
Volume 17 · 2024 · Pages 80–88

On the approximation properties of fast Leja points
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Abstract

Fast Leja points on an interval are points constructed using a discrete modification of the algorithm for
constructing Leja points. Not much about fast Leja points has been proven theoretically. We present an
asymptotic property of a triangular interpolation array, and under the assumption that fast Leja points
satisfy this property, we prove that they are good for Lagrange interpolation.

1 Introduction
Recall that for a compact set K ⊂ C, Leja points are constructed inductively as follows:

1. Choose z0 ∈ K .

2. Given z0, . . . , zn−1, choose zn ∈ K such that

|pn(zn)|= ‖pn‖K := sup
z∈K
|pn(z)|,

where pn(z) = (z − z0) · · · (z − zn−1).

Leja points are found in step 2 by optimization, and computations become cumbersome for large n. One way to get around
this is to discretize K with a (weakly) admissible mesh [6], from which so-called discrete Leja points can be constructed by
numerical linear algebra [5]. The theory of discrete Leja points on weakly admissible meshes has been studied a lot in higher
dimensions; see [9] for more resources and a list of references.

Fast Leja points were introduced in [2] as another discrete version of Leja points. Unlike points constructed using weakly
admissible meshes, a preliminary discretization is not required. The construction of fast Leja points proceeds in tandem with an
adaptive discretization of K by so-called candidate points.

Fast Leja points are defined on Jordan arcs or curves in C. The prototypical Jordan arc is the interval [0,1], where the fast
Leja points Tn and candidate points Sn are constructed inductively as follows.

1. Let t0 = 0, t1 = 1, and choose s1 ∈ (0,1).

2. Given the sets
Tn−1 = {t0, . . . , tn−1}, Sn−1 = {s1, . . . , sn−1}

and polynomial pn(z) = (z − t0) · · · (z − tn−1), choose sk ∈ Sn−1 such that

|pn(sk)|=max{|pn(s j)|: j = 1, . . . , n− 1}.

3. Choose a, b ∈ (0,1) \ Sn−1 such that [a, b]∩ Sn−1 = {sk}.
4. Put tn := sk, sk := a and sn := b; then Tn = {t0, . . . , tn} and Sn = {s1, . . . , sn}.
Each step of the algorithm yields the fast Leja points Tn = Tn−1 ∪ {tn}, as well as the candidate points Sn that interlace the fast
Leja points. At step n, a point sk is moved from Sn−1 to Tn and replaced by 2 points on either side. Throughout this paper, the
new candidate points a, b will be the midpoints of the two intervals joining sk with the adjacent fast Leja points in Tn−1 to the left
and right.

If K is a Jordan arc, it has a continuous parametrization z : [0,1] → K. Define z0 = z(0), z1 = z(1), m1 = z(s1) where
s1 ∈ (0,1). The criterion (step 2) for adding zn to {z0, . . . , zn−1} from the candidates {m1, . . . , mn} is

|pn(zn)|=max{|pn(m j)|: j = 1, . . . , n− 1}.

Steps 3–4 are exactly the same, done in terms of the parameters t j and sk where z j = z(t j) and mk = z(sk).
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If K is a Jordan curve, it has a parametrization with z(0) = z(1). Let z0 be this point and let m0 = z(s0) for some choice of
s0 ∈ (0, 1). Then run the algorithm as before. In this case the number of fast Leja points and interlacing candidate points is the
same at each step.

Although fast Leja points have been around for over 20 years, there does not seem to have been much rigorous study of their
properties. In this paper, we will consider fast Leja points on a real interval, where the candidate points are chosen to be the
midpoints of the intervals between adjacent fast Leja points.

An open problem is to prove that fast Leja points are good for polynomial interpolation. To do (Lagrange) polynomial
interpolation, one specifies a triangular interpolation array C, which is a set of points and indices {an j} j=0,...,n; n=1,2,... ⊂ K , where
points are distinct at each stage: an j 6= ank if j 6= k, for each n. Given a function f , let Ln f be the unique polynomial of degree n
such that

f (an j) = Ln f (an j) for each j = 0, . . . , n.

Then the array C is good for polynomial interpolation on K if Ln f converges uniformly to f on K as n→∞ (written Ln f ⇒ f ),
for all f analytic in a neighborhood of K .

Conditions that give good interpolation arrays for a compact set K were described in [4]; one of these conditions involves the
transfinite diameter d(K) (cf. Theorem 4.1, property (2)). The main theorem of this paper, Theorem 4.2, connects this condition
to a certain asymptotic distribution property (Property (?), see Section 3) of the interpolation array. It is easy to construct many
examples of arrays that satisfy this property; indeed, in Theorems 3.1–3.2 some rather flexible bounds on asymptotic behaviour
of the local density of points of the array are derived that guarantee Property (?). Verifying these bounds for fast Leja points is yet
to be done, but I plan to return to this in a future work.

The outline of the paper is as follows. Section 2 carries out preliminary calculations relating the sup norm of a polynomial on
an interval to its value at the midpoint of the interval. In Section 3, Property (?) is defined and studied. Then the main theorem
is proved in Section 4, summarized below:
Theorem (cf. Theorem 4.2). Let F denote the fast Leja points on an interval. Suppose Property (?) holds for F . Then F is good for
polynomial interpolation.

Finally, in Section 5 we make some closing remarks.

2 Estimating the sup norm
For convenience of calculation in this section, we will translate our interval so that the point of interest is the origin. The setup is
as follows: let n1, n2 ∈ N, and put n := n1 + n2 + 2. Let {ζ j}

n1
j=1, {η j}

n2
j=1 be sequences of real numbers such that

ζ1 < ζ2 < · · ·< ζn1
< −ε < ε < η1 < η2 < · · ·< ηn2

.

We will also write the full collection of points as {z j}nj=1, i.e.,

z1 = ζ1, . . . , zn1+1 = −ε, zn1+2 = ε, zn1+3 = η1, . . . , zn = ηn2
.

Let p(z) :=
n
∏

j=1

(z − z j),

p1(z) := (z2 − ε2)
n1
∏

j=1

(z − ζ j) =: (z2 − ε2)q1(z),

p2(z) := (z2 − ε2)
n2
∏

j=1

(z −η j) =: (z2 − ε2)q2(z),

so that p = p1q2 = q1p2.

Lemma 2.1. Let m ∈ [−ε,ε]. Then
|q1(m)|
|q1(0)|

≤ exp

� n1
∑

j=1

ε

|ζ j |

�

and
|q2(m)|
|q2(0)|

≤ exp

� n2
∑

j=1

ε

|η j |

�

.

Proof. We prove the first inequality. First, if m ∈ (0,ε] then |m − ζ j | = |m| + |ζ j | ≤ ε + |ζ j | for all j. On the other hand, if
m ∈ [−ε, 0] then |m− ζ j | ≤ |ζ j |< |ζ j |+ ε for all j. In either case,

|q1(m)|
|q1(0)|

=
n1
∏

j=1

|m− ζ j |
|ζ j |

≤
n1
∏

j=1

�

1+
ε

|ζ j |

�

≤ exp

� n1
∑

j=1

ε

|ζ j |

�

.

The second inequality is proved similarly.

Corollary 2.2. Let I = [−ε.ε]. Then
‖p‖I

|p(0)|
≤ exp

�

ε

n
∑

j=1

1
|z j |

�

.

Proof. Let m ∈ [−ε,ε] satisfy |p(m)|= ‖p‖I . Using Lemma 2.1,

‖p‖I

|p(0)|
=
|p(m)|
|p(0)|

=
|q1(m)|
|q1(0)|

ε2 −m2

ε2

|q2(m)|
|q2(0)|

≤
|q1(m)|
|q1(0)|

|q2(m)|
|q2(0)|

≤ exp

� n1
∑

j=1

ε

|ζ j |

�

exp

� n2
∑

j=1

ε

|η j |

�

≤ exp

�

n
∑

j=1

ε

|z j |

�

.
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3 An asymptotic property
Consider a triangular array C =

∐∞
n=1 Cn, where Cn = {ζn j}nj=1 ⊂ R are the points of the arrray at stage n, and assume the points

of Cn are distinct and listed in increasing order: ζn j < ζnk if j < k. Let

mn j := 1
2 (ζn j + ζn( j+1)) ( j ∈ {1, . . . , n− 1})

be the midpoint of the interval joining adjacent points. Define

sn( j) := |mn j − ζn j |, Hn( j) :=

�

1
n

n
∑

k=1

1
|mn j − ζnk|

�−1

.

We are interested in whether or not C has the following asymptotic property:

lim
n→∞

max
§

sn( j)
Hn( j)

: j = 1, . . . , n− 1
ª

= 0. (?)

A sequence {ζ j}∞j=1 is also defined to have Property (?) if its corresponding triangular array has Property (?). Here, the n-th
stage of the corresponding array is constructed by listing the first n points of the sequence in increasing order.

Example 3.1. We illustrate Property (?) for a simple sequence that converges to the uniform distribution on [0,1]. Let

C = {
m
2k

: m, k ∈ N, m≤ 2k},

be the fractions in the interval [0, 1] whose denominator is a power of 2, and suppose we list the elements of C sequentially by
the size of the denominator, then numerator, referred to simplest form, i.e.,

0, 1, 1
2 , 1

4 , 3
4 , 1

8 , 3
8 , 5

8 , 7
8 , . . .

To give a specific calculation: when n= 9 and j = 7 we have ζ9,7 =
3
4

, m9,7 =
13
16

,

s9(7) =
1

16
, and

1
H9(7)

=
16
9

�

1
13
+

1
11
+

1
9
+

1
7
+

1
5
+

1
3
+ 1+ 1+

1
3

�

=
2370064
405405

.

For general n, suppose n ∈ [2k + 1, 2k+1] for some k. Given j < n, either sn( j) = 2−k or sn( j) = 2−(k+1). In either case, sn = O( 1
n ).

We also have 1
Hn( j)

= O(log(n)), since these finite sums can be estimated by a multiple of the first n terms of the harmonic series.
Altogether,

sn( j)
Hn( j)

= O(
log(n)

n
) −→ 0 as n→∞.

The big-O estimates can be made independent of j, so Property (?) holds for C.

Basic estimates as above can be done very generally to yield Property (?).

Theorem 3.1. Let {bn j} be a triangular array of points in [0,1] with the property that bn j < bnk whenever j < k. Suppose there
exist positive constants α1,α2, B1, B2 with the following properties:

1. 0< α2 ≤ α1 < 1+α2.

2. There exists n0 ∈ N such that for every integer n≥ n0,

B1

�

�

�

j − k
n

�

�

�

α1

≤ |bn j − bnk| ≤ B2

�

�

�

j − k
n

�

�

�

α2

, whenever j, k ∈ {1, . . . , n}. (1)

Then Property (?) holds for {bn j}.

Proof. For each n ∈ N define

jn := Arg max
j∈{1,...,n}

sn( j)
Hn( j)

.

To verify Property (?) it suffices to show that sn( jn)/Hn( jn)→ 0 as n→∞. Take a subsequence {nl}∞l=1 ⊂ N such that

lim
l→∞

snl
( jnl
)

Hnl
( jnl
)
= limsup

n→∞

sn( jn)
Hn( jn)

. (2)

Now

1
Hnl
( jnl
)
=

1
nl

nl
∑

k=1

1
|bnl k −mnl jnl

|
=

1
nl

jnl
∑

k=1

1
mnl jnl

− bnl k
+

1
nl

nl
∑

k= jnl
+1

1
bnl k −mnl jnl

=:
1

H (1)nl

+
1

H (2)nl

.
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We concentrate on the second term. First,

1

H (2)nl

=
1
nl

nl
∑

k= jnl
+1

1
bnl k −mnl jnl

≤
1

nlsnl
( jnl
)
+

1
nl

nl
∑

k= jnl
+2

2
bnl k − bnl jnl

≤
1

nlsnl
( jnl
)
+

2
B1

nl
∑

k= jnl
+2

�

1
(k− jnl)/nl

�α1 1
nl

≤
1

nlsnl
( jnl
)
+

2
B1

∫ 1−
jnl
nl

1
nl

d x
xα1

≤
1

nlsnl
( jnl
)
+

2
B1

∫ 1

1
nl

d x
xα1

where we use the lower estimate of equation (1) in the second line of the calculation of 1/H (2)nl
.

We will consider different cases of α1. When α1 < 1, we estimate

1

H (2)nl

≤
1

nlsnl
( jnl
)
+

2
B1

∫ 1

0

d x
xα1
≤

1
nlsnl

( jnl
)
+ C

where C is a positive constant. Also, snl
( jnl
)< B2n−α2

l from the definition of snl
( jnl
) and the upper estimate in (1). Hence

snl ( jnl
)

H (2)nl

≤
1
nl
+ CB2n−α2

l → 0 as l →∞.

When α1 = 1, we use the following estimate:

1

H (2)nl

≤
1

nlsnl
( jnl
)
+

2
B1

∫ 1

1
nl

d x
x
=

1
nlsnl

( jnl
)
+

2
B1

log(nl)

and so
snl ( jnl

)

H (2)nl

≤
1
nl
+ C log(nl)n

−α2
l → 0 as l →∞.

When α1 > 1,
1

H (2)nl

≤
1

nlsnl
( jnl
)
+

2
B1

∫ 1

1
nl

d x
xα1
=

1
nlsnl

( jnl
)
+

2
B1(α1 − 1)

(nα1−1
l − 1)

from which it follows that
snl ( jnl

)

H (2)nl

≤
1
nl
+

2B2

B1(α1 − 1)
nα1−1−α2

l → 0 as l →∞.

Hence in all cases,
snl ( jnl

)

H (2)nl

→ 0. Similar methods may be used to prove
snl ( jnl

)

H (1)nl

→ 0 also. Altogether

lim
l→∞

snl
( jnl
)

Hnl
( jnl
)
= lim

n→∞

sn( jn)
Hn( jn)

= 0,

so Property (?) holds.

The hypotheses can be slightly weakened, to hold for “almost all points” in the array.

Theorem 3.2. Let {bn j} be a triangular array of points in [0, 1] with the property that bn j < bnk whenever j < k. Suppose, for any
ε > 0, there exists J ⊂ [0, 1] given by a finite union of closed intervals of total length less than ε, and positive constants α1,α2, B1, B2,
such that

1. 0< α2 ≤ α1 < 1+α2.

2. There exists n0 such that for every integer n≥ n0 and j ∈ {1, . . . , n} such that j/n 6∈ J, we have

B1

�

�

�

j − k
n

�

�

�

α1

≤ |bn j − bnk| ≤ B2

�

�

�

j − k
n

�

�

�

α2

for all k ∈ {1, . . . , n}.

Then Property (?) holds for {bn j}.
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Proof. Let the sequence { jn}n∈N and subsequence {nl}∞l∈1 be as in the first paragraph of the proof of Theorem 3.1, with equation
(2) holding. By possibly passing to a further subsequence we may assume that there exists x ∈ [0, 1] such that jnl

/nl → x .
Denote the limit in (2) by δ. For the purpose of contradiction, suppose δ > 0. By hypothesis, choose J corresponding to

ε := δ/2.
If x 6∈ J then for sufficiently large l we have jnl

/nl 6∈ J , and the rest of the proof goes through with no change to yield

snl
( jnl
)

Hnl
( jnl
)
→ 0 6= δ as l →∞,

which is a contradiction.
Hence we many assume (passing to a subsequence) that x ∈ J , and that jnl

/nl ∈ J for all l, and write

1
Hnl

=
1
nl

nl
∑

k=1

1
|bnl k −mnl jnl

|
=

1
nl

∑

k
nl
∈J

1
|bnl k −mnl jnl

|
+

1
nl

∑

k
nl
6∈J

1
|bnl k −mnl jnl

|
=: S1 + S2.

Using the length of J , we see that the sum S1 consists of nlε terms or fewer. Also, snl
( jnl
)≤ |bnl k −mnl jnl

| for all k, so that

S1 ≤
ε

snl
( jnl
)
.

To estimate S2, we split the sum into two pieces:

S2 =
1
nl

∑

k
nl
6∈J , k

nl
>x

1
|bnl k −mnl jnl

|
+

1
nl

∑

k
nl
6∈J , k

nl
<x

1
|bnl k −mnl jnl

|
=: T1 + T2.

To estimate T1, we let rl be the smallest integer such that rl/nl 6∈ J and k ≥ rl for all k ∈ {1, . . . , nl} such that k/nl > x . Then
rl > jnl

and so

T1 =
1
nl

∑

k
nl
6∈J , k

nl
>x

1
|bnl k −mnl jnl

|
≤

1
nl

∑

k
nl
6∈J , k

nl
≥

rl
nl

1
|bnl k −mnl jnl

|

≤
1
nl







2
snl
( jnl
)
+

∑

k
nl
6∈J , k

nl
>

rl+1
nl

1
|bnl k −mnl jnl

|







≤
1
nl

 

2
snl
( jnl
)
+

nl
∑

k=rl+2

2
|bnl k − bnl rl

|

!

≤
1
nl

 

2
snl
( jnl
)
+

2
B1

∫ 1

1
nl

d x
xα1

!

following the proof of Theorem 3.1. Using the same estimates of the integral as before, we obtain snl
( jnl
)T1→ 0.

A similar argument can be used to estimate T2, to yield snl
( jnl
)T2→ 0. Hence snl

( jnl
)S2→ 0 as l →∞.

Finally,

lim sup
l→∞

snl
( jnl
)

Hnl
( jnl
)
= lim sup

l→∞

�

snl
( jnl
)S1 + snl

( jnl
)S2

�

≤ ε+ 0= δ/2< δ,

which again is a contradiction.
Hence δ = 0 and therefore Property (?) holds.

The conditions of the theorem are true for many arrays; a couple of illustrations of the estimates are given in Figures 1 and 2.
This includes arrays in which points converge to a reasonable distribution over the interval. In what follows, δbn j

denotes the
discrete (Dirac) probability measure supported at bn j and d x denotes Lebesgue measure.

Corollary 3.3. Let {bn j} be a triangular array of points in [0, 1], and suppose

1
n+ 1

n
∑

j=0

δbn j
−→ ϕ′(x)d x as n→∞

for some C1 function ϕ on [0,1] with ϕ′ ≥ 0, where ‘−→’ denotes weak-∗ convergence of measures. Suppose also that {x ∈
[0, 1]: ϕ′(x) = 0} is finite. Then {bn j} has property (?).

Proof. Let J be a union of closed intervals of total length less than ε whose interior covers all the points x where ϕ′(x) = 0. By
continuity, ϕ′ > 0 on the closure of [0,1] \ J and therefore attains a minimum m and maximum M on this set. With this set J ,
the hypotheses of Theorem 3.2 are satisfied (for sufficiently large n) when B1 = m/2, B2 = 2M , and α1 = α2 = 1.
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Figure 1: Illustration of the bounds (valid for all k)

B1|( j − k)/n|α1 ≤ |bn j − bnk| ≤ B2|( j − k)/n|α2

when j = 58, for a randomly generated distribution of 100 points in the interval [0,1]. Here 0.5< α2 < 1< α1 < 1.5.

Figure 2: Illustration of the estimates in Theorem 3.2 for a 50-point approximation to the equilibrium distribution for [0,1] with j = 5, and
0.5< α2 < 1< α1 < 1.5. The lower estimate only holds outside a (small) neighborhood of the end points.
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4 Approximation properties
Before stating our main theorem, we need to recall some basic notions and classical results.

Let K ⊂ C be compact. The n-th order diameter of K is

dn(K) := sup{|V DM(a1, . . . , an)|
2

n(n+1) : {a1, . . . , an} ⊂ K}

where

V DM(a1, . . . , an) := det













1 1 · · · 1
a1 a2 · · · an
a2

1 a2
2 · · · a2

n
...

...
. . .

...
an−1

1 an−1
2 · · · an−1

n













is the Vandermonde determinant associated to the finite set {a1, . . . , an}.
The transfinite diameter of K is

d(K) := lim
n→∞

dn(K).

Recall that a monic polynomial is of the form zn + (terms of degree< n), i.e., has leading coefficient 1. The n-th Chebyshev
constant is

τn(K) := inf{‖p‖K : p is a monic polynomial of degree ≤ n}1/n,

and it is a classical result that
lim

n→∞
τn(K) = d(K). (3)

(This is shown in Chapter 5 of [7]); more precisely, it is shown that the limit of Chebyshev constants and the transfinite diameter
are both equal to the potential-theoretic logarithmic capacity of K .)

Let C = {an j} j=1,...,n;n=1,2,... ⊂ K be an interpolation array. Given n ∈ N, define for each j = 1, . . . , n the fundamental Lagrange
interpolating polynomial

`
(n)
j (z) :=

V DM(an1, . . . , an( j−1), z, an( j+1), . . . , ann)

V DM(an1, . . . , ann)
.

This is the unique polynomial of degree n− 1 that satisfies `(n)j (an j) = 1 and `(n)j (ank) = 0 if k 6= j. The n-th Lebesgue constant is

Λn := sup
z∈K

n
∑

j=1

|`(n)j (z)|.

We recall the following theorem relating the above notions to polynomial approximation on K. Recall that ‘⇒’ denotes
uniform convergence.

Theorem 4.1 ([4], Theorem 1.5). Let K ⊂ C be a regular, polynomially convex, compact set. Consider the following four properties
which an array {An j} j=0,...,n;n=1,2,... ⊂ K may or may not possess:

1. lim
n→∞

Λ1/n
n = 1;

2. lim
n→∞

|V DM(An0, . . . , Ann)|
2

n(n+1) = d(K);

3. lim
n→∞

1
n+1

∑n
j=0 δAn j

= µK weak ∗;

4. Ln f ⇒ f on K for each f holomorphic on a neighborhood of K.

Then (1)⇒ (2)⇒ (3)⇒ (4), and none of the reverse implications is true.

Remark 1. A regular, polynomially convex compact set in C is one whose complement consists of a single unbounded component,
and whose potential-theoretic extremal function is continuous. In particular, this is true for an interval, and any finite union of
Jordan arcs or curves.

We can now prove our main theorem that relates Property (2) in Theorem 4.1 to Property (?) from the previous section.

Theorem 4.2. Let F = {a j}∞j=1 denote the fast Leja points on the interval I = [0, 1]. Suppose Property (?) holds for F . Then

lim
n→∞

|V DM(a1, . . . , an)|
2

n(n+1) = d(I).

Hence F is good for polynomial interpolation.

Proof. Let
Ln := V DM(a1, . . . , an) =

∏

j<k

|a j − ak|.

By definition, limsupn→∞ L
2

n(n+1)
n ≤ d(I) so it suffices to prove lim infn→∞ L

2
n(n+1)
n ≥ d(I).
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Let pn(z) =
∏n−1

j=1(z − a j) for each integer n> 1. By a calculation,

Ln

Ln−1
= |pn(an)|.

Take b ∈ I such that ‖pn‖I = |pn(b)|. Then b ∈ (ak1
, ak2
) where ak1

, ak2
are neighboring fast Leja points in Fn. Let ak1k2

=
1
2 (ak1

+ ak2
) denote their midpoint. Then applying Corollary 2.2 with ak1k2

translated to 0, we have the estimate

‖pn‖I

|p(ak1k2
)|
=
‖pn‖[ak1 ,ak2 ]

|p(ak1k2
)|
≤ exp

�

|ak1k2
− ak1

|
n−1
∑

j=1

1
|ak1k2

− a j |

�

≤ exp

�

|ak1k2
− ak1

|
n
∑

j=1

1
|ak1k2

− a j |

�

. (4)

Note that ak1k2
is a competitor for the next fast Leja point an, so |pn(ak1k2

)| ≤ |pn(an)|. Using this and (4),

‖pn‖I ≤ exp

�

|ak1k2
− ak1

|
n−1
∑

j=1

1
|ak1k2

− a j |

�

|pn(ak1k2
)| ≤ exp

�

n
sn(k1)
Hn(k1)

�

|pn(an)|.

Now ‖pn‖I ≥ τn−1(I)n−1, since pn is monic of degree n− 1. Hence

τn−1(I)
n−1 ≤ exp

�

n
sn(k1)
Hn(k1)

�

Ln

Ln−1
.

Let ε > 0. Using property (?), choose N such that
sn( j)
Hn( j)

< ε for all n> N and j < n. Then

Ln =
Ln

Ln−1

Ln−1

Ln−2
· · ·

LN+1

LN
LN ≥ τn−1(I)

n−1τn−2(I)
n−2 · · ·τN+1(I)

N+1 exp

�

−ε
n
∑

j=N+1

j

�

LN .

In view of (3), τ j(I)→ d(I) as j→∞. Hence the weighted geometric averages also converge:
�

n
∏

j=N+1

τ j(I)
j

�1/(
∑

j)
−→ d(I) as n→∞.

Also
n
∑

j=N+1

j =
(n+ N + 1)(n− N)

2
=

n2

2
+O(n).

So for any n> N sufficiently large,

(Ln)
2

n(n+1) ≥ (d(I)− ε)
n2+O(n)

n2+n exp
�

−ε
n2 +O(n)

n2 + n

�

L
1

n(n+1)
N .

Letting n→∞,

lim inf
n→∞

(Ln)
2

n(n+1) ≥ (d(I)− ε)e−ε

and since ε > 0 was arbitrary, lim inf
n→∞

(Ln)
2

n(n+1) ≥ d(I). So lim
n→∞

(Ln)
2

n(n+1) = d(I).

Hence F satisfies the second condition in Theorem 4.1, so is good for polynomial interpolation.

Remark 2. The above proof is based on the fact that the ratio
‖pn‖I

|p(an)|
does not grow exponentially. A sequence of points

{a1, a2, . . .} for which the ratio has subexponential growth (where pn(z) = (z − a1) · · · (z − an−1)) is called a pseudo Leja sequence.
Białas-Ciez and Calvi defined pseudo Leja sequences in [3] and asked whether fast Leja points give a pseudo Leja sequence. By
the above proof, the answer will be yes if Property (?) holds.

5 Final Remarks
1. The proof of Theorem 4.2 goes through with no modification if we replace the interval I by a finite union of real closed

intervals. Start with an initial Leja set consisting of the end points of each interval, and an initial candidate set consisting of
the midpoints of each interval, then run the fast Leja algorithm as usual. It may be possible to use a similar proof when K is a
finite union of smooth arcs or curves. (Note that the results of Section 2 are only proved for real points.)

2. Numerical evidence suggests that in fact, the ratio
‖pn‖I

|p(an)|
is uniformly bounded (by some constant < 2, see Figure 3). Points

with this stronger property are called τ-Leja points [1]: for τ ∈ (0, 1), a sequence of points {z0, z1, . . .} ⊂ I is τ-Leja if

τ‖pn‖I ≤ |pn(zn)|

where pn(z) = (z − z0) · · · (z − zn−1).
Totik recently proved in [8] that τ-Leja points on a set with positive logarithmic capacity satisfy limn→∞Λ

1/n
n = 1, the strongest

property in Theorem 4.1.

Conjecture. Fast Leja points on an interval are τ-Leja points for some τ ∈ ( 1
2 , 1).
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Figure 3: A plot of the graph (x , p13(x)), where the zeros of p13 are the first 13 fast Leja points on [0, 1]. The points (m j , 2p13(m j)) are indicated
by circles, where m j is the midpoint of the j-th interval between adjacent fast Leja points. These midpoints are the candidates for the next fast
Leja point.
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