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A pluripotential theoretic framework for polynomial interpolation
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Abstract

We consider the problem of uniform interpolation of functions with values in a complex inner product
space of finite dimension. This problem can be cast within a modified weighted pluripotential theoretic
framework. Indeed, in the proposed modification a vector valued weight is considered, allowing to
partially extend the main asymptotic results holding for interpolation of scalar valued functions to the
case of vector valued ones. As motivating example and main application we specialize our results to
interpolation of differential forms by differential forms with polynomial coefficients.

1 Introduction

1.1 Weighted pluripotential theory and polynomial approximation of functions

During the last few decades it became clear that weighted pluripotential theory [16] offers the correct framework to understand
asymptotic features of optimal polynomial interpolation and approximation of functions. This is demonstrated by a number of
works concerning, e.g., polynomial inequalities [6,7,18,34], approximation schemes [15,31], orthogonal polynomials [13,35],
zeroes of random polynomials and random arrays [8,12,40], and experimental design [14], that relate pluripotential theory and
approximation theory, as much as the number of numerical schemes derived from heuristics closely related to pluripotential
theoretic results [19–21].

In its essence, pluripotential theory (see [30] for an extensive treatment of the subject) is the study plurisubharmonic
functions and of the complex Monge-Ampère operator (ddc ·)n. Plurisubharmonicity, a property playing a pivotal role in whole
complex analysis, is defined as the combination of upper semicontinuity (upc, for short), and subharmonicity along any one-
dimensional affine subvariety of the considered domain. The complex Monge-Ampère operator acting on a twice differentiable
function u ∈ C2(Ω) of a domain Ω ⊂ C n is a constant multiple of the determinant of the complex Hessian matrix, i.e., det∂ ∂̄ u,
while it has been extended as positive measure valued operator acting on any locally bounded plurisubharmonic function
u ∈ PSH(Ω)∩ L∞(Ω); [9].

Weighted pluripotential theory is a generalization of pluripotential theory in which a positive weight function is considered.
Historically (and particularly in the one-dimensional case), this generalization originated from the study of varying weight
orthogonal polynomials, and developed mainly for the purpose of dealing with regions which are not the complement of a
compact set. Surprisingly, the weighted theory turned out to be the right formalism for solving long standing open problems
steaming from the unweighted case; in particular, the well known problem of finding the asymptotic behavior of the Fekete points.

Here we recall some definitions and results that will come into the play of our construction. Let K ⊂ C n be a compact set and
Q : K → R be (for simplicity) a continuous function. We will denote by w : K → R+ the function exp(−Q); functions Q and w will
be both referred to as weight functions, the context indicating which one is meant. We can form the upper envelope

VK ,Q(z) := sup{u ∈ L(C n) : u≤Q on K},

where L(C n) is the Lelong class of plurisubharmonic functions of at most logarithmic growth, i.e., L(C n) := {u ∈ PSH(C n) :
u−log‖z‖< C as ‖z‖ → +∞}. The function VK ,Q is not in general plurisubharmonic because it may fail to be upper semicontinuous.
It is then considered its upper semicontinuous regularization

V ∗K ,Q(z) := lim sup
ζ→z

VK ,Q(ζ).
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Two opposite scenarios may occur: either V ∗K ,Q remains locally bounded in C n, and in such a case it is also plurisubharmonic, or
not. In the latter case K is termed pluripolar because, roughly speaking, K is too small from the pluripotential theoretic point of
view. Since in such a case the theory that we are going to describe does not apply, we will always assume in what follows that K is
not pluripolar. It is a deep result that, provided K is not pluripolar, the function V ∗K ,Q is a maximal plurisubharmonic function.

Namely, it satisfies the homogeneous complex Monge-Ampère
�

ddc V ∗K ,Q

�n
= 0 equation in C n \ K . Indeed (2π)−n

�

ddc V ∗K ,Q

�n
is a

probability measure supported in K , customarily denoted by µK ,Q and termed weighted equilibrium measure of K .
If we aim for uniform convergence of polynomial interpolation of degree r to a given continuous function (holomorphic in the

interior of K) as the degree r → +∞, in principle we may try to maximize the modulus of the determinant of the Vandermonde
relative to a given basis of Pr,nC , the space of complex polynomials of n variables with degree at most r. This would lead to an
approximation scheme based on a sequence of Lagrange interpolation operators Ir : C0(K)→Pr,nC with slowly increasing norms
‖Ir‖ ≤ dimPr,nC =: mr . Triangular arrays {x1,r , . . . , xmr ,r}, mr := dimPr,n, of interpolation points constrained on a compact set
K ⊂ C n and constructed by solving such a maximization procedure are known as Fekete points. Zaharjuta [38,39] showed that
the sequence of appropriate powers of the maximized moduli of Vandermonde determinants has indeed a limit, called transfinite
diameter of the set K, and customarily denoted by δ(K). A similar game can be played with varying weight polynomials, i.e.,
function of the form p(x)wr(x), where p ∈Pr,nC . Under mild assumptions on the weight function w it is possible [17] to define
the weighted transfinite diameter of K by setting δw(K) := limr δ

w,r(K) (existence of the limit is stated in [17, Prop. 2.7]), where

δw,r(K) :=
h

max
x∈Kmr

�

�

�Vdm(x1, . . . , xmr
)
�

�

�w(x1)
r · · ·wr(xmr

)
i1/(`r )

. (1)

Here Vdm denotes the standard Vandermonde determinant det[xαi ( j)]i, j=1,...,mr
, N = dimPr,n, and `r :=

∑r
j=1[ j(dimP j,nC −

dimP j−1,nC )].
Until the 60s, the interplay of all this quantities was well understood only in the context of n= 1, but nothing was explained

for the case n> 1. The celebrated work of Berman, Boucksom, and Nystrom [10,11] detailed the whole picture by filling the
gaps in the puzzle. Here we briefly recall only the part of their results that we will use later on. The first result in [10] concerns
the asymptotics of logarithmic ratios between the Haar volumes of uniform unit balls in the space of weighted polynomials with
respect to two different normalizations, i.e. weights w1, w2 and compact sets K1, K2. Indeed, this asymptotic is E(V ∗K1 ,Q1

, V ∗K2 ,Q2
),

the so-called relative Monge-Ampère energy of V ∗K ,Q1
with respect to V ∗K ,Q2

, where Q i := − log wi . Notice that in the case of K2

being the standard polydisk and w2 ≡ 1, the ball volume ratio tends to logδw1(K1), as the degree of polynomials tends to infinity,
while the weighted extremal function of the polydisk is max j log+ ‖z j‖. So one has

− logδw(K) =
1

n(2π)n
E(V ∗K ,Q, max

j
log+ ‖z j‖). (2)

This result is expressed by means of uniform norm unit ball volume. An analog result is then obtained for L2
µ
-balls, whenever

(K , w,µ) satisfies an asymptotic comparability of L∞(K) and L2
µ

norms of weighted polynomials. This hypothesis is known in the
literature as Bernstein Markov property [18], and that can be thought as a particular instance of a Nikolski Inequality. Namely, if
we assume that

limsup
r→+∞

sup
p∈Pr,nC\{0}

�

‖pwr
i ‖K

‖pwr
i ‖L2

µ

�1/r

≤ 1, i = 1,2, (3)

then the ball volume logarithmic ratio (which is nothing but a multiple of the logarithm of the determinant of a Gram matrix)
tends to the aforementioned relative energy. Due to the orthonormality of the monomials on the boundary of the polydisk, one
obtains

lim
r

n+ 1
2nr dimPr,nC

logdet Gw
r = −

1
n(2π)n

E(V ∗K ,Q,max
j

log+ ‖z j‖) = logδw(K). (4)

In the above equation Gw
r is the Gram matrix of the scalar product of L2

µ
written in the basis of weighted monomials of degree at

most r.
As second step in the construction of [10,11], the differentiability of the function

t 7→ E(t) := E(V ∗K ,Q+tu, max
j

log+ ‖z j‖)

is proven, and the derivative computed at zero, which gives

E′(0) = (n+ 1)

∫

K

u
�

ddc V ∗K ,Q

�n
. (5)

Rather surprisingly, a smart use of the concavity of the considered functions [10, Lemma 6.6] allows to bring the derivation with
respect to t inside the limit in (4). Thus, by direct computations one obtains the strong Bergman asymptotics

∫

K

u(x)
Bw,r(x ,µ)

N
dµ(x)→

1
(2π)n

∫

K

u
�

ddc V ∗K ,Q

�n
, ∀u ∈ C 0(K ,R), (6)
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where Bw,r(x;µ) :=
∑dimPr,nC

i=1 |qi(x)|2w2r(x) is the diagonal of the reproducing kernel of weighted polynomials of degree at
most r, i.e., the qi ’s form an L2

µ
-orthonormal basis of Pr,nC .

Finally, the convergence of (weighted) Fekete points to the (weighted) equilibrium measure (2π)−n
�

ddc V ∗K ,Q

�n
is obtained

in [10] as a particular case of (6) by noticing that the associated probability measures µ(r) satisfy the Bernstein Markov property
(3), and that for any interpolation array one has that the corresponding function Br,w(·,µ(r)) = N (at any interpolation point and
hence) µ(r)-a.e, thus

µ(r)*∗ µK ,Q, as r → +∞ , (7)

where *∗ denotes weak∗ convergence of measures.

1.2 Our study

In the present work we focus on polynomial interpolation of functions with values in a complex Hermitian space of dimension s,
with application to the case of differential forms. In these contexts the point-wise evaluation functionals take values in C s instead
of simply in C . Therefore, if we aim at studying vector-valued polynomial interpolation, we first need to construct a vectorized
pluripotential theoretic framework in which the aforementioned usual definitions, techniques, and results have natural extensions.
We carry out this generalization independently from the application to the space of differential forms, which is detailed in Section
5.

1.2.1 Notation and preliminaries

Let (U , (·, ·)U) be an s-dimensional Hermitian space over C , and let u1, . . . , us be an orthonormal basis of U . Let us denote by UR

the real vector space spanned by u1, . . . , us. We denote by Pr,nU the space of polynomial functions from C n to U , and, for any
K ⊂ C n, we denote by Pr,nU(K) the space of polynomial functions from K to U . Using the isometric isomorphism of U ∼= C s

induced by the choice of the basis {u1, . . . , us}, we can construct a basis for Pr,nU ∼=Pr,nC
s by considering

q j(x) := xβ( j)us( j) 7−→ p j(x) := xβ( j)es( j), j = 1, . . . , s× dimPr,nC =: s×mr =: N . (8)

Here we set j = ls+ r, with r the reminder of the integer division of j by s. We introduce s( j) to be r whenever r 6= 0 and to take
value s if r = 0. Then we let xα =

∏n
i=1 xαi

i , ek is the k-th element of the canonical basis of C s, β( j) is the l-th element of Nn with
respect to the graded lexicographical ordering. Note that our choice of coordinates and scalar products implies in particular that

(p j(x), pk(x))C s = (q j(x), qk(x))U = x̄β(k)xβ( j)(us( j), us(k))U = x̄β(k)xβ( j)δs( j),s(k) .

The canonical coordinates in C s yield the coordinate-wise multiplication � : C s × C s → C s, with (y � z) j := y jz j , for any
j = 1, . . . , s. Again resting upon the identification U ∼= C s, we can define, by a slight abuse of notation, a binary operation
� : C 0(K , U) × C 0(K , U) → C 0(K , U) by setting a(x) � b(x) :=

∑s
i=1 ai(x)bi(x)ui(x), for any a(x) :=

∑s
i=1 ai(x)ui , and

b(x) :=
∑s

j=1 b j(x)ui (note that the continuity of involved functions has been assumed only for simplicity).
Given an Rs valued continuous weight function w : K → Rs

+, being K ⊂ C n compact, we denote by Pw
r,nU(K) the space of

varying weight polynomial functions from K to U , i.e., functions of the form q�wr(x) := q(x)� (
∑s

j=1 w j(x)ru j), with q ∈Pr,nU .
Note that in the set up of our notation we are implicitly identifying any such continuous Rs-valued function w with an element of
C 0(K , UR).

Clearly one has Pw
r,nC

s ∼=Pw
r,nU , so that the two spaces can be identified. A basis for Pw

r,nC
s is indeed given by

�

p j(x)�wr(x), j = 1, . . . , N
	

:=







p j(x)�

r times
︷ ︸︸ ︷

w(x)� · · · �w(x), j = 1, . . . , N







,

and the isometrically isomorphic basis for Pw
r,nU is constructed according to (8).

We will think of Pr,nU(K) and Pw
r,nU(K) as closed subspaces of the Banach space

�

C 0(K , U),‖ · ‖K ,U

�

of continuous U-valued
functions, where

‖ω‖K ,U :=max
x∈K
‖ω(x)‖U .

Accordingly, we introduce the Banach space
M(K , U) := (C 0(K , U))∗

of U-valued measures on K . Due to Riesz’ Representation Theorem, each element T of M(K , U) may be written as

T (q) :=

∫

K

(v(x), q(x))U dµ(x), ∀q ∈ C 0(K , U), (9)

where µ is a Borel measure on K , and v : K → U is an L2
µ

function such that ‖v(x)‖U = 1 µ-a.e. Apart from the strong convergence
in M(K , U), defined by the operator norm ‖T‖ := sup{|T (q)|, q ∈ C 0(K , U),‖q‖K ,U = 1}, we will also consider weak∗ convergence,
customarily denoted by *∗. For the reader’s convenience we recall that {T j} converges to T weakly∗, and we write T j *

∗ T , if
and only if lim j T j(q) = T (q) for any q ∈ C 0(K , U).
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1.2.2 Main results

In Section 2 we extend to the above described vectorial framework the concept of weighted transfinite diameter δw(K) of a
compact set K ⊂ C n as the asymptotics of maximal generalized Vandermonde determinants. This new quantity, subsequently
denoted by δw(K , U), is characterized in Theorem 2.1 by considering an appropriate geometric mean of the usual transfinite
diameters relative to each ui direction in Pw

r,nU . Since the logarithm function transforms geometric means into arithmetic ones,
we can apply all the machinery developed in the scalar case in a component-wise fashion, see Eq. (2). In particular, the derivative
of the function (− log w1, . . . ,− log ws) 7→ − logδw(K , U) can be related to integral functionals depending on the equilibrium
measure of K with respect to each wi , due to (5).

The Bernstein Markov property is used in the scalar case to replace the “L∞”-maximization procedure present in the definition
of δw(K) by a more manageable “L2”-maximization. This allows in particular to compare the asymptotics of Gram determinants
of so-called Bernstein Markov measures with δw(K), and – passing to derivatives of the objective with respect to the logarithm
of the weight –, to obtain the Bergman asymptotic (6) and the convergence of Fekete points (7). In Section 3 we retrace this
construction in the vector valued case. In particular, working with Bernstein Markov vector measures (see Eqn.s (14) and (15)
later on), we show that appropriate roots of log-determinants of the Gram matrix of Pw

r,nU with respect to the scalar product
induced by a vector Bernstein Markov measure tend to logδw(K , U); see Proposition 3.2.

In Section 4, specifically in Proposition 4.2, we obtain appropriate extensions of convergence of Fekete points. Note that, due
to the vectorized framework we work in, usual Fekete points are replaced by higher dimensional counterparts, which we identify
with vector point-masses. The higher geometrical complexity of our setting carries some additional difficulties in proving a vector
counterpart of the strong Bergman asymptotics (6), which is in fact only conjectured in this work (see Conjecture 4.1).

1.2.3 Polynomial interpolation of differential forms

A case of particular interest is the one of UR = Λk
R, i.e. the space of real alternating k-covectors spanned by d xα := d xα1∧· · ·∧d xαk

with α1 < α2 < · · ·< αk. In this case, the space Pr,nΛ
k
R ⊂ C 0Λk

R is that of real polynomial differential forms, namely real polynomial
sections of the k-th exterior power of the cotangent bundle of Rn; see [37]. Although in this application we will always assume
K ⊂ Rn, in our construction we will look at Λk

R as a real subspace of the complex Hermitian space

Λk
C := spanC {d xα : |α|= k, α is increasing},

endowed by the Euclidean product. We remark that this embedding is very natural from the perspective of approximation theory,
even if it might sound odd from the point of view of differential geometry.

Functions with values in Λk
R are generally called tensors and measure how a reference tensor field (for instance, a vector field

defined on K when k = 1) is modified at each point of Rn; see [1]. Important examples of this kind are the elasticity tensor,
the stress tensor or the Faraday 2-form in electromagnetism [28]. These quantities describe physical objects, so that a correct
understanding of their polynomial counterpart is essential in their approximation. The use of polynomial differential forms
ranges from interpolation theory [26] to finite element methods [5] and structure preserving methods [29].

To interpolate in Pr,nΛ
k
C , a set of linear functionals Ti : C 0Λk → C , with i = 1, . . . , N := dimPr,nΛ

k
C , is needed. These

objects are named currents [27], and in the simplicial context they are usually represented by means of moments [33] or
weights [36]. When {Ti}Ni=1 forms a basis for

�

Pr,nΛ
k
C

�∗
, the dual space of Pr,nΛ

k
C , the set {Ti}Ni=1 is said to be unisolvent for

Pr,nΛ
k
C . Hence, we may represent any ω ∈Pr,nΛ

k
C as

ω=
N
∑

i=1

Ti(ω)ωi , (10)

being {ωi}Ni=1 the Lagrangian basis for Pr,nΛ
k
C , namely that satisfying Ti(ω j) = δi, j . Note that in the above formula the currents

Ti(ω) may be thought of as measurements of the physical quantity ω. Given a compact real set K (determining for Pr,nΛ
k
C for

any r ∈ N), we will always consider the uniform norm on C 0(K ,Λk
C ), that is

‖ω‖C0(K ,Λk
C
) := sup

x∈K
‖ω(x)‖Λk

C
.

Therefore the norm ‖Π‖op of the interpolation operator Π : C 0(K ,Λk
C )→Pr,nΛ

k
C specified by (10), i.e. Πω :=

∑N
i=1 Ti(ω)ωi

for ω ∈ C0(Λk
C ), is named Lebesgue constant and quantifies the stability of the interpolation via the Lebesgue inequality

‖θ −Πθ‖C0(KΛk
C
) ≤

�

1+ ‖Π‖op

�

min
ω∈Pr,nΛ

k
C

‖ω− θ‖C0(K ,Λk
C
).

In the search of currents that are well-suited for interpolation, Fekete problems play an essential role. By Fekete problem we mean
the identification of a collection of unisolvent currents {Ti}Ni=1 such that the (modulus of the) determinant of the Vandermonde
matrix

Vi, j = Ti(q j), (11)
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with respect to a given (and thus any) basis q1, . . . , qN of Pr,nΛ
k
C is maximal. When k = 0, i.e. in the case of functions, the

solution of this problem has been investigated for a long time. Note that any uniform probability measure supported at Fekete
points is a solution of such a maximization problem. When k > 0 the situation becomes more involved and only a recent result
offers an answer in the particular setting of weights [24].
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2 Weighted transfinite diameter

This section is devoted to introducing a notion of r-th weighted transfinite diameter of a compact set K ⊂ C n, with respect to
the weight w and the space U , which is well suited for the study of varying weight polynomial interpolation of vector valued
holomorphic functions.

Let mr :=
�n+r

n

�

, so that dimPr,nC = mr . We define the r-th weighted diameter of a set K with respect to the space U as

δw,r(K , U) :=



 max
T1∈M(K ,U)
‖T1‖=1

. . . max
TN∈M(K ,U)
‖TN ‖=1

�

�

�det[Ti

�

q j �wr
�

]i, j=1,...,N

�

�

�





1/(s·`r )

, (12)

where `r :=
∑r

k=1 k (mk −mk−1) , and the q j ’s have been defined in (8).
As announced, we are able to prove that the limit of the r-th diameters does exist, and it equals the geometric mean of the

classical weighted transfinite diameters obtained by considering each component of the vectorial weight w.

Theorem 2.1. Let K ∈ C n be a compact set, U as above and wl ∈ C 0(K , ]0,+∞[) for each l = 1, . . . , s = dim U. Then

δw(K , U) := lim
r→∞

δw,r(K , U) =

�

s
∏

l=1

δwl (K)

�1/s

, (13)

where existence of the limit is part of the statement.

Proof. The result may be proved by generalizing to the vectorial case the argument of V. Zaharjuta adopted in [38,39]. Instead,
we propose a proof that uses algebraic manipulations that essentially allow us to go back to the scalar case.

Let T1, . . . , TN ∈M(K , U), with ‖Ti‖ = 1 for each i, be such that
�

�det Ti

�

p j �w
��

�

2
= (δw,r(K , U))2s·`r . We then have, denoting

by ΣN the set of permutation of N = smr elements,

(δw,r(K))2s`r =
�

�det Ti

�

q j �w
��

�

2

=

�

�

�

�

�

N
⊗

i=1

Ti

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN )

�

�

�

�

�

�

2

≤











N
⊗

i=1

Ti











2

[M(K ,U)]N

max
x∈KN











∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN )











2

UN

=max
x∈KN

∑

σ∈ΣN

∑

τ∈ΣN

sgn (σ) sgn (τ)

�

N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN ),
N
⊗

j=1

�

qτ( j) �wr
�

(x1, . . . , xN )

�

UN

=max
x∈KN

∑

σ∈ΣN

∑

τ∈ΣN

sgn (σ) sgn (τ)
N
∏

j=1

�

(pσ( j) �wr)(x j), (pτ( j) �wr)(x j)
�

C s
.

Now, notice that
�

�

pσ( j) �wr
�

(x j),
�

pτ( j) �wr
�

(x j)
�

C s
= 0 if s(σ( j)) 6= s(τ( j)) for some j ∈ {1, . . . , N}, i.e., the only τ ∈ ΣN

contributing to the sum are the one for which s(τ( j)) = s(σ( j)) for all j = 1, . . . , N and for which the set {β(τ( j)), j : s(τ( j)) = l}
can be obtained by a permutation of the set {β(σ( j)), j : s(σ( j)) = l}. Namely, we consider only τ of the form τ= eτ ◦σ with
eτ = eτl ◦ . . . eτs and eτl = Is ⊗ηl ,ηl ∈ Σm for all l = 1, . . . , s. Thus, introducing the notation J(σ, l) := { j ∈ {1, . . . , N} : s(σ( j)) = l},
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we have

(δw,r(K))2s`r

=max
x∈KN

∑

σ∈ΣN

∑

η1∈Σm

. . .
∑

ηs∈Σm

(sgn (σ))2
s
∏

l=1

sgn (ηl)
∏

j∈J(σ,l)

x̄β(σ( j))j xβ(ηl (σ( j)))
j w2r

l (x j)

=max
x∈KN

∑

σ∈ΣN

s
∏

l=1

∑

η∈Σm

sgn (η)
∏

j∈J(σ,l)

x̄β(σ( j))j xβ(η(σ( j)))j w2r
l (x j)

≤
∑

σ∈ΣN

s
∏

l=1

max
x J(σ,l):=(xJ(σ,l)1 ,...,xJ(σ,l)mr

)∈Kmr

�

�det V (σ, l, x J(σ,l))
�

�

2

=
∑

σ∈ΣN

s
∏

l=1

max
z∈Kmr

�

�Vdm(z1, . . . , zmr
)
�

�

2
wl(z1)

2r . . . wl(zmr
)2r

=N !
s
∏

l=1

(δwl ,r(K))2s`r ,

where Vdm(z1, . . . , zmr
) is the classical Vandermonde determinant with respect to the monomial basis, (V (σ, l, x J(σ,l)))h,k :=

xβ(σ(k))(J(σ,l))h
wl(x(J(σ,l))h)

r , and we used that
∑

η∈Σm

sgn (η)
∏

j∈J(σ,l)

x̄β(σ( j))j xβ(η(σ( j)))j w2r
l (x j) = det[V (σ, l, x J(σ,l))

H V (σ, l, x J(σ,l))]

=|det V (σ, l, x J(σ,l))|2 = |Vdm(xJ(σ,l)1 , . . . , xJ(σ,l)mr
)|2w2r

l (xJ(σ,l)1) · · ·w
2r
l (xJ(σ,l)mr

),

since, for any σ ∈ ΣN and any l = 1, . . . , s,

{β(σ( j)), j ∈ J(σ, l)}= {β ∈ Nn : |β | ≤ r}.

Therefore, taking the limit superior as r tends to +∞, we get

limsup
r

δw,r(K , U)≤ limsup
r
(N !)1/(2s`r ) · limsup

r

�

s
∏

l=1

δwl ,r(K)

�1/s

=

�

s
∏

l=1

δwl (K)

�1/s

.

This shows the upperbound.
Conversely, let x (r)1,l , . . . , x (r)mr ,l be weighted Fekete points of degree r for the weight wl , and let

y = x (r)1,1, . . . , x (r)1,s
︸ ︷︷ ︸

s elements

, . . . , x (r)mr ,1, . . . , x (r)mr ,s
︸ ︷︷ ︸

s elements

.

We consider the U-valued vector measures T (r)i ’s defined by setting T (r)i (ω) := (ω(yi), us(i))U and we observe that

�

�

�Vdm(T (r)1 , . . . , T (r)N , q1 �w, . . . , qN �w)
�

�

�

1/`r
=

�

s
∏

l=1

�

�Vdm(x1,l , . . . , xmr ,l)
�

�

2
wl(x1,l)

2r . . . wl(xmr ,l)
2r

�1/(s`r )

=

�

s
∏

l=1

δwl ,r(K)

�1/s

.

On the other hand, the vector measures T (r)1 , . . . , TN
(r) define a competitor in the maximization that defines δw,r(K , U). Thus

δw,r(K , U)≥
�

�

�Vdm(T (r)1 , . . . , TN
(r), q1 �w, . . . , qN �w)

�

�

�

1/`r
=

�

s
∏

l=1

δwl ,r(K)

�1/s

.

Taking the lim-inf as r →∞, the proof is concluded.

3 Bernstein Markov Property, Gram determinants, and "free energy asymptotics"

3.1 Bernstein Markov property in M(K , U)

Let T ∈M(K , U) be represented by the Borel measure µ and the µ-measurable function v : K → U , see (9). We can associate to
this linear functional a rank-one semimetric g on U by setting

gx (ω,θ ) := (v(x),ω(x))U(v(x),θ (x))U .

Dolomites Research Notes on Approximation ISSN 2035-6803



Bruni Bruno · Piazzon 103

Note that we will often omit the dependence of g on x to simplify our notation. Such a semimetric naturally defines (by means of
integration with respect to µ) a seminorm (induced by a semidefinite scalar product) on µ-measurable functions K → U given by

‖ω‖v,µ :=

�∫

K

gx (ω,ω)dµ(x)

�1/2

.

Although g is merely a semimetric with low rank, it may happen that ‖ · ‖v,µ is indeed a norm on Pr,nU; in such a case we
term the pair (v,µ) (or, equivalently, the linear functional T) Pr,nU-determining. Note that the easiest way to construct such a
determining pair is to pick x1, . . . , xM ∈ K (recall that here and throughout the paper we assume K to be polynomial determining)
and v1, . . . , vM ∈ U , with ‖vh‖U = 1, such that, defining Th(ω) := (ω(xh), vh)U , the matrix V := [Th(ek)]h=1,...,M ,k=1,...,N has full

column-rank. Indeed, in such a case one can set µ :=
∑M

h=1 δxh
and v(xh) = vh, and get gxh

(ω,θ) = Th(ω)Th(θ), so that
‖ω‖2

v,µ =
∑

h T 2
h (ω), being the associated scalar product on Pr,nU represented by V H V.

Since Pr,nU is finite dimensional, it is clear that, for any triple (K , v,µ) with (v,µ)Pr,nU-determining, there exists a constant
C such that

‖ω‖K :=max
x∈K
|ω(x)| ≤ C‖ω‖v,µ, ∀ω ∈Pr,nU .

However, in what follows we will always make an assumption on the asymptotic comparability of these two norms, as r → +∞.
Namely, we assume that (K , v,µ) (or (K , v(r),µ(r)) sometimes) satisfies the Bernstein Markov property [18], that in the context of
Pr,nU reads as:

limsup
r→+∞

Mr(K , v(r),µ(r))1/r := lim sup
r→+∞

sup
ω∈Pr,nU\{0}

�

‖ω‖K ,U

‖ω‖v(r) ,µ(r)

�1/r

≤ 1. (14)

The supremum in such a definition is indeed a maximum. In the scalar case U = C this is an immediate consequence of Parseval
Identity, being Mr the square root of the diagonal of the reproducing kernel, i.e., Mr =

p

B(x ,µ) =maxx∈K(
∑mr

i=1 |bi(x)|)1/2, with
∫

K
b̄i b j dµ = δi, j any orthonormal basis of Pr,nC . In our framework, given an orthonormal basis b1, . . . , bN of Pr,nU , we can

form the Hermitian positive definite matrix G(x), with Gi, j(x) := (bi(x), b j(x))U . For any x ∈ K , we can interpret the quantity

sup
ω∈Pr,nU\{0}

‖ω(x)‖2
U

‖ω‖2
v,µ

=max
z∈C s

zH G(x)z
‖z‖2

=: B(x ,µ, v)

as Rayleigh quotient of the matrix G(x), so that Mr(K , v,µ) =maxx∈K

p

λmax G(x).
We need to extend the notion of Bernstein Markov in M(K , U) property in two directions: we need to possibly include a

varying weight on the coefficients, and we need to consider the tensor product version of both the weighted and unweighted
instances of the Bernstein Markov property. We remark that in what follows all the “weighted statements” strongly depend on the
choice of orthonormal coordinates in U .

A sequence (v(r),µ(r)) of Pw
r,nU-determining vector measures is said to enjoy the weighted Bernstein Markov property with

respect to the weight w= (w1, . . . , ws) if

lim sup
r→+∞

Mr(K , w, v(r),µ(r))1/r := lim sup
r→+∞

sup
ω∈Pr,nU\{0}

�

‖ω‖K ,U ,wr

‖ω‖wr ,v(r) ,µ(r)

�1/r

≤ 1, (15)

with ‖ω‖K ,U ,wr := supx∈K ‖ω(x)�wr(x)‖U and ‖ω‖wr ,v(r) ,µ(r) := ‖ω�wr‖v(r) ,µ(r) .

Remark 1 (BM vector measures asssociated to Fekete points). It is worth pointing out here a relevant way to construct a Bernstein
Markov pair (v(r),µ(r)) for a given polynomial determining compact set K and a weight w. Let us pick, for any l = 1, 2, . . . , s, an
asymptotically Fekete (for scalar polynomial interpolation) triangular array (x (l)h,r)h=1,...,mr ,r∈N of points of K with respect to the
weight wl , i.e., assume

lim
r

�

�

�det[(x (l)h,r)
j−1wr

l (x
(l)
h,r)]h, j

�

�

�

1/lr
= δwl (K), ∀l = 1, . . . , s.

It is clear that, without loss of generality, we can assume {x (l1)1,r , . . . , x (l1)mr ,r} ∩ {x
(l2)
1,r , . . . , x (l2)mr ,r}= ; for any l1 6= l2.

Let us now introduce the probability measure µ(r) := 1
s

∑s
l=1 µ

(r)
l := 1

s

∑s
l=1

1
mr

∑mr
h=1 δx(l)h,r

, and the µ(r)-a.e. U-valued function

v(r)(x) = ui , whenever x = x (i)h,r . Using the scalar case one has that each measure µ(r)l , l = 1, . . . s, enjoys a weighted Bernstein
Markow property on K with respect to the weight wl . But notice that the orthogonallity of the ui ’s leads to

‖ω‖2
K ,U ,wr =max

x∈K

s
∑

i=1

|ωi(x)w
r
i (x)|

2 ≤
s
∑

i=1

max
x∈K
|ωi(x)w

r
i (x)|

2 ≤ max
l=1,...,s

Mr,l

s
∑

i=1

‖ωi‖2

µ
(r)
i ,wr

i

=: Mr‖ω‖v(r) ,µ(r) ,wr ,

so that the weighted Bernstein Markov property of the quadruple (K , w, v(r),µ(r)) immediately follows.
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Given a Pw
r,nU-determining quadruple (K , w, v,µ) one can define a semimetric on U t , t ∈ N which induces a norm on tensor

products of Pw
r,nU simply setting g⊗x (⊗

t
h=1zi ,⊗t

h=1 yi) =
∏t

i=1 gxi
(zi , yi), and

‖ ⊗t
i=1ωi‖v,µ :=

∫

K

· · ·
∫

K

g⊗x (⊗
t
i=1ωi(x i),⊗t

i=1ωi(x i))dµ(x1) . . . dµ(x t)

=

∫

K

· · ·
∫

K

t
∏

i=1

gxi
(ωi(x i),ωi(x i))dµ(x1) . . . dµ(x t),

and similarly for the weighted case.
As a matter of fact, the (weighted) Bernstein Markow property well behaves under tensorization. We omit the simple proof of

the following:

Lemma 3.1. Let (K , w, v,µ) be as above and assume the Bernstein Markow property (15) to hold. Then, for anyω1, . . . ,ωt ∈Pw
r,nU,

we have
max
x1∈K

. . .max
x t∈K
‖ω1(x1)⊗ · · · ⊗ωt(x t)‖U t ≤ Mr(K , w, v,µ)t‖ ⊗t

i=1ωi‖v,µ. (16)

3.2 Gram determinants, and “free energy asymptotics”

Let us introduce the notation Gv,µ,w
r for the weighted Gram matrix of the scalar product induced by (v,µ) on the space of weighted

U-valued polynomials Pw
r,nU written with respect to the canonical basis, i.e.,

(Gv,µ,w
r )i, j :=

∫

K

g(qi(x), q j(x))dµ(x).

We aim at proving the asymptotics for the determinant of Gv,µ,w
r as r →∞. As an intermediate step in the proof we will compare

det Gv,µ,w
r with the so-called free energy Z v,µ,w

r . However, in our generalized setting we need to extend the standard definition of
Z v,µ,w

r (see, e.g., [17]) with respect to the scalar case

Z v,µ,w
r :=

∫

K

· · ·
∫

K

�

�

�

�

�

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN )

�

�

�

�

�

�

2

g⊗

dµ(x1) · · · dµ(xN ),

where we denoted by | · |2g⊗ the squared seminorm induced on UN by g⊗. Note that the argument of the seminorm is the formal
computation of the determinant of the matrix whose (i, j)-th element is qi(x j)� wr(x j), where each multiplication has been
replaced by a tensor product.

Now we are ready to state and prove the result of the present section.

Proposition 3.2. Let (K , w, v,µ) satisfy the weighted Bernstein Markow property in M(K , U), then

lim
r

n+ 1
2nrN

logdet Gv,µ,w
r = lim

r

n+ 1
2nrN

log Z v,µ,w
r = logδw(K , U). (17)

Proof. First notice that (see [32, Eqn.s (7.3) and (7.4)]) s`r =
nrN
n+1 . Plugging this into (12), we get

(δw,r(K , U))
2nrN
n+1 = max

T1∈M(K ,U)
‖T1‖=1

. . . max
TN∈M(K ,U)
‖TN ‖=1

�

�

�det[Ti

�

q j �wr
�

]i, j=1,...,N

�

�

�

2
. (18)

By Gram Schmidt procedure we can replace in the definition of Z v,µ,w
r the basis q j �wr by an orthogonal basis, say b j �wr

with respect to the scalar product defined by Gv,µ,w
r , see e.g. [17, Proof of Thm. 3.1], and we obtain

Z v,µ,w
r = N !

N
∏

j=1

‖b j �wr‖2
v,µ = N ! det Gv,µ,w

r . (19)
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Note that we can also prove that the first term equals the last one by direct computation:

det Gv,µ,w
r =

∑

σ′∈ΣN

sgn
�

σ′
�

N
∏

j′=1

∫

K

g(q j′ �wr , qσ′( j′) �wr)dµ

=∀η∈ΣN
∑

σ′∈ΣN

sgn
�

σ′
�

N
∏

j=1

∫

K

g(qη( j) �wr , qσ′◦η( j) �wr)dµ

=∀η∈ΣN sgn (η)
∑

σ∈ΣN

sgn (σ)
N
∏

j=1

∫

K

g(qη( j) �wr , qσ( j) �wr)dµ

=
1
N !

∑

η∈ΣN

sgn (η)
∑

σ∈ΣN

sgn (σ)
N
∏

j=1

∫

K

g(qη( j) �wr , qσ( j) �wr)dµ

=
1
N !

∑

η∈ΣN

sgn (η)
∑

σ∈ΣN

sgn (σ)

∫

K

· · ·
∫

K

g⊗(⊗N
j=1qη( j) �wr ,⊗N

j=1qσ( j) �wr)dµ(x1) · · · dµ(xN )

=
1
N !

∫

K

· · ·
∫

K

g⊗
�

∑

η∈ΣN

sgn (η)⊗N
j=1 qη( j) �wr ,

∑

σ∈ΣN

sgn (σ)⊗N
j=1 qσ( j) �wr

�

dµ(x1) · · · dµ(xN )

=
Z v,µ,w

r

N !
Let T1, . . . , TN ∈M(K , U), with ‖Ti‖= 1 for each i realizing the maximum in (18). We then have

(δw,r(K))
2nrN
n+1 =

�

�det Ti

�

q j �w
��

�

2

=

�

�

�

�

�

N
⊗

i=1

Ti

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN )

�

�

�

�

�

�

2

≤











N
⊗

i=1

Ti











2

[M(K ,U)]N

max
x∈KN











∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�

(x1, . . . , xN )











2

UN

≤M2N
r











∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr
�











2

v,µ

=M2N
r

∫

K

· · ·
∫

K

�

�

�

�

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr(x1, . . . , xN )
�

�

�

�

�

�

2

g⊗

dµ(x1) . . . dµ(xN )

=M2N
r Z v,µ,w

r .

Note that the Bernstein Markow property and Lemma 3.1 has been used to obtain the fourth line. Thus, extracting the nrN
n+1 -th

root and plugging (19) in, we have

δw,r(K , U)≤ M
n+1
nr

r (Z v,µ,w
r )

n+1
2nrN = M

n+1
nr

r (N !)
n+1

2nrN (det Gv,µ,w
r )

n+1
2nrN . (20)

Conversely, let (z1, . . . , zN ) ∈ KN such that
�

�

�

�

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr(z1, . . . , zN )
�

�

�

�

�

�

2

g⊗

= max
x∈KN

�

�

�

�

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr(x1, . . . , xN )
�

�

�

�

�

�

2

g⊗

,

and let vi := v(zi) and let Ti(ω) := (ω(zi), vi)U . Then we have

Z v,µ,w
r ≤µ(K)N max

x∈KN

�

�

�

�

�

∑

σ∈ΣN

sgn (σ)
N
⊗

j=1

�

qσ( j) �wr(x1, . . . , xN )
�

�

�

�

�

�

2

g⊗

=µ(K)N
∑

σ∈ΣN

∑

τ∈ΣN

sgnσ sgnτ
N
∏

i=1

Ti(qσ(i) �wr)Ti(qτ(i) �wr)

=µ(K)N det(V H V ) = µ(K)N |det V |2,

where Vi, j = Ti(q j � wr). However, T1, . . . , TN are competitors in the upper envelope defining δw,r(K , U), thus, untangling
definitions, the inequality

µ(K)−
n+1
2nr (N !)

n+1
2nrN (det Gv,µ,w

r )
n+1

2nrN = µ(K)−
n+1
2nr (Z v,µ,w

r )
n+1

2nrN ≤ δw,r(K , U) (21)

follows. We can conclude the proof by taking the limit as r → +∞ in estimates (20) and (21).
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4 Strong Bergman Asymptotics and Convergence of Fekete vector measures

In the scalar case, i.e., s = 1, the strong Bergman asymptotics (6) is obtained in [11] starting from the free energy asymptotics
(4) (holding for a sequence of measures µ(r) satisfying a weighted Bernstein Markov property on K with respect to the weight
w = exp(−Q)) and performing a derivation with respect to a variation of the weight. More precisely, given a continuous test
function u, the weight wt := w · exp(−tu) is considered and the free energy asymptotics (4) is reformulated as

fr(0) := −
n+ 1
nN r

logdet Gwt ,µ(r)

r

�

�

�

t=0
→− logδwt (K)

�

�

�

t=0
.

Then, the derivative at t = 0 of each side is computed obtaining

d
d t

logδwt (K)|t=0 =
n+ 1

n(2π)n

s
∑

l=1

∫

K

u
�

ddc V ∗K ,Q

�n
, (22)

f ′r (0) =
n+ 1

n

∫

K

Bw,r(x ,µ(r))

N
u(x)dµ(r)(x). (23)

Here, Bw,r(x ,µ(r)) =
∑N

i=1 |qi(x;µ(r))|2w2r , where {qi , i = 1, . . . , N} is an orthonormal basis of of Pr,nC with respect to the
product induced by µ and w2r.

Finally, the limit as r → +∞ and the derivation at t = 0 are exchanged by means of a real analysis lemma (see [10, Lemma
6.6]) exploiting the concavity of the functions fr . The asymptotics for Fekete points (7) is obtained as a specialization of (6), by
replacing the sequence of Bernstein Markov measures µ(r) by the sequence of uniform probability measures supported at Fekete
points.

We generalized the free energy asymptotics to the vector valued setting in Proposition 3.2. However, the major issue in
the extension of the above construction to the vector-valued framework s > 1 relies in proving the concavity of the function fr .
While the derivation formula for fr follows immediately from the scalar case, so f ′r (0) and f ′′r (0) can be explicitly computed (see
Proposition 4.1 below), it is not clear whether the concavity of fr follows.

Although we are not able to overcome this impasse in full generality, the problem simplifies significantly when we consider
the case of asymptotically Fekete vector measures defined by vector point masses, being the vectors N copies of each basis vector
of U . This is the content of Proposition 4.2, while the more general case is proposed in Conjecture 4.1.

Remark 2. Though a slightly weaker version of Proposition 4.2 may be obtained as a consequence of the analogous scalar
statement, we decided to state and directly prove Proposition 4.2 here. This choice has been made to offer partial support to
Conjecture 4.1. Indeed, it is worth noticing here that the proof of Proposition 4.2 goes through the same steps of [11, Thm. C],
while the restriction on the particular structure of the considered vector measures is exploited only when proving f ′′r (t)≤ 0. The
statement of Conjecture 4.1 is obtained by removing such restriction.

Proposition 4.1. Let ω ∈ C 0(K , UR), define

w(x , t) := (w1(x)exp(−tωi(x)), . . . , ws(x)exp(−tωs(x))) ,

and let

fr(t) := −
n+ 1
2nrN

logdet Gv,µ,w(x;t)
r . (24)

Then we have

f ′r (t) =
n+ 1
nN
ℜ

N
∑

h=1

∫

K

g (bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω(x)) dµ(x) , (25)

and

f ′′r (t) =
(n+ 1)r

nN

�

ℜ
∑

h

�

−
∫

K

g
�

bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω2
�

dµ(x)

+
∑

k

�∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)

·
∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
��

+

�

∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

−
∑

h

‖bh(·, t)�ω‖2
wr (·;t),v,µ

��

, (26)

where {b1(x , t), . . . , bN (x , t)} is an orthonormal basis of Pr,nU(K) with respect to the scalar product defined by (K , w(·, t), v,µ).
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The proof of Proposition 4.1 is a long computation. For ease of the reader, we sketch it here and report the complete proof in
Appendix A.

Sketch of the proof. First of all, by applying Jacobi Identity one computes the derivatives of fr(t):

f ′r (t) = −
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r

�

,

so that

f ′′r (t) =
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r (Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r

�

−
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d2

d t2
Gv,µ,w(x;t)

r

�

.

To simplify the expression of f ′r (t) one then applies the orthogonal decomposition

Gv,µ,w(x;t)
r = PH(t)Λ(t)P(t) = (Λ

1
2 (t)P(t))H(Λ

1
2 (t)P(t)),

which exists since Gv,µ,w(x;t)
r is Hermitian. Then, using the cyclic property trace(ABC) = trace(BCA) of the trace operator, we have

f ′r (t) = −
n+ 1
2nrN

trace
�

(Λ−1/2(t)P(t))
d
d t

Gv,µ,w(x;t)
r (Λ−1/2(t)P(t))H

�

.

Making explicit the argument of the trace and exploiting orthogonality one obtains (25).
The proof of (26) is also obtained by direct computation, exploiting the cyclic property and the linearity of the trace, and the

identity d
d t [G

v,µ,w(x;t)
r ]−1 = −[Gv,µ,w(x;t)

r ]−1 d
d t Gv,µ,w(x;t)

r [Gv,µ,w(x;t)
r ]−1.

The above results puts us in a position to prove the following:

Proposition 4.2. Let Th,r(ω) := (ui(h,r),ω(xh,r))U , with h = 1, . . . , N, xh,r ∈ K (with xh,r 6= xk,r if h 6= k), r ∈ N, be a weighted
asymptotically Fekete triangular array of vector measures with respect to the weight w, i.e.

lim
r
|det[Th,r(qk �wr)]h,k=1,...,N |1/(slr ) = δw(K , U), (27)

where i(h, r) ∈ {1, . . . , s} for any h= 1, . . . , r, and r ∈ N. Then we have

T (r) :=
1
N

N
∑

h=1

Th,r *
∗ 1

s(2π)n

s
∑

l=1

(ul , ·)U
�

ddc V ∗K ,Q l

�n
, (28)

where Q l := − log wl .

Proof. Without loss of generality, for r large enough, we may assume that

{i(1, r), . . . , i(N , r)}= {

mr -terms
︷ ︸︸ ︷

1, . . . , 1, . . . ,

mr -terms
︷ ︸︸ ︷

s, . . . , s}.

For, note that (27) implies that the matrix V = [Th,r(qk �wr)]Nh,k=1 is full rank. Indeed, recall from (8) that qk(x) = xβ(k)us(k), so
that, up to a permutation of the columns, V is a block diagonal matrix. The number of columns of each block is mr , whereas the
number m( j) of rows of the j-th block coincides by construction with the number of repetitions of the index h ∈ {1, . . . , N} such
that i(h, r) = j. It is then evident that det V 6= 0 implies that m( j) = mr , for any j = 1, . . . , s.

Let us introduce

µ(r) :=
1
N

N
∑

h=1

δxh,r
, v(r)(x) :=

¨

ui(h,r) x = xh,r

0 x 6∈ {x1,r , . . . , xN ,r}
,

and define g as at the beginning of Section 3. Also, let ω and w(x , t) be as in Proposition 4.1 and define fr analogously. Notice
that, due to Remark 1, (K , v(r),µ(r), w) enjoys the weighted Bernstein Markov property (14) in M(K , U). Hence, by Proposition
3.2, we have

lim
r

fr(0) = logδw(K , U) . (h1)

If we denote by `h,r(x) the fundamental Lagrange interpolating polynomial with respect to the point xh,r , then

bh,r(x , t) :=
p

N
wr(xh,r , t)

`h,r(x)ui(h,r), h= 1, 2, . . . , N (29)

is an orthonormal basis with respect to the scalar product induced by v(r),µ(r), wr . Indeed, we compute

(bh,r �wr , b`,r �wr)v(r) ,µ(r) =
1
N

N
∑

j=1

Nw2r(x j,r , t)

wr(xh,r , t)wr(x`,r , t)
(ui( j,r), ui(h,r))U(ui( j,r), ui(`,r))U = δi( j,r),i(h,r)δi( j,r),i(`,r)δh, jδ`, j = δh,`.
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Plugging this into (25), we obtain

f ′r (t) =
n+ 1
nN
ℜ

N
∑

h=1

1
N

N
∑

j=1

Nw2r(x j,r , t)

w2r(xh,r , t)
`2

h,r(x j,r)(ui( j,r), ui(h,r))U(ui( j,r), ui(h,r) �ω)U

=
n+ 1
nN
ℜ

N
∑

h=1

N
∑

j=1

w2r(x j,r , t)

w2r(xh,r , t)
ωi(h,r)(x j,r)δh, jδi( j,r),i(h,r) =

n+ 1
nN
ℜ

N
∑

h=1

ωi(h,r)(xh,r)

=
n+ 1

n
ℜ

1
N

N
∑

h=1

Th,r(ω) =
n+ 1

n
T (r)(ω). (30)

In order to specialize (26) to our setting, we compute separately terms appearing in it. The first term can be computed following
the lines above, and gives

−
r(n+ 1)

nN
ℜ

N
∑

h=1

∫

K

g
�

bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω2
�

dµ(x) = −
r(n+ 1)

nN

N
∑

h=1

ω2
i(h,r)(xh,r). (31)

We then compute the second term of eq. (26):

r(n+ 1)
nN

ℜ
N
∑

h=1

N
∑

k=1

�∫

K
g (bh(x , t)�wr (x; t)�ω, bk(x , t)�wr (x; t)) dµ(x)

·
∫

K
g (bh(x , t)�wr (x; t), bk(x , t)�wr (x; t)�ω) dµ(x)

�

=
r(n+ 1)

nN
ℜ

N
∑

h=1

N
∑

k=1

� N
∑

j1=1

Nw2r (x j1 ,r )

Nwr (xh,r )wr (xk,r )
(ui( j1 ,r), ui(h,r) �ω)U (ui( j1 ,r), ui(k,r))U`h,r (x j1 ,r )`k,r (x j1 ,r )

·
N
∑

j2=1

Nw2r (x j2 ,r )

Nwr (xh,r )wr (xk,r )
(ui( j2 ,r), ui(h,r))U (ui( j2 ,r), ui(k,r) �ω)U`h,r (x j2 ,r )`k,r (x j2 ,r )

�

=
r(n+ 1)

nN
ℜ

N
∑

h=1

N
∑

k=1

N
∑

j1=1

N
∑

j2=1

w2r (x j1 ,r )w2r (x j2 ,r )

w2r (xh,r )w2r (xk,r )
ωi(h,r)ωi(k,r)δi( j1 ,r),i(h,r)δi( j1 ,r),i(k,r)δh, j1δk, j1δi( j2 ,r),i(h,r)δi( j2 ,r),i(k,r)δh, j2δk, j2

=
r(n+ 1)

nN

N
∑

h=1

ω2
i(h,r) . (32)

Thus the sum of the first two terms vanishes. Finally, we estimate the third term of eq. (26) by Parseval Inequality:

∑

h

�

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2
− ‖bh(·, t)�ω‖2

wr (·;t),v,µ

�

≤ 0 . (33)

Summing equations (31), (32), and inequality (33), we obtain f ′′r (t)≤ 0, i.e.,

the functions fr are concave. (h2)

Let us pick, for any t ∈ R and r ∈ N, a vector measure ν(r,t) ∈M(K , U) with representing vector field η(r,t) := dν(r,t)/d‖ν(r,t)‖
that maximizes the functional µ 7→ det Gξ,µ,w(·,t)

r (where ξ = dµ/d‖µ‖) among {µ ∈M(K , U) : supω∈C0(K ,U) |µ(ω)|/‖ω‖K ,U ≤ 1}.
Note that in the scalar case such measures are known in the literature as optimal measures [14], and have a strong connection
with the theory of optimal experimental designs. Let us introduce the sequence of functions

f̃r := −
n+ 1
nrN

logdet Gη
(r,t) ,ν(r,t) ,w(·,t)

r .

Note that, for any t, on the one hand f̃r(t)≤ fr(t). On the other hand, repeating the second part of the proof of Proposition 3.2,
one gets lim infr f̃r(t)≥ φ(t) := − logδw(·,t)(K , U). Therefore we have

lim inf
r

fr(t)≥ φ(t). (h3)

Notice that the properties (h1), (h2), and (h3) are precisely the hypothesis of [10, Lemma 6.6], whose conclusion is limr f ′r (0) =
φ′(0). From the scalar case it follows immediately that

φ′(0) =
s
∑

l=1

d
d t

�

1
n(2π)n

E(V ∗K ,Q l+tωl
,max

j
log+ ‖z j‖)

�

t=0
=

n+ 1
sn(2π)n

s
∑

l=1

∫

K

ωi

�

ddc V ∗K ,Q

�n

=
n+ 1

sn(2π)n

s
∑

l=1

∫

K

(ul ,ω)U
�

ddc V ∗K ,Q

�n
.
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Finally, invoking (30), we obtain

n
n+ 1

lim
r

f ′r (0) =
n

n+ 1
φ′(0) =

1
s(2π)n

s
∑

l=1

∫

K

(ul ,ω)U
�

ddc V ∗K ,Q

�n
,

i.e., (28) holds true.

We end this section by formulating the general statement of the strong Bergman asymptotics as a conjecture.

Conjecture 4.1 (Strong Bergman Asymptotics). Let (K , w, v,µ) satisfy the weighted Bernstein Markov property (15). Let
{b1, . . . , bN} be any orthonormal basis of Pr,nU with respect to the product induced by (K , w, v,µ). Then, introducing the
sequence of of vector measures

T (r)(ω) :=

∫

K

ℜ

�

ω,

∑N
h=1 (bh,w(x), v)U bh,w(x)

N
� v̄

�

U

dµ(x),

we have

T (r)*∗
1

s(2π)n

s
∑

l=1

(·, ul)U
�

ddc V ∗K ,Q l

�n
, (34)

where Q l := − log wl and
�

ddc V ∗K ,Q

�n
is defined in Subsection 1.1. The same holds true if (K , v,µ) is replaced by any Bernstein

Markov sequence (K , v(r),µ(r)).

5 A specialization to polynomial differential forms

In practical applications, e.g. in the construction of numerical schemes, a prominent role is played by the case U = Λk
C , so that

Pr,nU =Pr,nΛ
k
C : differential forms with polynomial coefficients. When k = 0 one retrieves usual polynomial interpolation, and

the theory here treated is consolidated [31]. For higher dimensional counterparts few has been said, due to the complexity of
identifying unisolvent sets, see e.g. the discussion in [2–4].

Let us restate our results in this perspective, noticing that the space Pr,nΛ
k
C has itself a structure of tensor-product space

Pr,nC ⊗Λk
C , and similarly for the real counterparts, so we have

dimKPr,nΛ
k
K = dimKPr,nK · dimKΛ

k
K = mr · s =

�

n+ r
r

��

n
k

�

=: N ,

where K is either R or C . Note that in the following we denote by
∑′ the summation over increasing multiindices.

Proposition 4.2 with w(x)≡ (1, . . . , 1)t in this setting read as:

Corollary 5.1. Let Th,r(ω) := ωα(h,r)(xh,r), for any ω(x) =
∑′
|α|=kω

αd xα, with h = 1, . . . , N, where xh,r ∈ K (with xh,r 6= xk,r if
h 6= k), r ∈ N, be an asymptotically Fekete triangular array of currents of order zero, i.e.

lim
r
|det[Th,r(qk)]h,k=1,...,N |1/(s`r ) = δ(K ,Λk

C ), (35)

and α(h, r) ∈ {α ∈ Ns = N(
n
k) : |α|= k} for any h= 1, . . . , N, and r ∈ N. Then, for any ω ∈ C 0(K ,Λk), we have

1
N

N
∑

h=1

Th,r(ω) −→
∑

|α|=k

′
∫

K

ωα
�

ddc V ∗K
�n

for r →∞.

In the context of polynomial differential forms, Lagrange interpolation is customarily obtained by replacing nodal evaluations
with integral on k-manifolds. This yields a particular class of currents called weights [22] (we apologize for the unfortunate
coincidence of nomenclature, which we inherit from the literature)

T : ω 7→
∫

S
ω, (36)

being S an appropriate domain of integration and d x the k-dimensional Hausdorff measure restricted to S. That is, when S is a
k-rectifiable manifold, (36) is the current of integration on S. In the literature, this class of currents is restricted to particular
examples of rectifiable manifolds, such as k-simplices or, in a slightly more general context, k-cells. Also, in weights-based
interpolation, the functions w(x) are all taken as constant and equal to 1. This justifies the absence of such a term in Eq. (35), as
all the s terms at the right hand side of (13) then coincide. Notwithstanding the simplification on the shape of the domain S, the
analysis of the numerical features of integral currents as in (36) is generally hard and mostly conjectural [23] and theoretical
results such as rate of convergence of weights-based interpolation of differential forms are proven only when the dimension of the
ambient space is 1, see [25]. Nevertheless, the Fekete problem studied in Corollary 5.1 emerges in the framework of polynomial
differential forms; in fact, bases associated with Fekete currents have small norm, hence they define a stable interpolator.
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In the search for integral currents maximizing the Vandermonde determinant (35), currents represented by vector point-masses
(i.e. T(ω) =

∑M
j=1(v,ω(x j))Λkµ j , with ‖v j‖Λk = 1, µ j > 0, and

∑

j µ j = 1) arise naturally as limits of currents of integration
(36) normalized through the measure |S|, see [24, Section 4.4.2]. In particular, it has been observed taht, already in the
one-dimensional setting, such currents of integration tend to shrink their supports toward points. Such nodes are precisely Fekete
nodes, and the current of integration can hence be represented by a pair given by a point (which basically acts on the polynomial
part as evaluation) and a k-vector (which, roughly speaking, acts on the basis of the cotangent space at the point). Notice that
the direction of the vector attached to the point need not be unique; this is however not completely unexpected, as whenever we
integrate we are choosing a coordinate representation for differential forms (see, for instance, the discussion in [26, Section
3.1]). We end the section with the following interesting questions.

Open problem. Do all Fekete currents for polynomial differential forms degenerate to vector point-masses? Can we find Fekete
currents for polynomial differential forms that are k-rectifiable?

A Details of the proof of Proposition 4.1

In the following we give a detailed proof of Proposition 4.1, expanding computations. In particular, we show that under the
hypotheses of such a proposition, we have

f ′r (t) =
n+ 1
nrN

ℜ
N
∑

h=1

∫

K

g (bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω(x)) dµ(x) , (37)

and

f ′′r (t) =
(n+ 1)r

nN

�

ℜ
∑

h

�

−
∫

K

g
�

bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω2
�

dµ(x)

+
∑

k

�∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)

·
∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
��

+

�

∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

−
∑

h

‖bh(·, t)�ω‖2
wr (·;t),v,µ

��

, (38)

where {b1(x , t), . . . , bN (x , t)} is an orthonormal basis of Pr,nU(K) with respect to the scalar product defined by (K , w(·, t), v,µ).

Proof of Proposition 4.1. By Jacobi Identity it follows that

f ′r (t) = −
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r

�

,

so that

f ′′r (t) =
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r (Gv,µ,w(x;t)
r )−1 d

d t
Gv,µ,w(x;t)

r

�

−
n+ 1
2nrN

trace
�

(Gv,µ,w(x;t)
r )−1 d2

d t2
Gv,µ,w(x;t)

r

�

.

Let Gv,µ,w(x;t)
r = PH(t)Λ(t)P(t) = (Λ

1
2 (t)P(t))H(Λ

1
2 (t)P(t)) be the orthogonal decomposition of the Hermitian matrix Gv,µ,w(x;t)

r .
It follows that (Gv,µ,w(x;t)

r )−1 = (Λ−1/2(t)P(t))H(Λ−1/2(t)P(t)), so that, using the cyclic property trace(ABC) = trace(BCA) of the
trace operator, we have

f ′r (t) = −
n+ 1
2nrN

trace
�

(Λ−1/2(t)P(t))
d
d t

Gv,µ,w(x;t)
r (Λ−1/2(t)P(t))H

�

=: −
n+ 1
2nrN

trace A(1).

On the other hand, again using trace(ABC) = trace(BCA),

f ′′r (t) =
n+ 1
nrN

�

trace(A(1)A(1))− trace A(2)
�

, (39)

where

A(2) := (Λ−1/2(t)P(t))
d2

d t2
Gv,µ,w(x;t)

r (Λ−1/2(t)P(t))H .
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We need to compute the trace of the matrices A(1), A(1)A(1), and A(2).

d
d t
[Gv,µ,w(x;t)

r ]h,k =
d
d t

∫

K

g(qh(x)�wr(x; t), qk(x)�wr(x; t))dµ(x)

=

∫

K

�

g
�

qh(x)�wr(x; t), qk(x)�
d
d t

wr(x; t)
�

+ g
�

qh(x)�wr(x; t)�
d
d t

wr(x; t), qk(x)
��

dµ(x).

Since d
d t wr(x; t) = −rwr(x; t)�ω we can conclude that

d
d t
[Gv,µ,w(t)

r ]h,k = −r

∫

K

g (qh(x)�wr(x; t), qk(x)�wr(x; t)�ω) dµ(x)− r

∫

K

g (qh(x)�wr(x; t)�ω, qk(x)�wr(x; t)) dµ(x).

Using the fact that the matrix (Λ−1/2P) is the change of basis transforming the basis given by the qh’s in the basis bi(·, t)
orthonormal with respect to the product induced by (K , w(x; t), v,µ) , we get

A(1)h,k = −r

∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)− r

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x) .

(40)
Note that in particular we have

A(1)h,h = −2rℜ
∫

K

g (bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω) dµ(x)) . (41)

Thus trace
�

A(1)
�

= −2ℜ
∑N

h=1

∫

K
g (bh(x , t)�wr(x , t), bh(x , t)�wr(x , t)�ω(x)) dµ(x), and (37) follows.

Let us compute trace(A(2)). Using again d
d t wr(x; t) = −rwr(x; t)�ω we can write

d2

d t2
[Gv,µ,w(t)

r ]h,k = r2

�∫

K

g (qh(x)�wr(x; t)�ω, qk(x)�wr(x; t)�ω) dµ(x)

+

∫

K

g (qh(x)�wr(x; t), qk(x)�wr(x; t)�ω�ω) dµ(x)

+

∫

K

g (qh(x)�wr(x; t)�ω, qk(x)�wr(x; t)�ω) dµ(x)

+

∫

K

g (qh(x)�wr(x; t)�ω�ω, qk(x)�wr(x; t)) dµ(x)

�

.

Therefore we have

A(2)h,h = r2

�∫

K

g (bh(x , t)�wr(x , t)�ω, bh(x , t)�wr(x , t)�ω) dµ(x)

+

∫

K

g
�

bh(x , t)�wr(x , t), bh(x , t)�wr(x , t)�ω2
�

dµ(x)

+

∫

K

g (bh(x , t)�wr(x , t)�ω, bh(x , t)�wr(x , t)�ω) dµ(x)

+

∫

K

g
�

bh(x , t)�wr(x , t)�ω2, bh(x , t)�wr(x , t)
�

dµ(x)

�

= 2r2

�∫

K

g (bh(x , t)�wr(x , t)�ω, bh(x , t)�wr(x , t)�ω) dµ(x)

+ℜ
∫

K

g
�

bh(x , t)�wr(x , t), bh(x , t)�wr(x , t)�ω2
�

dµ(x)

�

,

so that

trace
�

A(2)
�

= 2r2

�

∑

h

‖bh(·, t)�ω‖2
wr (·;t),v,µ +

∑

h

ℜ
∫

K

g
�

bh(x , t)�wr(x , t), bh(x , t)�wr(x , t)�ω2
�

dµ(x)

�

. (42)
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We now compute the trace of A(1) × A(1) using (40).

trace(A(1) × A(1)) =
∑

h

∑

k

A(1)h,kA(1)k,h =
∑

h

∑

k

A(1)h,kA(1)h,k =
∑

h

∑

k

|A(1)h,k|
2

= r2
∑

h

∑

k

�

�

�

∫

K

g
�

b(t)h (x)�wr(x; t), bk(x , t)�wr(x; t)�ω
�

dµ(x)

+

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

= r2
∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

+ r2
∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
�

�

�

2

+ 2r2ℜ
∑

h

∑

k

�∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)

·
∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
�

= 2r2
∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

+ 2r2ℜ
∑

h

∑

k

�∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)

·
∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
�

. (43)

Therefore, subtracting (42) to (43), we have

trace(A(1) × A(1))− trace(A(2)) = 2r2ℜ
∑

h

�

−
∫

K

g
�

bh(x , t)�wr(x; t), bh(x , t)�wr(x; t)�ω2
�

dµ(x)

+
∑

k

�∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)

·
∫

K

g (bh(x , t)�wr(x; t), bk(x , t)�wr(x; t)�ω) dµ(x)
�

+ 2r2

�

∑

h

∑

k

�

�

�

∫

K

g (bh(x , t)�wr(x; t)�ω, bk(x , t)�wr(x; t)) dµ(x)
�

�

�

2

−
∑

h

‖bh(·, t)�ω‖2
wr (·;t),v,µ

�

,

from which, recalling (39), Equation (38) follows.
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[38] V. P. Zaharjuta. Transfinite diameter, Čebyšev constants, and capacity for compacta in Cn. Mathematics of the USSR-Sbornik, 25(3):350–364,
1975.

[39] V. Zakharyuta. Transfinite diameter, chebyshev constants, and capacities in Cn. Annales Polonici Mathematici, 106(1):293–313, 2012.

[40] O. Zeitouni and S. Zelditch. Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. IMRN, (20):3935–
3992, 2010.

Dolomites Research Notes on Approximation ISSN 2035-6803

https://theses.hal.science/tel-04067201/

	Introduction
	Weighted pluripotential theory and polynomial approximation of functions
	Our study
	Notation and preliminaries
	Main results
	Polynomial interpolation of differential forms


	Weighted transfinite diameter
	Bernstein Markov Property, Gram determinants, and "free energy asymptotics"
	Bernstein Markov property in M(K,U)
	Gram determinants, and “free energy asymptotics”

	Strong Bergman Asymptotics and Convergence of Fekete vector measures
	A specialization to polynomial differential forms
	Details of the proof of Proposition 4.1

