also [21]), the authors considered the simplex defined by

4d := {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, |x | ≤ 1}, |x | := x1 + · · ·+ xd . (9)

and proved that, for

φ j(x) :=

p

x j

p

1− |x |
Æ

x j + 1− |x |
, (10)

a doubling weight w on 4d , n, r ∈ N and 1≤ s ≤∞, there is a constant c > 0, depending on d, s, r, w, such that

‖φ r
j D(r)j p‖Ls(4d ,w) ≤ c(d, r, s, w)nr‖p‖Ls(4d ,w), 1≤ j ≤ d, (11)

for every polynomial p ∈ Pd
n . Here, as usual, ‖ · ‖Ls(4d ,w) stands for the weighted Ls norm. Since

D+j V4d (x) =

Æ

x j + 1− |x |
p

x j

p

1− |x |
=

1
φ j(x)

,

the inequality (11) is a generalization of (5) in the case when E =4d .
Let K = int(K) be a star-shaped, centrally symmetric (with respect to the origin) domain in Rd and let m ≥ 1. Define for

v ∈ Sd−1 and x ∈ K
ρv(K , x) := sup{t ≥ 0 : [x − t v, x + t v] ⊂ K}.

Assume that there exist constants M j , m j , j = 1, . . . , d, such that

ρe j
(K , t x)≥ M j(1− |t|)m j

for t ∈ [−1,1], x ∈ ∂ K, j = 1, . . . , d. If we put ρ∗(K , x) := min
1≤ j≤d

ρe j
(K , x), m := max

1≤ j≤d
m j , M := min

1≤ j≤d
M j . Then the following

analogue of the classical Bernstein inequality was given in [4]




ρ∗(K , x)1−
1

2m Dj p






K
≤
p

2M− 1
2m n‖p‖K , 1≤ j ≤ d, (12)

for every polynomial p ∈ Pd
n .

The aim of this work is to prove new Bernstein type inequalities on certain cuspidal sets. More precisely, for k ∈ N, we
consider the following domains

Θk = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, |x |k ≤ 1}, |x |k := x1/k
1 + . . .+ x1/k

d ,

Ωk = {x ∈ Rd : |x1|1/k + . . .+ |xd |1/k ≤ 1}.

In the present paper we establish an Ls analogue of (5) for Θk and an Ls analogue of (12) for Ωk. Moreover, we show that our
estimates are asymptotically sharp.
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2 Main results

This section addresses main theorems.

Theorem 2.1. Let k be a natural number, and let Θk = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, x1/k
1 + . . . + x1/k

d ≤ 1}. Then, for every
1≤ s <∞ and each r ∈ N, there exists a positive constant c such that for every polynomial p ∈ Pd

n ,






�

x1−1/k
j

Æ

1− |x |k
�r

D(r)j p






Ls(Θk)
≤ c(d, k, r, s)nr‖p‖Ls(Θk), j = 1, . . . , d. (13)

Proof. Taking into account the fact that the following methods do not actually depend on the number of variables, we will
perform the proof in the case of d = 2. The proof for each j is the same, hence we only consider the case j = 2. First, we define

E1 = {(x1, x2) ∈ R2 : 0≤ x1 ≤ 1, (1− x1/k
1 )

k2−k ≤ x2 ≤ (1− x1/k
1 )

k},

E2 = {(x1, x2) ∈ R2 : 0≤ x1 ≤ 1, 0≤ x2 ≤ (1− x1/k
1 )

k2−k}.

Then, using the change of variables x1 = tk, x2 = zk, we have








�

x1−1/k
2

Ç

1− x1/k
1 − x1/k

2

�r

D(r)2 p









s

Ls(E1)

=

∫ 1

0

∫ 1−t

1−t
2

|z r(k−1)(1− t − z)
r
2 D(r)2 p(tk, zk)|sw(t, z) dzd t,

where w(t, z) = k2 tk−1zk−1. Is is clear that, for t ∈ [0, 1) and z ≤ 1− t ≤ 2z,

p
1− t − z ≤

p
2
p

z
p

1− t − z
p

1− t
=
p

2φ2(t, z),

see (10).
Therefore,

∫ 1

0

∫ 1−t

1−t
2

|z r(k−1)(1− t − z)
r
2 D(r)2 p(tk, zk)|sw(t, z) dzd t ≤

∫ 1

0

∫ 1−t

0

|z r(k−1)(
p

2φ2(t, z))r D(r)2 p(tk, zk)|sw(t, z) dzd t.

Applying inequality (11) to D(r−1)
2 p(tk, zk), with the weight

w1(t, z) = z(r−1)(k−1)s(φ2(t, z))s(r−1)2
rs
2 w(t, z),

there exists a positive constant c1 > 0 such that
∫ 1

0

∫ 1−t

0

|kzk−1φ2(t, z)D(r)2 p(tk, zk)|sw1(t, z) dzd t ≤ c1ns

∫ 1

0

∫ 1−t

0

|D(r−1)
2 p(tk, zk)|sw1(t, z) dzd t.

Applying inequality (11) to D(r−l)
2 p(tk, zk), with the weight

wl+1(t, z) =
wl(t, z)

z(k−1)sφs
2(t, z)

= z(r−l−1)(k−1)s(φ2(t, z))s(r−l−1)2
rs
2 w(t, z),

for l = 1,2, . . . , r − 2, there are positive constants cl+1 > 0 such that
∫ 1

0

∫ 1−t

0

|kzk−1φ2(t, z)D(r−l)
2 p(tk, zk)|swl+1(t, z) dzd t ≤ cl+1ns

∫ 1

0

∫ 1−t

0

|D(r−l−1)
2 p(tk, zk)|swl+1(t, z) dzd t.

Once again by (11), applied to p(tk, zk), with the weight wr(t, z) = wr−1(t,z)
z(k−1)sφs

2(t,z)
= 2

rs
2 w(t, z), there exists a positive constant cr > 0

so that
∫ 1

0

∫ 1−t

0

|kzk−1φ2(t, z)D2p(tk, zk)|swr(t, z) dzd t ≤ cr ns

∫ 1

0

∫ 1−t

0

|p(tk, zk)|swr(t, z) dzd t.

Therefore,
∫ 1

0

∫ 1−t

0

|z r(k−1)(
p

2φ2(t, z))r D(r)2 p(tk, zk)|sw(t, z) dzd t ≤ Λ2
rs
2 nsr

∫ 1

0

∫ 1−t

0

|p(tk, zk)|sw(t, z) dzd t = Λ2
rs
2 nsr‖p‖s

E1∪E2
.

Here Λ :=
∏r

l=1 cl .
The above reasoning then shows that









�

x1−1/k
2

Ç

1− x1/k
1 − x1/k

2

�r

D(r)2 p









s

Ls(E1)

≤ Λ2
rs
2 nsr‖p‖s

E1∪E2
. (14)
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Now we wish to prove a similar result for the set E2. Using the change of variables x1 = tk, x2 = z(1− t)k−1, we have









�

x1−1/k
2

Ç

1− x1/k
1 − x1/k

2

�r

D(r)2 p









s

Ls(E2)

=

∫ 1

0

∫
1−t
2k

0

|(u(t, z))r D(r)2 p(tk, z(1− t)k−1)|s v(t) dzd t,

where u(t, z) = z1− 1
k (1− t)k−2+ 1

k

q

1− t − (z(1− t)k−1)
1
k , v(t) = ktk−1(1− t)k−1. Now we observe that for any 0≤ 2kz ≤ 1− t

and 0≤ t ≤ 1,

u(t, z)≤
p

z(1− t)k−1 ≤
(1− t)k−1

p
1− 2−k

p
z
p

1− t − z
p

1− t
=
(1− t)k−1

p
1− 2−k

φ2(t, z).

Hence
∫ 1

0

∫
1−t
2k

0

|(u(t, z))r D(r)2 p(tk, z(1− t)k−1)|s v(t) dzd t

≤ (1− 2−k)−
rs
2

∫ 1

0

∫ 1−t

0

|((1− t)k−1φ2(t, z))r D(r)2 p(tk, z(1− t)k−1)|s v(t) dzd t.

By applying inequality (11) to q(t, z) = p(tk, z(1− t)k−1), with the weight v(t), there exists a positive constant κ so that
∫ 1

0

∫ 1−t

0

|((1− t)k−1φ2(t, z))r D(r)2 p(tk, z(1− t)k−1)|s v(t) dzd t ≤ κnrs

∫ 1

0

∫ 1−t

0

|p(tk, z(1− t)k−1)|s v(t) dzd t = κnrs‖p‖s
E1∪E2

.

Thus,








�

x1−1/k
2

Ç

1− x1/k
1 − x1/k

2

�r

D(r)2 p









s

Ls(E2)

≤
κnrs

(1− 2−k)
rs
2
‖p‖s

E1∪E2
. (15)

Since Θk = E1 ∪ E2, (14) and (15) implies (13).

Remark 1. Let E = {(x , y) ∈ R2 : x , y ≥ 0,
p

x +py ≤ 1}. By applying a result of Klimek (see, e.g. [15], Theorem 5.3.1) to the
set [−1,1]× [−1,1] and the mapping f (z1, z2) =

1
4 ((z1 − z2)2, (z1 + z2)2), with appropriate choice of the branch of the square

roots, we find that
VE(z1, z2) = 2 max{log |h(

p

z1 +
p

z2)|, log |h(
p

z1 −
p

z2)|},

for (z1, z2) ∈ C2 such that |pz1+
p

z2|< 1, |pz1−
p

z2|< 1. Here the function h is the inverse function to the Joukowski function,
g(z) = 1

2 (z +
1
z ) for z ∈ C \ {0}. Then, if (x1, x2) ∈ int(E), one can calculate that

D+j VE((x1, x2)) =
1

p

x j

p

1− (px1 +
p

x2)2
, j = 1, 2.

Hence, if (x1, x2) ∈ int(E), we have

p

x j

q

1−
p

x1 −
p

x2 ≤
1

D+j VE((x1, x2))
≤ 2

p

x j

q

1−
p

x1 −
p

x2.

Therefore (13) can be considered as an extension of (5).

The second main theorem is as follows.

Theorem 2.2. Let k be a natural number, and let Ωk = {x ∈ Rd : |x1|1/k + . . .+ |xd |1/k ≤ 1}. Then, for every 1≤ s <∞ and each
r ∈ N, there exists a positive constant c such that for every polynomial p ∈ Pd

n ,






�

ρ∗(Ωk, x)1−
1

2k

�r
D(r)j p







Ls(Ωk)
≤ c(d, k, r, s)nr‖p‖Ls(Ωk), j = 1, . . . , d. (16)

Proof. For similar reasons as before, we will perform the proof in the case of two variables. First, let us examine the case when
k = 1. Given any x ∈ Ω1 we denote by τΩ1

(x) := infy∈∂Ω1
‖x − y‖2 the Euclidean distance from x to the boundary of Ω1. Since

τΩ1
(x)≤ ρ∗(Ω1, x)≤

p

dτΩ1
(x),

the result follows from Corollary 2 in [17].
Let k ≥ 2 and, for a ∈ [0, 1), define

Ω+k (a) := {(x1, x2) ∈ R2 : a ≤ x1 ≤ 1, −(1− k
p

x1)
k ≤ x2 ≤ (1− k

p

x1)
k},

Ω−k (a) := {(x1, x2) ∈ R2 : −1≤ x1 ≤ −a, −(1− k
p

−x1)
k ≤ x2 ≤ (1− k

p

−x1)
k}.
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Then, after the change of variables x1 = tk, x2 = s(1− t)k−1, we can write







�

(ρ∗(Ωk, x))1−
1

2k

�r
D(r)2 p







s

Ls(Ω
+
k (a))
=

∫ 1

kpa

∫ 1−t

t−1

�

�

�

�

(ρ∗(Ωk, (tk, s(1− t)k−1)))1−
1

2k

�r
D(r)2 p(tk, s(1− t)k−1)

�

�

�

s
v(t)dsd t,

where v(t) = k(t(1− t))k−1. From the definition of ρ∗(Ωk, x), for (x1, x2) ∈ Ω+k (a), we have

ρ∗(Ωk, x)≤ (1− k
p

x1)
k − |x2|.

Hence, if 0≤ t ≤ 1, t − 1≤ s ≤ 1− t, we obtain

(ρ∗(Ωk, (tk, s(1− t)k−1)))1−
1

2k ≤ (1− t)k−
3
2+

1
2k (1− t − |s|)1−

1
2k ≤ (1− t)k−1

Æ

1− t − |s|.

Thus, for 1
2 ≤ t ≤ 1, t − 1≤ s ≤ 1− t,

(ρ∗(Ωk, (tk, s(1− t)k−1)))1−
1

2k ≤ (1− t)k−1
Æ

1− t − |s|= (1− t)k−1
rp

2τΩ+1 (0)(t, s).

Then, if q(t, s) = p(tk, s(1− t)k−1), by Corollary 2 in [17] (applied to Ω+1 (0) with the weight v), there exists a positive constant κ
such that






�

(ρ∗(Ωk, (x1, x2)))
1− 1

2k

�r
D(r)2 p







Ls(Ω
+
k (

1
2k ))
≤








�
rp

2τΩ+1 (0)(t, s)
�r

D(r)2 q









Ls(Ω
+
1 (0),v)

≤ κnr ‖q‖Ls(Ω
+
1 (0),v)

= κnr ‖p‖Ls(Ω
+
k (0))

. (17)

Now let Υ = {(x1, x2) ∈ R2 : 0≤ x1 ≤
1

2k , −(1− k
p

x1)k ≤ x2 ≤ (1− k
p

x1)k}. Then

(ρ∗(Ωk, (x1, x2)))
1− 1

2k ≤
q

(1− k
p

x1)k − |x2| ≤ 2
k
2

q

d̃((x1, x2), (0,1)), (x1, x2) ∈ Υ , (18)

where

d̃((x1, x2), (0,1)) = sup
0<λ:(x1 ,λx2)∈Υ

‖(x1, x2)− (x1,λx2)‖2 · sup
λ<0:(x1 ,λx2)∈Υ

‖(x1, x2)− (x1,λx2)‖2.

By Theorem 2.2 in [12], there exists a positive constant c(r, s)> 0 such that

‖(d̃((x1, x2), (0, 1)))r/2D(r)2 p‖Ls(Υ ) ≤ c(r, s)nr‖p‖Ls(Υ ).

Thus, by (18), and by the fact that Υ ⊂ Ω+k (0), we have






�

(ρ∗(Ωk, (x1, x2)))
1− 1

2k

�r
D(r)2 p







Ls(Υ )
≤ σr c(r, s)nr ‖p‖Ls(Υ ) ≤ σ

r c(r, s)nr ‖p‖Ls(Ω
+
k (0))

. (19)

By (17) and (19), there exists a positive constant c > 0 so that






�

(ρ∗(Ωk, (x1, x2)))
1− 1

2k

�r
D(r)2 p







Ls(Ω
+
k (0))
≤ cnr ‖p‖Ls(Ω

+
k (0))

.

Similarly,






�

(ρ∗(Ωk, (x1, x2)))
1− 1

2k

�r
D(r)2 p







Ls(Ω−k (0))
≤ cnr ‖p‖Ls(Ω−k (0))

.

The proof is completed by the fact that Ω+k (0)∪Ω
−
k (0) = Ωk.

3 Sharpness of the Bernstein type inequalities

In this section we shall prove sharpness of Theorems 2.1 and 2.2.
To prove the statements we consider the following sequence of polynomials

Un(x1, . . . , xd) = x r
d P(α,α)

n (x1).

Here P(α,β)
n denotes the Jacobi polynomial of degree n associated with parameters α,β . Using the identity

∫ 1

0
(1− t b)a d t =

Γ (a+1)Γ (b+1)
Γ (a+b+1) , we obtain

‖Un‖
s
Ls(Θk)

=
1

rs+ 1

d−1
∏

i=2

Γ (k(rs+ i) + 1)Γ (k+ 1)
Γ (k(rs+ i) + k+ 1)

∫ 1

0

(1− x1/k
1 )

k(rs+d−1)|P(α,α)
n (x1)|s d x1. (20)

We now apply Bernoulli’s inequality to deduce that
�

1− z
l

�l

≤
�

1− z1/l
�l
≤ (1− z)l
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for each positive integer l and z ∈ [0,1]. Therefore,

‖Un‖
s
Ls(Θk)

∼
∫ 1

0

(1− x1)
k(rs+d−1)|P(α,α)

n (x1)|s d x1 (21)

Now a result proved by Szegö (see [20, Chap. VII]) comes into play. With µα,s = αs− 2+ s/2, we have
∫ 1

0

�

�P(α,α)
n (x)

�

�

s
(1− x)l d x ∼ nαs−2l−2 whenever 2l < µα,s. (22)

If 2k(s+ 1)(rs+ d)< µα,s, then we can combine (21) and (22) to see that

‖Un‖
s
Ls(Θk)

∼ nαs−2k(rs+d−1)−2. (23)

By the symmetry relation P(α,β)
n (−z) = (−1)nP(α,β)

n (z), we have

‖Un‖
s
Ls(Ωk)

= 4‖Un‖
s
Ls(Θk)

∼ nαs−2k(rs+d−1)−2. (24)

Now let yd = (1− x1/k
1 − . . .− x1/k

d−1)
k. Then

∫ yd

0

�

x1−1/k
d

Ç

1− x1/k
1 − . . .− x1/k

d−1 − x1/k
d

�rs

d xd = y
rs(1− 1

2k )+1

d

∫ 1

0

t rs(1− 1
k )(1− t

1
k )

rs
2 d t.

Moreover, if yd−1 = (1− x1/k
1 − . . .− x1/k

d−2)
k,

∫ yd−1

0

y
rs(1− 1

2k )+1

d d xd−1 = y
rs(1− 1

2k )+2

d−1

∫ 1

0

(1− t
1
k )krs(1− 1

2k )+k d t = y
rs(1− 1

2k )+2

d−1

Γ (krs(1− 1
2k ) + k+ 1)Γ (k+ 1)

Γ (krs(1− 1
2k ) + 2k+ 1)

.

Repeating this argument, we obtain that there exists a positive constant c, independent of n, such that

∫ (1−x1/k
1 )k

0

. . .

∫ yd

0

�

x1−1/k
d

Ç

1− x1/k
1 − . . .− x1/k

d−1 − x1/k
d

�rs

d xd . . . d x2 = c(1− x1/k
1 )

krs(1− 1
2k )+k(d−1).

Hence, in the same manner as before,






�

x1−1/k
d

Æ

1− |x |k
�r

D(r)d Un







s

Ls(Θk)
∼ nαs−2k(rs+d−1)−2+rs. (25)

Thus, by (23) and (25), for fixed k, r, s, we have






�

x1−1/k
d

p

1− |x |k
�r

D(r)d Un







Ls(Θk)

‖Un‖Ls(Θk)
∼ nr

which proves that the estimate (13) is asymptotically sharp. To prove the analogous property for the set Ωk, we need to consider
the function ρ∗(Ωk, x) = min

1≤ j≤d
ρe j
(Ωk, x). If x ∈ Ωk and each x i ≥ 0 then, by definition,

ρe j
(Ωk, x) = (1− |x |k + x1/k

j )
k − x j .

Hence, for any such x and each j,

ρe j
(Ωk, x)≥ (1− |x |k)k.

We therefore conclude that

ρ∗(Ωk, x)≥ (1− |x |k)k for x ∈ Ω+k = {x ∈ Ωk : x i ≥ 0, i = 1, . . . , d}. (26)

Proceeding as before,





(1− |x |k)r(k−
1
2 )D(r)d Un







s

Ls(Ω
+
k )
= c1

∫ 1

0

(r!)s(1− x1)
krs(1− 1

2k )+k(d−1)|P(α,α)
n (x1)|s d x1,

where c1 =
∏d−1

l=1
Γ (rs(k− 1

2 )+(l−1)k+1)Γ (k+1)

Γ (rs(k− 1
2 )+lk+1)

. Using (22) again yields





(1− |x |k)r(k−
1
2 )D(r)d Un







s

Ls(Ω
+
k )
∼ nαs−2k(rs+d−1)−2+rs. (27)

Dolomites Research Notes on Approximation ISSN 2035-6803



Beberok 133

Thus, by (24), (26), (27), and the symmetry of Ωk and ρ∗(Ωk, x), for fixed k, r, s, there exists a positive constant c2 so that






�

(ρ∗(Ωk, x))1−
1

2k

�r
D(r)d Un







Ls(Ωk)

‖Un‖Ls(Ωk)
≥ c2nr

which gives the asymptotic optimality of statement (16).
At the end of this work, we formulate a hypothesis that naturally arises in the context of the obtained results.

Conjecture Let α≥ 1, and let Ωα = {x ∈ Rd : |x1|1/α+ . . .+ |xd |1/α ≤ 1}. Then, for every 1≤ s <∞ and each r ∈ N, there exists
a positive constant c such that for every polynomial p ∈ Pd

n ,






�

ρ∗(Ωα, x)1−
1

2α

�r
D(r)j p







Ls(Ωα)
≤ c(d, k, r, s)nr‖p‖Ls(Ωα), j = 1, . . . , d.
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[7] L. Białas-Cież, J.-P. Calvi, A. Kowalska. Markov and Division Inequalities on Algebraic Sets, Results Math., 79:135, 2024.

[8] P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities, Springer, 1995.

[9] L.P. Bos, N. Levenberg, P. Milman, B. A. Taylor. Tangential Markov inequalities characterize algebraic submanifolds of RN , Indiana Univ.
Math. J., 44:115–138, 1995.

[10] D. Burns, N. Levenberg, S. Ma’u, Sz. Révész. Monge-Ampère measures for convex bodies and Bernstein-Markov type inequalities, Trans.
Amer. Math. Soc., 362:6325–6340, 2010.

[11] F. Dai, A. Prymak. Lp-Bernstein inequalities on C2-domains and applications to discretization, Trans. Amer. Math. Soc., 375:1933–1976,
2022.

[12] Z. Ditzian. Multivariate Bernstein and Markov inequalities, J. Approx. Theory, 70:273–283, 1992.

[13] M. Ganzburg. A note on sharp multivariate Bernstein- and Markov-type inequalities, J. Approx. Theory, 286:105847, 2023.

[14] Y. Ge, Y. Xu. Sharp Bernstein inequalities on simplex, Constr. Approx., 2024. https://doi.org/10.1007/s00365-024-09680-6

[15] M. Klimek. Pluripotential Theory, Clarendon Press, 1991.

[16] A. Kroó. Sharp Lp Bernstein type inequality for cuspidal domains in Rd , J. Approx. Theory, 267:105593, 2021.

[17] A. Kroó. Lp Bernstein type inequalities for star like Lip α domains, J. Math. Anal. Appl., 532:127986, 2024.

[18] A. Kroó. Multivariate Bernstein-Markov type inequalities in Lp norm, Constructive Theory Of Functions, Lozenets 2023, (B. Draganov, K.
Ivanov, G. Nikolov and R. Uluchev, Eds.), pp. 101-111 Professor Marin Drinov Publishing House of BAS, Sofia, 2024.

[19] G. Mastroianni, V. Totik. Weighted polynomial inequalities with doubling and A∞ weights, Constr. Approx., 16:37–71, 2000.

[20] G. Szegö. Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., Providence, 1975.

[21] Y. Xu. Bernstein inequality on conic domains and triangle, J. Approx. Theory, 290:105889, 2023.

Dolomites Research Notes on Approximation ISSN 2035-6803


	Introduction
	Main results
	Sharpness of the Bernstein type inequalities

