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Abstract

Bézier curves are very important tools in various fields and applications, such as computer graphics
and computer-aided design. The de Casteljau algorithm is the first method introduced for evaluating
polynomial Bézier curves, later also generalized to the rational case and surfaces. Although it presents
an elegant definition through convex combinations and generally yields stable results, it has quadratic
time complexity, which means that its computational cost can increase significantly with the number of
control points. This represents a significant limitation, especially when dealing with high-degree curves
and real-time applications. For this reason, numerous studies have been conducted in order to provide
alternative approaches and more efficient algorithms. In this paper, we present a collection of the most
commonly used algorithm in the state-of-the-art, also providing a comparison of their efficiency and their
numerical stability.

1 Introduction

Bézier curves were originally introduced in the context of car modeling for major automotive manufacturers [4, 5, 7]. Nowadays,
their utility extends across numerous fields, like computer-aided design, simulation, approximation, robotics, artificial intelligence,
etc. Many applications in these domains require real-time interactions or live updates, thus necessitating fast evaluation times.
For this reason, over the years, there have been numerous studies dedicated to developing efficient evaluation algorithms for
Bézier curves. In this paper, we aim to present a comparison of the most commonly used algorithms, focusing not only on their
efficiency, but also on their numerical stability.

Given a set of n+ 1 control points P0, . . . , Pn ∈ R2 with associated positive weights w0, . . . , wn ∈ R>0, we define a rational
Bézier curve P : [0,1]→ R2 as

P(t) =

∑n
i=0 Bn

i (t)wi Pi
∑n

i=0 Bn
i (t)wi

, (1)

where

Bn
i (t) =

�

n
i

�

t i(1− t)n−i , i = 0, . . . , n, (2)

represents the Bernstein basis composed by polynomials of degree n and t ∈ [0, 1] is the parameter along the curve. There exist
numerous methods for computing rational Bézier curves, such as adaptations of the classic de Casteljau algorithm for polynomials
in the rational case, or more efficient approaches employing Horner-like schemes or basis conversions. We now present the most
commonly used algorithms and, for each of them, we describe how it is implemented and provide the pseudocode (Appendix).
Afterward, we investigate the numerical stability of each algorithm and derive an upper bound on the relative error for most of
them (Section 2). Finally, we conduct an efficiency analysis (Section 3) and present some numerical experiments to support our
results (Section 4).

1.1 Rational de Casteljau algorithms

The most straightforward approach to compute P(t) is by using the classic quadratic time de Casteljau algorithm for polynomials
[6]. In the case of a rational Bézier curve of the type in (1), we recall that it can be considered as the central projection of the
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spatial polynomial curve

P̂(t) =
n
∑

i=0

Bn
i (t)P̂i , P̂i =

�

wi Pi

wi

�

, (3)

under the projection

proj(x , y, z) =
�

x
z

,
y
z

�

. (4)

This implies that we can apply the classical de Casteljau algorithm to P̂(t) and then project the final result according to (4)
(Algorithm 1 and 2). This process is equivalent to first computing the values of the numerator and the denominator with the
recursive formulas

¨

N 0
i = wi Pi ,

N r
i = N r−1

i (1− t) + N r−1
i+1 t,

and

¨

D0
i = wi ,

Dr
i = Dr−1

i (1− t) + Dr−1
i+1 t,

(5)

i = 0, . . . , n and r = 1, . . . , n, respectively, and then the final result as P(t) = N n
0 /D

n
0 . We also note that this method exhibits

quadratic complexity.
Alternatively, Farin [13] adapts this approach into a more robust quadratic time algorithm (Algorithm 3) with additional

geometric meaning, given by






















w0
i = wi ,

P0
i = Pi ,

wr
i = wr−1

i (1− t) +wr−1
i+1 t,

P r
i =

P r−1
i wr−1

i
wr

i
(1− t) +

P r−1
i+1 wr−1

i+1
wr

i
t,

(6)

i = 0, . . . , n and r = 1, . . . , n, and P(t) = Pn
0 .

1.2 Horner-like algorithms

Volk and Schumaker [23] are the first to achieve an algorithm for computing polynomial Bézier curves with linear time complexity.
Their idea is to use nested multiplications for the computation, which results in a significant gain in terms of efficiency. We
present a straightforward extension of the VS algorithm by first applying it on the numerator and the denominator of P(t), and
then simplifying some common factors. In particular, we express the rational Bézier curve in (1) equivalently as

P(t) =

∑n
i=0 xn−i

�n
i

�

wi Pi
∑n

i=0 xn−i
�n

i

�

wi

, x =

¨

(1− t)/t, t > 1/2

t/(1− t), t ≤ 1/2.
(7)

There are many methods for evaluating a polynomial; [17] highlights two approaches: one using a Horner scheme, and the other
employing a ladder pattern. However, [27] shows that these forms are equivalent for the monomial basis, so we consider the
former. Therefore, the VS algorithm evaluates the numerator and the denominator using a Horner scheme (Algorithm 4 and 5) as

P(t) =































�n
n

�

wnPn + x
�

� n
n−1

�

wn−1Pn−1 + x
�

� n
n−2

�

wn−2Pn−2 + · · ·+ x
�

�n
1

�

w1P1 + x
�n

0

�

w0P0

�

. . .
��

�n
n

�

wn + x
�

� n
n−1

�

wn−1 + x
�

� n
n−2

�

wn−2 + · · ·+ x
�

�n
1

�

w1 + x
�n

0

�

w0

�

. . .
�� , t > 1/2,

�n
0

�

w0P0 + x
�

�n
1

�

w1P1 + x
�

�n
2

�

w2P2 + · · ·+ x
�

� n
n−1

�

wn−1Pn−1 + x
�n

n

�

wnPn

�

. . .
��

�n
0

�

wn + x
�

�n
1

�

w1 + x
�

�n
2

�

w2 + · · ·+ x
�

� n
n−1

�

wn−1 + x
�n

n

�

wn

�

. . .
�� , t ≤ 1/2.

With the same strategy, Farin [14] presents another Horner-like algorithm (Algorithm 4 and 6) by setting s = 1− t and
computing P(t) in (1) as

P(t) =

∑n
i=0 t isn−i

�n
i

�

wi Pi
∑n

i=0 t isn−i
�n

i

�

wi

=

�

. . .
��

�n
0

�

w0P0s+
�n

1

�

w1P1 t
�

s+
�n

2

�

w2P2 t2
�

s+ · · ·+
� n

n−1

�

wn−1Pn−1 tn−1
�

s+
�n

n

�

wnPn tn

�

. . .
��

�n
0

�

w0s+
�n

1

�

w1 t
�

s+
�n

2

�

w2 t2
�

s+ · · ·+
� n

n−1

�

wn−1 tn−1
�

s+
�n

n

�

wn tn
. (8)

1.3 Geometric approach

On the one hand, while the rational de Casteljau adaptation by [13] has some nice geometric interpretation, it can only be done
in quadratic time. On the other hand, the VS algorithm has linear time complexity, but it lacks geometric interpretation and
properties. For this reason, Woźny and Chudy [28] introduce a new linear time algorithm that has a nice geometric interpretation.
In particular, P(t) can be computed recursively (Algorithm 7) using a Horner-like scheme and convex combinations as











h0 = 1, hi =
wihi−1 t(n− i + 1)

wi−1i(1− t) +wihi−1 t(n− i + 1)
,

T0 = P0, Ti = (1− hi)Ti−1 + hi Pi .

(9)

From these recursive formulas, this algorithm has an elegant geometric interpretation since Ti ∈ [Ti−1, Pi].
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1.4 Wang–Ball algorithm

Another approach to achieve an algorithm with linear time complexity is by converting the Bernstein basis into a different basis.
There exist several methods in this direction, such as transforming the Bernstein into the Wang–Ball basis [10, 20, 26], the DP
basis [8, 11, 12], and other similar types of bases [9]; the former is proven to be the most efficient. The rational Wang–Ball curve,
defined by the control points R0, . . . , Rn with their respective weights v0, . . . , vn, is given by

P(t) =

∑n
i=0 An

i (t)viRi
∑n

i=0 An
i (t)vi

, (10)

where the Wang–Ball basis {An
i }i=0,...,n is defined as

An
i (t) =



















(2t)i(1− t)i+2, 0≤ i ≤ ⌊n/2⌋ − 1,

(2t)⌊n/2⌋(1− t)⌈n/2⌉, i = ⌊n/2⌋ ,
(2(1− t))⌊n/2⌋ t⌈n/2⌉, i = ⌈n/2⌉ ,
An

n−i(1− t), ⌈n/2⌉+ 1≤ i ≤ n.

(11)

Actually, in order to achieve a linear time method, its implementation uses a recursive algorithm similar to (6), but for the new
set of control points and weights (Algorithm 10). Specifically, it starts by setting

n0 = n, v0
i = vi , and R0

i = Ri , i = 0, . . . , n0, (12)

and then, at each step r = 1, . . . , n of the recursion, it defines nr = n− r new weights and control points. In particular, if nr is
odd, they are given by











v r
i = v r−1

i , i = 0, . . . , nr−3
2 ,

v r
i = v r−1

i (1− t) + v r−1
i+1 t, i = nr−1

2 ,

v r
i = v r−1

i , i = nr+1
2 , . . . , nr ,

and











Rr
i = Rr−1

i , i = 0, . . . , nr−3
2 ,

Rr
i =

Rr−1
i vr−1

i
vr
i
(1− t) +

Rr−1
i+1 vr−1

i+1
vr
i

t, i = nr−1
2 ,

Rr
i = Rr−1

i , i = nr+1
2 , . . . , nr ,

(13)

while, if nr is even, they are










v r
i = v r−1

i , i = 0, . . . , nr
2 − 2,

v r
i = v r−1

i (1− t) + v r−1
i+1 t, i = nr

2 − 1, nr
2 ,

v r
i = v r−1

i , i = nr
2 + 1, . . . , nr ,

and











Rr
i = Rr−1

i , i = 0, . . . , nr
2 − 2,

Rr
i =

Rr−1
i vr−1

i
vr
i
(1− t) +

Rr−1
i+1 vr−1

i+1
vr
i

t, i = nr
2 − 1, nr

2 ,

Rr
i = Rr−1

i , i = nr
2 + 1, . . . , nr ,

(14)

and the result is P(t) = Rn
0. Before proceeding with this algorithm, there is a prepossessing step to get the values v0, . . . , vn and

R0, . . . , Rn (Algorithm 8 and 9). In particular, the weights and control points of the Bézier and Wang–Ball representations can be
converted back-and-forth by means of a matrix multiplication [19]. However, for the sake of numerical stability, Dejdumrong et
al. [10] present the explicit formulas to obtain the Wang–Ball control points and weights from the corresponding Bézier ones,
that are











































v0 = w0,

vn = wn,

vi =
1
2i

�

�n
i

�

wi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=n−i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i < ⌊n/2⌋ ,

vi =
1

2n−i

�

�n
i

�

wi −
∑n−i

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i > ⌈n/2⌉ ,

vi =
1
2i

�

�n
i

�

wi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+2 2n−k
�2k−2−n

k−i

�

vk

�

, i = ⌊n/2⌋ ,

vi =
1

2n−i

�

�n
i

�

wi −
∑i−2

k=0 2k
�n−2−2k

i−k

�

vk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vk

�

, i = ⌈n/2⌉

(15)

and










































R0 = P0,

Rn = Pn,

Ri =
1

2i vi

�

�n
i

�

wi Pi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=n−i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i < ⌊n/2⌋ ,

Ri =
1

2n−i vi

�

�n
i

�

wi Pi −
∑n−i

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i > ⌈n/2⌉ ,

Ri =
1

2i vi

�

�n
i

�

wi Pi −
∑i−1

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+2 2n−k
�2k−2−n

k−i

�

vkRk

�

, i = ⌊n/2⌋ ,

Ri =
1

2n−i vi

�

�n
i

�

wi Pi −
∑i−2

k=0 2k
�n−2−2k

i−k

�

vkRk −
∑n

k=i+1 2n−k
�2k−2−n

k−i

�

vkRk

�

, i = ⌈n/2⌉ .

(16)

We note that, before computing vk and Rk, k = 0, . . . , n, the weights vi and vn−i and the control points Ri and Rn−i , i = 0, . . . , k−1,
must be computed.
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1.5 Bernstein–Fourier algorithm

Another series of approaches involving a transformation to another form are explored in [1, 2, 3]; the most efficient amongst
them is the Bernstein–Fourier method. It involves applying the Inverse Fast Fourier Transform (IFFT) on the control points, that is
computing the points Ŝi = ifft(P̂i), i = 0, . . . , n, for P̂i in (3) (Algorithm 12). Then, P(t) is the central projection on the x y-plane
under the projection (4) of

P̂(t) =
n
∑

i=0

(ζi t + (1− t))nŜi , (17)

where the ζi , i = 0, . . . , n, are the roots of unity of order n+ 1. Its implementation (Algorithm 11 and 13) requires O(n log n)
time and involves complex number operations. However, there are some optimisations that can be performed so that this method
can compete with the aforementioned methods (Algorithm 11 and 14). First, we note that

Ŝn+1−i = Ŝi for i =

¨

1, . . . , n
2 , if n is even,

1, . . . , n−1
2 , if n is odd.

Additionally, by letting s = 1− t, we have

(ζi t + (1− t))n = ζi(ζis+ (1− s))n.

Hence, we can compute P̂(t) and P̂(1− t) simultaneously with Ŝk, k = 0, . . . , N , for N = (n+ 1)/2. Then, if n is even, we have

P̂(t) = Ŝ0 + 2
n/2
∑

i=1

Re
�

(ζi t + (1− t))nŜi

�

,

P̂(1− t) = Ŝ0 + 2
n/2
∑

i=1

Re

 

(ζi t + (1− t))n
Ŝi

ζi

!

,

while, if n is odd, we have

P̂(t) = Ŝ0 − (1− 2t)nŜN + 2
N−1
∑

i=1

Re
�

(ζi t + (1− t))nŜi

�

,

P̂(1− t) = Ŝ0 − (1− 2t)nŜN + 2
N−1
∑

i=1

Re

 

(ζi t + (1− t))n
Ŝi

ζi

!

.

1.6 Barycentric algorithm

Finally, Ramanantoanina and Hormann [21] propose another alternative to convert the rational Bézier representation to a
barycentric rational interpolating form (Algorithm 17 or, for a more optimized version, Algorithm 18). In particular, given a set of
interpolation points Q0, . . . ,Qn with their respective weights u0, . . . , un and nodes t0, . . . , tn, a barycentric rational interpolant is
defined as

P(t) =

∑n
i=0

ui
t−ti

Q i
∑n

i=0
ui

t−ti

. (18)

The barycentric interpolation points and weights are related with the corresponding Bézier ones as

Q i = P(t i) and ui = z(t i)
∏

k ̸=i

1
t i − tk

, i = 0, . . . , n,

where z(t) is the denominator of P(t) in (1). A common choice for the set of nodes is given by the Chebyshev nodes of the second
kind in [0, 1], which are defined as tn−i = 1/2 cos(iπ/n) + 1/2, i = 0, . . . , n. In this case, the weights turn out to be computed in
linear time as [22]

ui = (−1)iδiz(t i), δi =

¨

1/2, i = 0 or i = n,

1, i = 1, . . . , n− 1.

Alternatively, we can also use uniformly distributed nodes t i = i/n, i = 0, . . . , n, with weights of the form

ui = (−1)i
�

n
i

�

z(t i).

For the sake of efficiency, we propose to compute the values Q i = P(t i) by evaluating the rational Bézier curve P at t i through
an adapted version of the rational VS algorithm. Doing so, we can also obtain the values z(t i) within the same algorithm
(Algorithm 15 and 16) as

z(t i) =
n
∑

i=0

xn−i
�

n
i

�

wi ×

¨

tn, t > 1/2,

(1− t)n, t ≤ 1/2,
(19)

for x in (7).
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2 Numerical stability

Let us now focus on analysing the numerical stability of the different algorithms that evaluate a rational Bézier curve. We will
examine all the methods introduced previously, except for the Bernstein–Fourier algorithm.

To proceed, we consider a computer that uses a set F of floating-point numbers with the corresponding machine epsilon ε and
let fl: R→ F be the rounding function that maps each x ∈ R to the closest floating-point approximation fl(x) ∈ F. Then, we study
the relative error E ∈ R2 defined as

E(t) =
|fl(P(t))− P(t)|

|P(t)|
=

�

|fl(Px (t))− Px (t)|
|Px (t)|

,
|fl(Py(t))− Py(t)|

|Py(t)|

�

(20)

for each algorithm, where P(t) is the exact result and fl(P(t)) that of its finite-precision implementation. To do so, we assume
[25] that for any x ∈ R, x ̸= 0, the relative error is bounded from above by the machine epsilon ε, or, equivalently, we can always
find some δ ∈ R with |δ|< ε, such that

fl(x) = x(1+δ). (21)

The same holds for any arithmetic operation ∗ ∈ {+,−,×,÷} between two arbitrary floating-point numbers x , y ∈ F, that is, there
exists some δ ∈ R with |δ|< ε, such that

fl(x ∗ y) = (x ∗ y)(1+δ). (22)

This property can also be extended to cases involving multiple operations, such as sums or products, where the upper bound
on |δ| depends on the number of operations performed; for more detailed information, we refer the interested reader to Fuda
et al. [16, Section 2]. Finally, we always assume that the input data t, wi and Pi are floating-point numbers, so they do not
introduce any numerical error during the computation.

2.1 Convex combinations

We start by examining the numerical stability of algorithms that evaluate a rational Bézier curve P at t through a recursive method
defined by convex combinations. Specifically, we focus on the rational de Casteljau algorithm and the Wang–Ball algorithm.
Regarding the former defined in (6), our analysis begins with a study of the error propagation in the weights wr

i , followed by an
investigation into the relative error of the values P r

i . These results lead to an upper bound on the relative error E in (20) in the
case of P(t) = Pn

0 .

Lemma 2.1. For any t, w0, . . . , wn ∈ F and r ∈ {1, . . . , n}, there exist ωr
0, . . . ,ωr

n ∈ R such that the weights wr
i in (6) satisfy

fl(wr
i ) = wr

i (1+ω
r
i ), i = 0, . . . , n, with |ωr

i | ≤ U(wr
i )ε+O(ε2) and

U(wr
i ) = 3r.

Proof. First, we notice that

fl(wr
i ) = wr−1

i (1+ω
r−1
i )(1− t)(1+δ1) +wr−1

i+1 (1+ω
r−1
i+1 )t(1+δ2)

= wr−1
i (1− t)(1+ωr−1

i +δ1 +O(ε2)) +wr−1
i+1 t(1+ωr−1

i+1 +δ2 +O(ε2)),

where δ1 and δ2 are the errors introduced by the operations in the first and second addends, respectively, that are one product and
one sum in both cases, plus one subtraction for the first addend only. Therefore, it follows from (22) that |δ1|, |δ2| ≤ 3ε+O(ε2).
Moreover, the intermediate value theorem further guarantees that

fl(wr
i ) = (w

r−1
i (1− t) +wr−1

i+1 t)(1+ωr
i ),

for some ωr
i ∈ [min(ωr−1

i +δ1 +O(ε2),ωr−1
i+1 +δ2 +O(ε2)),max(ωr−1

i +δ1 +O(ε2),ωr−1
i+1 +δ2 +O(ε2))]. Now, we can prove the

statement by induction over r. The base case follows by the fact that w0
i = wi , therefore ω0

i = 0 for all i = 0, . . . , n. Finally,
the inductive step from r − 1 to r follows from the fact that |ωr

i | ≤max j=i,i+1|ωr−1
j |+ 3ε+O(ε2), together with the inductive

hypothesis, that is |ωr−1
i | ≤ 3(r − 1)ε+O(ε2), i = 0, . . . , n.

Proposition 2.2. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of the P r
i in (6) satisfy

|fl(P r
i (t))− P r

i (t)|
|P r

i |
≤

∑r
k=0 Br

k(t)|Pi+kwi+k|
�

�

∑r
k=0 Br

k(t)Pi+kwi+k

�

�

(3r2 + 5r)ε+O(ε2), i = 0, . . . , n.

Therefore, the relative error in (20) for P(t) = Pn
0 satisfies

E(t)≤

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

(3n2 + 5n)ε+O(ε2).
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Proof. Denoting by ϕr
i the relative errors introduced by the computation of P r

i , i = 0, . . . , n and r = 1, . . . , n, we first notice that

fl(P r
i ) =

P r−1
i (1+ϕr−1

i )wr−1
i (1+ω

r−1
i )(1− t)(1+δ1) + P r−1

i+1 (1+ϕ
r−1
i+1 )w

r−1
i+1 (1+ω

r−1
i+1 )t(1+δ2)

wr
i (1+ω

r
i )

,

where |ωm
j | ≤ 3mε+O(ε2), j = i, i+1 and m = r −1, r, by Lemma 2.1 and δ1 and δ2 are the errors introduced by the operations

in the first and second addends of the numerator, respectively, that are two products, one sum, and one division each, plus one
subtraction for the first addend only. Therefore, it follows from (22) that |δ1|, |δ2| ≤ 5ε+O(ε2). By Taylor expansion, we know
that

1
(1+ωr

i )
= 1−ωr

i +O(ε2),

hence

fl(P r
i ) = P r

i +
P r−1

i wr−1
i (1− t)

wr
i

(ϕr−1
i +ωr−1

i −ωr
i +δ1 +O(ε2)) +

P r−1
i+1 wr−1

i+1 t

wr
i

(ϕr−1
i+1 +ω

r−1
i+1 −ω

r
i +δ2 +O(ε2)).

Then, using the fact that fl(P r
i )− P r

i = P r
i ϕ

r
i , the triangle inequality, and the upper bounds on the relative errors introduced by

the weights and the operations, we obtain

|P r
i ϕ

r
i wr

i | ≤ |P
r−1
i ϕr−1

i wr−1
i (1− t) + P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 t|+ |P r−1
i wr−1

i (1− t)(ωr−1
i −ωr

i +δ1) + P r−1
i+1 wr−1

i+1 t(ωr−1
i+1 −ω

r
i +δ2)|+O(ε2)

≤ |P r−1
i ϕr−1

i wr−1
i |(1− t) + |P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 |t + (|P
r−1
i wr−1

i |(1− t) + |P r−1
i+1 wr−1

i+1 |t)(6r + 2)ε+O(ε2).
(23)

In general, we know that1 Pm
j wm

j =
∑m

k=0 Bm
k Pj+kw j+k, j = 0, . . . , n and m = 1, . . . , n, therefore, by also using the relations

Br−1
k (1− t) = (r − k)/rBr

k and Br−1
k t = (k+ 1)/rBr

k+1, k = 0, . . . , r − 1, we obtain

|P r−1
i wr−1

i |(1− t) + |P r−1
i+1 wr−1

i+1 |t =
r−1
∑

k=0

Br−1
k (1− t)|Pi+kwi+k|+

r−1
∑

k=0

Br−1
k t|Pi+1+kwi+1+k|

=
r−1
∑

k=0

r − k
r

Br
k |Pi+kwi+k|+

r−1
∑

k=0

k+ 1
r

Br
k+1|Pi+1+kwi+1+k|

= Br
0|Pi wi |+

r−1
∑

k=1

�

r − k
r
+

k
r

�

Br
k |Pi+kwi+k|+ Br

r |Pi+r wi+r |

=
r
∑

k=0

Br
k |Pi+kwi+k|

(24)

and, by (23),

|P r
i ϕ

r
i wr

i | ≤ |P
r−1
i ϕr−1

i wr−1
i |(1− t) + |P r−1

i+1 ϕ
r−1
i+1 wr−1

i+1 |t +
r
∑

k=0

Br
k |Pi+kwi+k|(6r + 2)ε+O(ε2). (25)

Now, we can prove the statement by induction over r. The base case follows by the fact that P0
i = Pi , i = 0, . . . , n, hence ϕ0

i = 0.
Finally, the inductive step from r − 1 to r follows from the inductive hypothesis, that is

|P r−1
i ϕr−1

i wr−1
i | ≤

r−1
∑

k=0

Br−1
k |Pi+kwi+k|[3(r − 1)2 + 5(r − 1)]ε+O(ε2), i = 0, . . . , n,

together with (25) and the fact that, by (24),
∑r−1

k=0 Br−1
k (1− t)|Pi+kwi+k|+

∑r−1
k=0 Br−1

k t|Pi+1+kwi+1+k|=
∑r

k=0 Br
k |Pi+kwi+k|.

We now turn our attention to the definition of the Wang–Ball algorithm in (12)–(14), which is very similar to the rational
de Casteljau method in (6), except for two differences. Firstly, only the “central” Wang–Ball weights and control points are
updated at each step r = 1, . . . , n. Secondly, we cannot assume that the input data vi and Ri are exact, as they are themselves the
result of the conversion formulas in (15)–(16). On the one hand, although only a few weights change at each iteration, the final
error propagation is the same as for the recursive formulas in (6), because some of the v r

i and Rr
i are modified at each step r.

Consequently, we can use the same proof technique of Lemma 2.1 to analyse the error propagation in the weights v r
i and of

Proposition 2.2 to get the upper bounds on the relative errors of the values Rr
i and P(t) = Rn

0. On the other hand, in this scenario,
we also have to consider the initial errors in the weights vi and control points Ri , which are introduced in the preprocessing step
that converts the Bézier weights and control points into their corresponding Wang–Ball ones. Therefore, we state below the
equivalent of Lemma 2.1 and Proposition 2.2 in the case of Wang–Ball algorithm.

1In the proof, we omit the dependence on the variable t of the basis functions, that is, Bn
i means Bn

i (t).
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Lemma 2.3. Suppose that there exist υ0
0, . . . ,υ0

n ∈ R with

fl(vi) = vi(1+υ
0
i ), |υ0

i | ≤ U(vi)ε+O(ε2), i = 0, . . . , n,

for some constants U(vi). Then, for any r ∈ {1, . . . , n}, there exist υr
0, . . . ,υr

nr
∈ R such that the weights v r

i in (13)–(14) satisfy
fl(v r

i ) = v r
i (1+υ

r
i ), i = 0, . . . , nr , with |υr

i | ≤ U(v r
i )ε+O(ε2) and

U(v r
i ) = 3r + max

j=0,...,n
U(v j).

Proposition 2.4. Suppose that there exist υ0
0, . . . ,υ0

n ∈ R with

fl(vi) = vi(1+υ
0
i ), |υ0

i | ≤ U(vi)ε+O(ε2), i = 0, . . . , n

and ρ0
0 , . . . ,ρ0

n ∈ R with
fl(Ri) = Ri(1+ρ

0
i ), |ρ0

i | ≤ U(Ri)ε+O(ε2), i = 0, . . . , n,

for some constants U(vi) and U(Ri). Then, for any r ∈ {1, . . . , n}, the relative errors of the Rr
i in (13)–(14) satisfy

|fl(Rr
i (t))− Rr

i (t)|
|Rr

i |
≤

∑r
k=0 Ar

k(t)|Ri+k vi+k|
�

�

∑r
k=0 Ar

k(t)Ri+k vi+k

�

�

�

3r2 + 5r + max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2), i = 0, . . . , n.

Therefore, the relative error in (20) for P(t) = Rn
0 satisfies

E(t)≤

∑n
k=0 An

k(t)|Rk vk|
�

�

∑n
k=0 An

k(t)Rk vk

�

�

�

3n2 + 5n+ max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2).

Finally, to provide a comprehensive understanding of the error propagation within the Wang–Ball algorithm, we also present
an analysis of the numerical stability of the conversion formulas in (15)–(16), which provides an initial estimate of the constants
U(vi) and U(Ri), i = 0, . . . , n, of Lemma 2.3 and Proposition 2.4. Before delving into these details, we introduce some notation to
shorten the expressions of the vi and Ri . Considering i ∈ {0, . . . , n}, we define e ∈ N as

e =

¨

i, i ≤ ⌊n/2⌋ ,
n− i, i ≥ ⌈n/2⌉

and the sets of indexes I1,i and I2,i as

I1,i =











{0, 1, . . . , i − 1}, i ≤ ⌊n/2⌋ ,
{0, 1, . . . , i − 2}, i = ⌈n/2⌉ ,
{0, 1, . . . , n− i}, i > ⌈n/2⌉ ,

I2,i =











{n− i + 1, n− i + 2, . . . , n}, i < ⌊n/2⌋ ,
{i + 2, i + 3, . . . , n}, i = ⌊n/2⌋ ,
{i + 1, i + 2, . . . , n}, i ≥ ⌈n/2⌉ .

Then, we set

bi =
�

n
i

�

, ak = 2k
�

n− 2− 2k
i − k

�

, and ck = 2n−k
�

2k− 2− n
k− i

�

,

thus we can express the weights vi in (15) as

vi =
1
2e

�

bi wi −
∑

k∈I1,i

ak vk −
∑

k∈I2,i

ck vk

�

, i = 0, . . . , n, (26)

and the control points Ri in (16) as

Ri =
1

2e vi

�

bi wi Pi −
∑

k∈I1,i

ak vkRk −
∑

k∈I2,i

ck vkRk

�

, i = 0, . . . , n. (27)

Moreover, we denote by Mi the maximum between the constants Ai =max{ak | k ∈ I1,i} and Ci =max{ck | k ∈ I2,i}, i = 1, . . . , n−1.

Lemma 2.5. For any t, w0, . . . , wn ∈ F, there exist υ0, . . . ,υn ∈ R such that the Wang–Ball weights vi in (26) satisfy fl(vi) = vi(1+υi),
i = 0, . . . , n, with |υi | ≤ U(vi)ε+O(ε2) and

U(vi) =
max j=1,n−1,...,n−i,i

�

b j w j +
∑

k∈I1, j
ak vk +

∑

k∈I2, j
ck vk

�

�

�bi wi −
∑

k∈I1,i
ak vk −

∑

k∈I2,i
ck vk

�

�

M1Mn−1 . . . Mn−i Mi ×

¨

(2i + 1)!, i < ⌈n/2⌉ ,
[2(n− i) + 2]!, i ≥ ⌈n/2⌉ .

(28)
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Proof. First of all, we notice that the weights are computed in the order v0, vn, v1, vn−1, v2, vn−2, . . . , vm−1, vm, for m = ⌈n/2⌉.
Therefore, when computing vi , i = 1, . . . , n− 1, the number of vk, k ∈ I1,i ∪ I2,i , involved in (26) are exactly 2i, if i < ⌈n/2⌉, and
2(n− i) + 1, otherwise. At the end, they are at most n, which is the case of the “central” weight vm. The proof is carried out
assuming i < ⌈n/2⌉, but similar arguments can be applied to the case i ≥ ⌈n/2⌉.

We first notice that2

fl(vi) =
1
2e

�

bi wi(1+δi)−
∑

k∈I1,i

ak vk(1+υk)(1+δk)−
∑

k∈I2,i

ck vk(1+υk)(1+δk)

�

= vi +
1
2e

�

bi wiδi −
∑

k∈I1,i

ak vk(υk +δk +O(ε2))−
∑

k∈I2,i

ck vk(υk +δk +O(ε2))

�

,

where δ j , j = i or j ∈ I1,i ∪ I2,i , are the errors introduced by the operations in the addends. In particular, these errors are affected
at most3 by one product and 2i sums. Therefore, it follows from (22) that |δ j | ≤ (2i + 1)ε+O(ε2). Then, using the fact that
fl(vi)− vi = viυi , the triangle inequality, and the upper bounds on the relative errors introduced by the operations in the addends,
we obtain

|viυi | ≤
1
2e

��

bi wi +
∑

k∈I1,i

ak vk +
∑

k∈I2,i

ck vk

�

(2i + 1)ε+
∑

k∈I1,i

ak|vkυk|+
∑

k∈I2,i

ck|vkυk|+O(ε2)

�

.

We know that in
∑

k∈I1,i
ak|vkυk|+

∑

k∈I2,i
ck|vkυk| are performed 2i − 1 sums, therefore, it follows that

|viυi | ≤
1
2e

��

bi wi +
∑

k∈I1,i

ak vk +
∑

k∈I2,i

ck vk

�

(2i + 1)ε+ (2i − 1)Mi max
k∈I1,i∪I2,i

|vkυk|+O(ε2)

�

.

Then, we can use this inequality recursively and, recalling that υ0 = υn = 0 and each time we go one step back in the recursion
the set I1,k ∪ I2,k decreases by one, we get

|viυi | ≤
1
2e

max
j=1,n−1,...,n−i,i

�

b j w j +
∑

k∈I1, j

ak vk +
∑

k∈I2, j

ck vk

�

(2i + 1)Mε+O(ε2),

where

M = 1+ (2i − 1)Mi + (2i − 1)(2i − 2)Mi Mn−i + · · ·+ (2i − 1)!Mi Mn−i . . . Mn−1M1 ≤ (2i − 1)!Mi Mn−i . . . Mn−1M1 × 2i,

which gives the statement.

Lemma 2.6. For any t, w0, . . . , wn ∈ F, there exist ρ0, . . . ,ρn ∈ R such that the Wang–Ball control points Ri in (27) satisfy
fl(Ri) = Ri(1+ρi), i = 0, . . . , n, with |ρi | ≤ U(Ri)ε+O(ε2) and

U(Ri) = U(Ri vi) + U(vi) + 1,

for U(vi) in (28) and

U(Ri vi)≤
max j=1,n−1,...,n−i,i

�

b j w j |Pj |+
∑

k∈I1, j
ak vk|Rk|+

∑

k∈I2, j
ck vk|Rk|

�

�

�bi wi Pi −
∑

k∈I1,i
ak vkRk −

∑

k∈I2,i
ck vkRk

�

�

M1Mn−1 . . . Mn−i Mi ×

¨

(2i + 2)!, i < ⌈n/2⌉ ,
[2(n− i) + 3]!, i ≥ ⌈n/2⌉ .

(29)

Proof. The study of the propagation of the error in Ri vi = 1/2e
�

bi wi Pi −
∑

k∈I1,i
ak vkRk −

∑

k∈I2,i
ck vkRk

�

can be done with the
same procedure used in Lemma 2.5, with the differences that every addend is now affected by one more product by Pi or Rk, and
we also have to consider the relative errors υi introduced by the weights vi , i = 0, . . . , n. Therefore, denoting by φi and δ the
errors introduced by the computation of Ri vi and the division by vi , respectively, we obtain by (22) and Lemma 2.5 that

fl(Ri) =
1

2e vi(1+υi)

�

bi wi Pi −
∑

k∈I1,i

ak vkRk −
∑

k∈I2,i

ck vkRk

�

(1+φi)(1+δ), i = 0, . . . , n, (30)

for |υi | ≤ U(vi)ε+O(ε2) with U(vi) in (28), |φi | ≤ U(Ri vi)ε+O(ε2) with U(Ri vi) in (29), and |δ| ≤ ε. Therefore, we can use
Taylor expansion in (30) to get

fl(Ri) = Ri(1+φi)(1+δ)(1−υi +O(ε2)) = Ri(1+φi −υi +δ+O(ε2))

and the statement follows for ρi = φi −υi +δ with |ρi | ≤ |φi |+ |υi |+ |δ| ≤ (U(Ri vi) + U(vi) + 1)ε+O(ε2).

It is worth noting that the upper bounds on the relative errors derived for vi and Ri appear to be large even for moderate
values of n. However, in our experiments, we did not observe instability in their implementations, even when considering n = 50.
Therefore, we believe that there is room for improvement in these bounds.

2Any operation with powers of 2 are exact in floating-point arithmetic, so they do not introduce any relative error.
3We assume that the computations of all binomial coefficients involve only integer operations, therefore they do not introduce any floating-point relative error.
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2.2 Horner schemes

We continue our analysis by studying the error propagation that occurs in the algorithms that evaluate a rational Bézier curve P
at t through a Horner scheme, which is the case of the implementations of the two formulas in (7) and (8). In these specific
contexts, we can use an already known theorem by Fuda et al. [16] that gives an upper bound for any function that is expressed
in the form

r(x) =

∑N
k=0 ak(x) fk
∑M

j=0 b j(x)
(31)

for some data values fk and functions ak and b j , k = 0, . . . , N and j = 0, . . . , M .

Theorem 2.7. Suppose that there exist α0, . . . ,αN ∈ R with

fl(ak(x)) = ak(x)(1+αk), |αk| ≤ Aε+O(ε2), k = 0, . . . , N (32)

and β0, . . . ,βM ∈ R with

fl(b j(x)) = b j(x)(1+ β j), |β j | ≤ Bε+O(ε2), j = 0, . . . , M (33)

for some constants A and B. Then, assuming that the data fi are given as floating-point numbers, the relative forward error of r
in (31) satisfies

|fl(r(x))− r(x)|
|r(x)|

≤ (N + 2+ A)α(x)ε+ (M + B)β(x)ε+O(ε2),

where

α(x) =

∑N
k=0|ak(x) fk|

|
∑N

k=0 ak(x) fk|
and β(x) =

∑M
j=0|b j(x)|

|
∑M

j=0 b j(x)|
,

for ε small enough.

We can use this result for both formulas in (7) and (8), as they fit the expression in (31) for N = M = n, fk = Pk, and
ak = bk = xn−k

�n
k

�

wk or ak = bk = tksn−k
�n

k

�

wk, k = 0, . . . , n, respectively. Moreover, assuming that the binomial coefficients are
implemented without introducing any floating-point relative error via integer arithmetic, the computations of the ak, k = 0, . . . , n,
involve two products plus at most n subtractions, n divisions, and n− 1 products for xn−k in (7) and two products plus at most n
subtractions and n− 1 products in case of tksn−k in (8). This implies that the constants in (32) and (33) are A= B = 3n+ 1 in
case of formula in (7) and A= B = 2n+ 1 in case of (8). Therefore, it follows from Theorem 2.7 that the relative error E in (20)
for P(t) computed with (7) satisfies

E(t)≤

∑n
k=0|B

n
k (t)wk Pk|

|
∑n

k=0 Bn
k (t)wk Pk|

(4n+ 3)ε+ (4n+ 1)ε+O(ε2), (34)

while with (8)

E(t)≤

∑n
k=0|B

n
k (t)wk Pk|

|
∑n

k=0 Bn
k (t)wk Pk|

(3n+ 3)ε+ (3n+ 1)ε+O(ε2).

Notably, the difference 1− t cannot be problematic, because we assume that t is an exact floating-point number. However, if
instead t is the floating-point approximation of a real number, then the formula in (8) may become unstable when t approaches 1.
Conversely, the formula in (7) represents a stable way to evaluate P thanks to the distinction of the two cases in the definition of
x .

2.3 Geometric approach

We proceed to analyse the error propagation of the recursive algorithm given by the formulas in (9). In particular, we first study
how the error propagates during the computation of the values hi , i = 0, . . . , n, and then we examine the relative errors of the
values Ti , i = 0, . . . , n. This analysis finally leads to an upper bound on the relative error E in (20) in the case of P(t) = Tn.

Lemma 2.8. For any t, w0, . . . , wn ∈ F, there exist η0, . . . ,ηn ∈ R such that the hi in (9) satisfy fl(hi) = hi(1+ηi), i = 0, . . . , n, with
|ηi | ≤ U(hi)ε+O(ε2) and

U(hi) = 23(2i − 1).

Proof. We first notice that

fl(hi) =
wihi−1(1+ηi−1)t(n− i + 1)(1+δ1)

wi−1i(1− t)(1+δ2) +wihi−1(1+ηi−1)t(n− i + 1)(1+δ3)

=
wihi−1 t(n− i + 1)(1+δ1 +ηi−1 +O(ε2))

wi−1i(1− t)(1+δ2) +wihi−1 t(n− i + 1)(1+δ3 +ηi−1 +O(ε2))
,

Dolomites Research Notes on Approximation ISSN 2035-6803



Fuda · Ramanantoanina · Hormann 65

where δ1 is the error introduced by the floating-point operations in the numerator, that are three products and one division,
and δ2 and δ3 are those related to the first and second addends in the denominator, respectively, that are two products, one
subtraction, and one sum for the former and three products and one sum for the latter. Therefore, it follows from (22) that
|δ1|, |δ2|, |δ3| ≤ 4ε+O(ε2). Moreover, the intermediate value theorem further guarantees that

fl(hi) =
wihi−1 t(n− i + 1)(1+δ1 +ηi−1 +O(ε2))
[wi−1i(1− t) +wihi−1 t(n− i + 1)](1+δi−1)

,

for some δi−1 ∈ [min(δ2,δ3 +ηi−1 +O(ε2)), max(δ2,δ3 +ηi−1 +O(ε2))] = [δ2,δ3 +ηi−1 +O(ε2)], and the Taylor expansion of
1/(1+δi−1) gives

fl(hi) =
wihi−1 t(n− i + 1)

wi−1i(1− t) +wihi−1 t(n− i + 1)
(1+δ1 +ηi−1 −δi−1 +O(ε2)) = hi(1+δ1 +ηi−1 −δi−1 +O(ε2)).

We define ηi = δ1 + ηi−1 − δi−1 +O(ε2), hence, by using the triangle inequality and the upper bounds on the relative errors
introduced by the operations, we have

|ηi | ≤ |δ1|+ |ηi−1|+ |δi−1|+O(ε2)≤ 8ε+ 2|ηi−1|+O(ε2), i = 1, . . . , n.

Now, we can prove the statement by induction over i. The base case follows by the fact that h0 = 1, therefore η0 = 0. Finally, the
inductive step from i − 1 to i follows immediately from the inductive hypothesis, that is |ηi−1| ≤ 23(2i−1 − 1)ε+O(ε2).

Proposition 2.9. For any t, w0, . . . , wn, P0, . . . , Pn ∈ F and r ∈ {1, . . . , n}, the relative errors of the Ti in (9) satisfy

|fl(Ti(t))− Ti(t)|
|Ti |

≤

∑i
k=0 Bn

k (t)|Pkwk|
�

�

∑i
k=0 Bn

k (t)Pkwk

�

�

�

max
k=1,...,i

1
1− hk

23i(2i − 1) + 3i

�

ε+O(ε2), i = 1, . . . , n.

Therefore, the relative error in (20) for P(t) = Tn satisfies

E(t)≤

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

�

max
k=1,...,n

1
1− hk

23n(2n − 1) + 3n

�

ε+O(ε2).

Proof. Denoting by τi the relative errors introduced by the computation of Ti , i = 0, . . . , n, we first notice that

fl(Ti) = [1− hi(1+ηi)]Ti−1(1+τi−1)(1+δ1) + hi(1+ηi)Pi(1+δ2)

= (1− hi)Ti−1

�

1−
hiηi

1− hi
+τi−1 +δ1 +O(ε2)

�

+ hi Pi(1+ηi +δ2 +O(ε2))

= Ti + (1− hi)Ti−1

�

−
hiηi

1− hi
+τi−1 +δ1 +O(ε2)

�

+ hi Pi(ηi +δ2 +O(ε2)),

where |ηi | ≤ 23(2i − 1)ε+O(ε2) by Lemma 2.8 and δ1 and δ2 are the errors introduced by the operations in the first and second
addends, respectively, that are one product and one sum each, plus one subtraction for the first addend only. Therefore, it follows
from (22) that |δ1|, |δ2| ≤ 3ε+O(ε2). Then, using the fact that fl(Ti)− Ti = Tiτi , the triangle inequality, and the upper bounds
on the relative errors introduced by the values hi and the operations, we obtain

|Tiτi | ≤ (1− hi)|Ti−1|
�

hi |ηi |
1− hi

+ |δ1|
�

+ hi |Pi |(|ηi |+ |δ2|) + (1− hi)|Ti−1τi−1|+O(ε2)

≤ [(1− hi)|Ti−1|+ hi |Pi |]
�

1
1− hi

23(2i − 1) + 3
�

ε+ (1− hi)|Ti−1τi−1|+O(ε2).
(35)

Recalling that h j = Bn
j w j

�∑ j
k=0(B

n
k wk) [28], we can use recursively the relation of Ti in (9) to express

(1− hi)|Ti−1|=
i
∑

j=1

i− j
∏

k=0

(1− hi−k)h j−1|Pj−1|=
i
∑

j=1

i− j
∏

k=0

�

1−
Bn

i−kwi−k
∑i−k

l=0 Bn
l wl

�

Bn
j−1w j−1

∑ j−1
l=0 Bn

l wl

|Pj−1|

=
i
∑

j=1

i− j
∏

k=0

∑i−k−1
l=0 Bn

l wl
∑i−k

l=0 Bn
l wl

Bn
j−1w j−1

∑ j−1
l=0 Bn

l wl

|Pj−1|=

∑i
j=1 Bn

j−1|w j−1Pj−1|
∑i

l=0 Bn
l wl

,

and, by (35),

|Tiτi | ≤

∑i
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

�

1
1− hi

23(2i − 1) + 3
�

ε+ (1− hi)|Ti−1τi−1|+O(ε2). (36)
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Now, we can prove the statement by induction over i = 1, . . . , n and, to this end, we recall Ti =
∑i

k=0 Bn
k wk Pk/

∑i
k=0(B

n
k wk) [28].

The base case follows by the fact that T0 = P0, therefore τ0 = 0. Finally, the inductive step from i − 1 to i follows from the
inductive hypothesis, that is,

|Ti−1τi−1| ≤

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i−1

k=0 Bn
k (t)wk

�

max
k=1,...,i−1

1
1− hk

23(i − 1)(2i−1 − 1) + 3

�

ε+O(ε2),

together with (36) and

(1− hi)

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i−1

k=0 Bn
k (t)wk

=

∑i−1
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

≤

∑i
k=0 Bn

k (t)|Pkwk|
∑i

k=0 Bn
k (t)wk

.

2.4 Barycentric approach

In this case, we observe that the barycentric form of P in (18) can be expressed as in (31) with N = M = n, fi = Q i , and
ai = bi = ui/(t − t i), i = 0, . . . , n, therefore we can use once again Theorem 2.7. However, the latter assumes that the values
fi are floating-point numbers, while the Q i are the result of a prepossessing step that leads to a set of perturbed initial data.
Consequently, we derive an upper bound on the relative error E in (20) via Theorem 2.7, while also considering this difference.

Corollary 2.10. Assuming that the values Q i = P(t i), i = 0, . . . , n, are computed by evaluating the rational Bézier curve P at t i

through the implementation of the VS formula in (7) and that the z(t i) are defined as in (19), then the relative error in (20) for P(t)
computed by implementing the barycentric formula in (18) satisfies

E(t)≤
�

10n+ 5+ max
j=0,...,n

U(Q j)
�

∑n
i=0

�

�

uiQi
t−ti

�

�

�

�

∑n
i=0

uiQi
t−ti

�

�

ε+ (10n+ 3)

∑n
i=0

�

�

ui
t−ti

�

�

�

�

∑n
i=0

ui
t−ti

�

�

ε+O(ε2),

where

U(Q i) =

∑n
i=0|B

n
i (t i)wi Pi |

|
∑n

i=0 Bn
i (t i)wi Pi |

(4n+ 3) + 4n+ 1, i = 0, . . . , n. (37)

Proof. Since the values Q i are computed with (7), we know from (34) that there exist θ0, . . . ,θn ∈ R such that they satisfy
fl(Q i) =Q i(1+ θi), i = 0, . . . , n, with |θi | ≤ U(Q i)ε+O(ε2) and U(Q i) in (37). Moreover, in the computation of the z(t i) we first
introduce at most 4n+ 1 floating-point relative errors in the VS algorithm to get the denominators

∑n
i=0 xn−i

�n
i

�

wi , and then we
perform at most other 2n−1 products, which happens in the case of (1− t)n. This means that there exist ζ0, . . . ,ζn ∈ R such that
the z(t i) satisfy fl(z(t i)) = z(t i)(1+ ζi), i = 0, . . . , n, with |ζi | ≤ U(z(t i))ε+O(ε2) and

U(z(t i)) = 6n.

Also, we know that the computation of ui/z(t i) =
∏

k ̸=i
1

ti−tk
introduces at most 3n floating-point operations [16, Lemma 1],

which, together with the previous equation, leads to the existence of µ0, . . . ,µn ∈ R such that the ui satisfy fl(ui) = ui(1+µi),
i = 0, . . . , n, with |µi | ≤ U(ui)ε+O(ε2) and

U(ui) = U(z(t i)) + 3n+ 1= 9n+ 1.

Finally, the statement follows by a corollary of Theorem 2.7 [16, Corollary 1] that, by also considering the initial errors in the
data Q i , gives

E(t)≤
�

n+ 4+ max
i=0,...,n

U(ui) + max
j=0,...,n

U(Q j)
�

∑n
i=0

�

�

uiQi
t−ti

�

�

�

�

∑n
i=0

uiQi
t−ti

�

�

ε+
�

n+ 2+ max
i=0,...,n

U(ui)
�

∑n
i=0

�

�

ui
t−ti

�

�

�

�

∑n
i=0

ui
t−ti

�

�

ε+O(ε2).

2.5 Summary

By defining the conditioning functions

κP(t) =

∑n
k=0 Bn

k (t)|Pkwk|
�

�

∑n
k=0 Bn

k (t)Pkwk

�

�

, κR(t) =

∑n
k=0 An

k(t)|Rk vk|
�

�

∑n
k=0 An

k(t)Rk vk

�

�

, and κQ(t) =

∑n
i=0

�

�

uiQi
t−ti

�

�

�

�

∑n
i=0

uiQi
t−ti

�

�

, (38)

and recalling that

Λn(t) =

∑n
i=0

�

�

ui
t−ti

�

�

�

�

∑n
i=0

ui
t−ti

�

�

(39)
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is already known as the Lebesgue function, we proved that the relative error E in (20) can be bounded as

E(t)≤































































κP(t)(3n2 + 5n)ε+O(ε2), P(t) = Pn
0 in (6),

κP(t)(4n+ 3)ε+ (4n+ 1)ε+O(ε2), P(t) in (7),

κP(t)(3n+ 3)ε+ (3n+ 1)ε+O(ε2), P(t) in (8),

κP(t)
�

max
k=1,...,n

1
1− hk

23n(2n − 1) + 3n
�

ε+O(ε2), P(t) = Pn
0 in (9),

κR(t)
�

3n2 + 5n+ max
j=0,...,n

U(v j) + max
k=0,...,n

U(Rk)
�

ε+O(ε2), P(t) = Rn
0 in (12)–(14),

κQ(t)
�

10n+ 5+ max
j=0,...,n

U(Q j)
�

ε+Λn(t)(10n+ 3)ε+O(ε2), P(t) in (18).

Hence, we expect that all methods that use the Bernstein basis in (2), namely those defined by the formulas in (6)–(8) and (9),
behave similarly in terms of numerical stability. The only exception might arise with the latter method if any of the hk, k = 1, . . . , n,
is very close to 1. However, Woźny and Chudy [28] have already addressed this issue by suggesting to use the relation

1− hk =
hk

hk−1

wk−1k(1− t)
wk t(n− k+ 1)

.

Regarding instead the methods that employ a different basis, such as the Wang–Ball and the barycentric algorithms, even under
the assumption that all the preprocessing steps are stable, there are scenarios where κR or κQ are bigger than κP , or vice versa. As
a consequence, these algorithms may exhibit instability even when the formulas in (6)–(9) are stable. However, for the barycentric
form, instability is less likely to occur if Chebyshev nodes are chosen. In fact, multiplying both numerator and denominator of the
function κQ by

�

�

∑n
i=0 uiQ i/(t − t i)

�

�, we can see that

κQ(t) =

∑n
i=0

�

�

uiQi
t−ti

�

�

�

�

∑n
i=0

ui
t−ti

�

�

1
|P(t)|

≤ max
i=0,...,n

|Q i |Λn(t)
1
|P(t)|

≤ max
i=0,...,n

|Pi |Λn(t)κP(t)

∑n
k=0 Bn

k (t)|wk|
∑n

k=0 Bn
k (t)|Pkwk|

.

In particular, if mini=0,...,n|Pi | ≠ 0, then

κQ(t)≤ κP(t)Λn(t)
maxi=0,...,n|Pi |
mini=0,...,n|Pi |

. (40)

Moreover, it is well known [24] that the Lebesgue function grows only logarithmically in n for Chebyshev nodes. Therefore, if κP

has a good behaviour, then we can expect the method to be always stable when the ratio between the biggest and the smallest
control points is small. On the contrary, the Lebesgue function related to equidistant nodes exhibits exponential growth in n [24],
hence we can have unstable results even for moderate values of n with uniformly distributed nodes. We will show that these
scenarios can indeed occur in Section 4 through numerical experiments.

3 Efficiency analysis

Rational de Casteljau (RDC) - Farin de Casteljau (FDC). We recall that evaluating the numerator and the denominator of a
rational Bézier curve as in (5) and then dividing the results is equivalent to evaluating the spatial curve (3) and applying the
central projection on the final result. To that, for the RDC, we need to precompute the points P̂i as in Algorithm 1, and evaluate
P̂(t) as in Algorithm 2. The FDC algorithm is a more robust alternative of the RDC algorithm described in (6) and implemented
optimally in Algorithm 3.

Rational VS (RVS) - Rational Horner-Bézier (RHB). In order to optimise the algorithms and to compute them in linear time,
we precompute the factors

�n
k

�

wk Pk and
�n

k

�

wk as in Algorithm 4, and then we evaluate P as in Algorithm 5 and Algorithm 6,
respectively.

Linear time geometric (LTG). Although it is not displayed in Formula 9, for numerical reasons, the authors deemed necessary
to distinguish the cases t ∈ [0,0.5] and t ∈ (0.5,1] as in Algorithm 7.

Barycentric algorithm with Chebyshev nodes (CHE) - with uniform nodes (UNI). To get the data of the barycentric form, we
can use any of the previously cited algorithms. We choose to adapt the RVS algorithm as in Algorithm 15 to get t i , Q i , and z(t i))
simultaneously. We recall that we can get z(t i) as in (19). The data of the barycentric form, such as the interpolation points, the
weights, and the nodes, are precomputed in Algorithm 16. We present two ways of evaluating the barycentric form. Algorithm 17
evaluates the barycentric form in (18) in the classical way. However, since the distributions of the nodes are symmetric, we can
compute P(t) and P(1− t) at the same time. For instance, if we want to get the values of P(t) for t = k/M , k = 0, . . . , M , then
the number of flops by using Algorithm 18 is M(n+ 1)/2 less than using Algorithm 17.
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Table 1: Comparison between the number of floating–point operations for the preprocessing (top) and the main algorithm (bottom) for each
method.

method preprocessing

RDC d(n+ 1)
FDC 0
RVS (d + 1)(n− 1) + 2d
RHB (d + 1)(n− 1) + 2d
LTG 0
CHE (n+ 1)(2dn+ d + 2n+ 8+ 2 log2(n) + 2h) + (d + 1)(n− 1) + 2d
UNI (n+ 1)(2dn+ d + 2n+ 7+ 2 log2(n)) + (d + 1)(n− 1) + 2d
RWB (n even) 2dn2 + 4dn− 2d + 1

2 n
RWB (n odd) 2dn2 + 4dn− 2d + 1

2 n− 1
2

RBF O(dn log n)

method add/sub mult div total

RDC 1
2 dn(n+ 1) + 1 dn(n+ 1) d 3

2 dn2 + 3
2 dn+ d + 1

FDC 1
2 (d + 2)n(n+ 1) + 1 1

2 (2d + 3)n(n+ 1) 0 3
2 dn2 + 3

2 dn+ 5
2 n2 + 5

2 n+ 1
RVS (d + 1)n+ 1 (d + 1)n d + 1 2dn+ d + 2n+ 2
RHB (d + 1)(n− 1) + d + 2 2dn+ 3n d 3dn+ d + 4n+ 1
LTG (d + 2)n+ 1 2(d + 2)n n+ 1 3dn+ 7n+ 2
CHE (d + 2)(n+ 1) d(n+ 1) n+ 1+ d 2dn+ 3d + 3n+ 3
UNI (d + 2)(n+ 1) d(n+ 1) n+ 1+ d 2dn+ 3d + 3n+ 3
RWB (n even) 3

2 n(d + 1) + 1 3
2 n(2d + 2) 3

2 n 9
2 dn+ 6n+ 1

RWB (n odd) 1
2 (3n− 1)(d + 1) + 1 1

2 (3n− 1)(2d + 2) 1
2 (3n− 1) 9

2 dn− 3
2 d + 6n− 1

RBF (n even) n
2 (d + 4 log2 n+ 2) + d + 1 n

2 (2d + 8 log2 n+ 2) + d d 6n log2(n) + 2dn+ 3d + 2n+ 1
RBF (n odd) n−1

2 (d + 4 log2 n+ 2) + 2d + 2 n−1
2 (2d + 6 log2 n+ 2) + 2d + 2 log2 n+ 1 d 8n log2(n) + 2dn+ 7

2 d + 2n− 4 log2 n+ 1

Rational Wang–Ball (RWB). The weights and the control points of (10) are precomputed in Algorithm 9. Despite its recursive
appearance in (13)–(14), the evaluation of a rational Wang–Ball curve is done in linear time in Algorithm 10.

Rational Bernstein–Fourier (RBF). The algorithm for evaluating P̂ is presented in Algorithm 13. However, for a large number
of evaluations, we can also use Algorithm 14 to compute P̂(t) and P̂(1− t) in parallel in order to have an optimal runtime.
In the algorithms, we assume that the computation of xn, x ∈ R, in (19) is done with a logarithmic algorithm in the worst
case, that is, it involves 2 log2(n) multiplications. The computation of zn, z ∈ C, in (17) can be done using de Moivre’s formula
zn = rn(cos(nθ ) + i sin(nθ ), θ = arg z and r = |z|. However, since a complex multiplication involves 6 real operations, here we
assume that it is 12 log2(n).

We compare the number of floating–point operations in the implementation of each method in Table 1. We denote by d the
dimension of the space, n the degree of the curve, and let h be the cost of evaluating a trigonometric function (cos, sin, tan).

4 Numerical experiments

We implemented all the methods in C++ and computed the exact value P(t) of the Bézier curve in multiple-precision (1024 bit)
floating-point arithmetic with the MPFR library [15]. Moreover, we used the Eigen module [18] to compute the Inverse Fast
Fourier Transform in the Bernstein–Fourier algorithm. The results are obtained using a Ubuntu system on a Dell computer with 8
cores i7-10510U CPU 1.80GHz and 16 GiB of RAM. The codes are compiled with CMake compiler optimisation flag -O3.

4.1 Efficiency comparison

To compare the efficiency of the different algorithms, we run a first experiment with respect to the degree n of a rational
Bézier curve. This is important because, although cubic curves are more familiar and commonly used, higher degree curves are
particularly interesting for achieving more precision and smoothness, especially for complex shapes. Therefore, we evaluate
rational Bézier curves of degree n = 3, 5, 7, . . . , 19 with control points defined as Pi = 100i

�1
1

�

+
�1

1

�

and weights wi = i mod 2+1,
i = 0, . . . , n, at M = 2500 equidistant evaluation points in [0, 1]. The results are obtained from averaging the result of 1000 reruns.
Figure 1 displays the runtime of all algorithms (a), clearly showing that the RVS, RHB, UNI, and CHE algorithms outperform
all the others4. It is also evident (b) that the algorithms that use the barycentric form are faster than those employing the

4Bezerra [2] shows that the RBF algorithm is faster than the RVS for n< 8, but this does not happen in our experiment, possibly due to a different implementation
technique.
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Figure 1: Runtime of all algorithms for computing a rational Bézier curve with Pi = 100i
�1

1

�

+
�1

1

�

and wi = i mod 2+ 1. We first consider
M = 2500 evaluation points for n= 3, 5, 7, . . . , 19 (a) and provide a zoom-in view on the fastest methods (b). Then, we fix the degree at n= 20
and vary the number of evaluation points M = 1,50, 100,150, . . . , 750 (c), with a zoom-in view on the domain [1,250] (d).

Horner-scheme evaluation, with the difference becoming more significant as n increases. This loss of efficiency in the RVS and
RHB algorithms is due to the computation of large binomial coefficients with integer arithmetic, which becomes computationally
expensive for big values of n.

In the second experiment, we consider the same setup as before, but perform the comparison with respect to the number of
evaluation points M . Specifically, we keep the control points and weights consistent with the previous experiment and we set
n= 20 and M = 1, 50, 100, 150, . . . , 750. The results are shown in Figure 1 (c) and reconfirm that RVS, RHB, UNI, and CHE are
the fastest. However, looking closer in the zoom-in plot (d), we notice that the RVS and RHB algorithms win over the UNI and
CHE algorithms only if M < 200, otherwise the situation is reversed. This effect arises from the quadratic time preprocessing step
required by the barycentric algorithms. Although the latter is a one-time operation, it is relevant only for few evaluations, while it
becomes negligible as M grows.

4.2 Numerical stability comparison

To compare the numerical stability of all the algorithms, we evaluate the relative error E in (20) for 1000 equidistant evaluation
points in [0, 1] using the various implementations of fl(P(t)) in double precision. If the results are on the order of the machine
epsilon, approximately 10−16, then we can conclude that the method is stable, otherwise it suggests instability.

In the first experiment, we consider a rational Bézier curve of degree n= 50 with control points Pi =
�xi

yi

�

, i = 0, . . . , n, for

x i =

¨

1, i = 0, . . . , 9 and i = 41, . . . , n

106, i = 10, . . . , 40
and yi = sin

iπ
n+ 1

, (41)

and weights wi = i mod 2+1. In Figure 2 (a,b), we observe that all the methods defined via the Bernstein basis are stable, while
the others exhibit numerical problems. In particular, the CHE, UNI, RWB, and RBF algorithms are unstable with respect to the
x-coordinate (a), as well as for the y- coordinate (b), except for the CHE algorithm. Although we cannot determine the cause
of instability in the RBF algorithm, our theoretical results in Section 2 can explain the other cases. Indeed, we proved that the
relative error of the RWB algorithm depends on the conditioning functions κR, while those of CHE and UNI on κQ. In this case,
even though the initial data give a good conditioning function related to the Bernstein basis, i.e. κP(t) = 1, the conversion to a
different basis leads to unfavorable behaviour for both κR and κQ, as shown in Figure 2 (bottom). Moreover, it is worth noting
that, as expected, the CHE algorithm exhibits instability with respect to the x-coordinate because the ratio between the biggest
and the smallest |x i | is 106. However, under circumstances where this ratio is not big, the CHE algorithm is typically stable, even
for large values of n.

Finally, we want to examine a more realistic experiment, thus we take a low degree curve by setting n = 4. On the one hand,
we observe in Figure 2 that the relative error related to the x-coordinate (c) is perfectly stable, with all the conditioning functions
small. On the other hand, all the relative errors related to the y-coordinate (d) exhibit spikes in some parts of the domain,
reaching an order of 10−13. This behaviour is also reflected in the conditioning functions. However, where these spikes occur, the
values of Py(t) are very small because the curve is crossing the t-axis, therefore this may not be a stability issue, but rather a
consequence of dividing by very small values in Ey(t) in (20). However, for our 1000 equidistant evaluation points, the minimum
absolute value of Py(t) is 0.13424 in the domain of the first spike and 0.3116 for the second, thus indicating that we are not so
close to the values where Py(t) = 0. Furthermore, plotting the absolute errors leads to a similar behaviour without these spikes,
but still with magnitudes between 10−14 and 10−13 for all methods except the barycentric form with uniform nodes. This latter
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Figure 2: Relative errors of all algorithms (top) for computing a rational Bézier curve and their related conditioning function (bottom) on a
logarithmic scale. We first consider n = 50, Pi =

�xi
yi

�

for x i and yi in (41), and wi = i mod 2+ 1, and we observe the results related to the

x-coordinate (a) and y-coordinate (b). Then, we set n= 4, P0 =
� 10
−100

�

, P1 =
� 20

200

�

, P2 =
� 30
−200

�

, P3 =
� 40

101

�

, P4 =
� 50

101

�

and wi = 1, i = 0, . . . , n,
and we see the results for the x-coordinate (c) and y-coordinate (d). The black line represents the machine epsilon in double precision.

remains stable, as its conditioning function κQ is small, apart from the initial spike, and its nodes are far from the instability
regions of the RVS algorithm. In contrast, Chebyshev nodes compromise the stability of the method due to the computation of
one interpolation point with the RVS algorithm where it is unstable, specifically for the node in [0.1,0.2]. Furthermore, while
both uniform and Chebyshev nodes include t = 0.5, the RVS is exact at this point with a relative error of 0, thus preserving the
stability of the barycentric method with uniform nodes. However, the computation of this node with the Chebyshev formula is
not exact, resulting in perturbed data.

5 Conclusion

We conducted a comprehensive comparison of the most common algorithms used to evaluate a rational Bézier curve in terms
of both efficiency and numerical stability. Our analysis and numerical experiments reveal that the fastest algorithms are those
employing a Horner-like scheme for the evaluation and those defined in barycentric form. Specifically, while the former is
advantageous for scenarios that require the evaluation of the curve at few evaluation points, not exceeding 200, the barycentric
form becomes the preferred choice when dealing with a larger number of evaluation points. This is because the preprocessing
step required by the barycentric algorithms is executed only once, thus its runtime becomes negligible for a significant number of
evaluations.

Regarding the numerical stability, we derived an upper bound on the relative error of the different methods and showed, both
theoretically and empirically, that it depends on certain conditioning functions. Specifically, algorithms that use the Bernstein
basis depend on the same conditioning function, therefore they have consistent numerical behaviours. Instead, conversion to
another basis can lead to different relative errors. In fact, there are scenarios where all algorithms are stable, except from those
given by the Wang–Ball and the barycentric basis. However, we proved that, if the Bernstein basis gives a good conditioning
function, then also the basis related to the barycentric algorithm with Chebyshev nodes behaves well, as long as the ratio between
the largest and smallest control points Pi is small. Lastly, even classical algorithms based on the Bernstein basis may fail if the
associated conditioning function is large, particularly when control points have different signs. In such cases, it is possible that
the conversion to the barycentric form with nodes located away from instability areas can yield better results.
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A Appendix: Algorithms

A.1 de Casteljau algorithm

Algorithm 1 toHomogeneous(P0, . . . , Pn, w0, . . . , wn)

for k← 0(1)n do
P̂k ← (wk Pk, wk)

end for
return P̂0, . . . , P̂n

Algorithm 2 deCasteljau(P0, . . . , Pn, t)

for k← 0(1)n do
P̂k ← Pk

end for
t1← 1− t
for r ← 1(1)n do

for k← 0(1)(n− r) do
P̂k ← P̂k t1 + t P̂k+1.

end for
end for
P ← proj(P̂0) ▷ central projection
return P

Algorithm 3 RationalDeCasteljau(P0, . . . , Pn, w0, . . . , wn, t)

t1← 1− t
for r ← 1(1)n do

for k← 0(1)(n− r) do
u← t1wk

v← twk+1

wk ← u+ v
c1← u/wk

c2← 1− c1

Pk ← Pkc1 + c2Pk+1.
end for

end for
return P0

A.2 VS algorithm

Algorithm 4 Preprocessing_of_VS_and_HornBez(P0, . . . , Pn, w0, . . . , wn)

b← 1
P0← w0P0

Pn← wnPn

for k = 1(1)(n− 1) do
b← b(n+ 1− k)
b← b/k
wk ← bwk

Pk ← wk Pk

end for
return (P0, . . . , Pn, w0, . . . , wn)

Dolomites Research Notes on Approximation ISSN 2035-6803



Fuda · Ramanantoanina · Hormann 73

Algorithm 5 VS(P0, . . . , Pn, w0, . . . , wn, t)

if t ≤ 1/2 then
s← t/(1− t)
d ← wn

N ← Pn

for k = 1(1)n do
nk ← n− k
N ← Ns+ Pnk

d ← ds+wnk

end for
else if t > 1/2 then

s← (1− t)/t
d ← w0

N ← P0

for k = 1(1)n do
N ← Ns+ Pk

d ← ds+wk

end for
end if
return N/d

A.3 Horner Bézier algorithm

Algorithm 6 HornBez(P0, . . . , Pn, w0, . . . , wn, t)

s← 1− t
tk ← 1
d ← sw0

N ← sP0

for k← 1(1)(n− 1) do
tk ← tk t
N ← (N + tk Pk)s
d ← (d + tkwk)s

end for
tk ← tk t
N ← N + tk Pn

d ← d + tkwn

return N/d
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A.4 Geometric algorithm

Algorithm 7 Geometric(P0, . . . , Pn, w0, . . . , wn, t)

h← 1
u← 1− t
n1← n+ 1
N ← P0

if t ≤ 1/2 then
u← t/u
for k← 1(1)n do

h← hu(n1 − k)wk

h← h/(kwk−1 + h)
h1← 1− h
N ← h1N + hPk

end for
else if t > 1/2 then

u← u/t
for k← 1(1)n do

h← h(n1 − k)wk

h← h/(kuwk−1 + h)
h1← 1− h
N ← h1N + hPk

end for
end if
return N

A.5 Wang–Ball algorithm

Algorithm 8 AC_coefficients(n)

p2← 1
M ← 1n+1 ▷ identity matrix of size (n+ 1)× (n+ 1)
Ni ← n− 2− 2i
for i← 0(1)(⌈n/2⌉ − 1) do

for k← 0(1)n do
if i < k and Ni ≥ 0 then

Mk,i ← Mk−1,i(Ni − k+ i − 1)
Mk,i ← Mk,i/(k− i)

end if
end for
for k← 0(1)n do

Mk,i ← Mk,i p2

Mn−k,n−i ← Mk,i

end for
p2← 2p2

end for
return M
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Algorithm 9 toWangBall(P0, . . . , Pn, w0, . . . , wn)

(P̂0, . . . , P̂n)← toHomogeneous(P0, . . . , Pn, w0, . . . , wn)
for i← 0(1)n do

R̂i ← 0
end for
b← 1
c← 1
R̂0← P̂0

R̂n← P̂n

M ←AC_coefficients(n)
k← 1
while k ≤ n− k do

b← b(n− k+ 1)/k
c← c/2
R̂k ← (bP̂k − 〈Mk, (R̂0, . . . , R̂n)〉)c ▷ 〈a, b〉 is a scalar product
if k = n− k then

stop
end if
K ← n− k
R̂K ← (bP̂K − 〈MK , (R̂0, . . . , R̂n)〉)c
k← k+ 1

end while
for i← 0(1)n do

Ri ← proj(R̂i)
vi ← R̂z

i ▷ z-coordinate of R̂i

end for
return (R0, . . . , Rn, v0, . . . , vn)
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Algorithm 10 WangBall(R0, . . . , Rn, v0, . . . , vn, t)

k← n
J ← 0
s← 1− t
while k > 2 do

if k is odd then
k1← (k− 1)/2
k2← (k+ 1)/2
a← svk1

b← t vk2

vk1
← a+ b

Rk1
← (Rk1

a+ bRk2
)/vk1

if J = 0 then
J ← k2 + 1

end if
else

k2← k/2
if J = 0 then

J ← k2 + 1
end if
a← svk2−1

b← t vk2

vk2−1← a+ b
Rk2−1← (Rk2−1a+ bRk2

)/vk2−1

a← svk2

b← t vJ

vk2
← a+ b

Rk2
← (Rk2

a+ bRJ )/vk2

J ← J + 1
end if
k← k− 1

end while
a← sv0

b← t v1

c← sv1

d ← t vn

wq ← a+ b
wr ← c + d
e← swq

f ← twr

ww← e+ f
Q← (R0a+ bR1)/wq

V ← (R1c + dRn)/wr

R← (Qe+ f V )/ww

return R

A.6 Bernstein–Fourier algorithm

Algorithm 11 RealProduct(u, v)

a← Re(u)Re(v)
b← Im(u) Im(v)
return a− b
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Algorithm 12 ToHomogeneousAndIfft(P0, . . . , Pn, v0, . . . , vn)

for i← 0(1)n do
Ŝi ← (vi Pi , vi)

end for
(S0, . . . , Sn)← ifft(S0, . . . , Sn)
return (S0, . . . , Sn)

Algorithm 13 BernsteinFourier(S0, . . . , Sn,ζ1, . . . ,ζn, t)

p← 0
t1← 1− t
if n is even then

N ← n/2+ 1
else

N ← (n+ 1)/2
end if
for i← 1(1)(N − 1) do

u← ζi t + t1

u← pow(u, n)
p← p+RealProduct(u,Q i)

end for
p← 2p+Q0

if n is odd then
u← 1− 2t
u← pow(u, n)
p← p+ uQN

end if
return proj(p)

Algorithm 14 BernsteinFourier_2(S0, . . . , Sn,ζ1, . . . ,ζn, t)

pt ← 0
ps ← 0
t1← 1− t
if n is even then

N ← n/2+ 1
else

N ← (n+ 1)/2
end if
for i← 1(1)(N − 1) do

u← ζi t + t1

u← pow(u, n)
pt ← pt+RealProduct(u,Q i)
u← u/ωi

ps ← ps+RealProduct(u,Q i)
end for
pt ← 2pt +Q0

ps ← 2ps +Q0

if n is odd then
u← 1− 2t
u← pow(u, n)
pt ← pt + uQN

ps ← ps − uQN

end if
return (proj(pt), proj(ps))
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A.7 Barycentric form

Algorithm 15 AdaptedVS(P0, . . . , Pn, w0, . . . , wn, t)

c← 1
if t ≤ 1/2 then

t1← 1− t
s← t/t1

c← pow(t1, n)
d ←ωn

N ← Pn

for k = 1(1)n do
nk ← n− k
N ← Ns+ Pnk

d ← ds+wnk

end for
else if t > 1/2 then

s← (1− t)/t
c← pow(t, n)
d ←ω0

N ← P0

for k = 1(1)n do
N ← Ns+ Pk

d ← ds+wk

end for
end if
return {N/d, cd}

Algorithm 16 ToBarycentric(P0, . . . , Pn, w0, . . . , wn)

b← 1
sgn← 1
(P0, . . . , Pn, w0, . . . , wn)←Preprocessing_of_VS_and_HornBez(P0, . . . , Pn, w0, . . . , wn)
for k = 0(1)n do

if UNIFORM then
tk ← k/n
Qk, z← AdaptedVS(P0, . . . , Pn, w0, . . . , wn, tk)
uk ← sgn bz
b← b(n+ 1− (k+ 1))
b← b/(k+ 1)

else if CHEBYSHEV then
tk ← cos(kπ/n)
Qk, z← AdaptedVS(P0, . . . , Pn, w0, . . . , wn, tk)
b← 1
if k = 0 or k = n then

b← 0.5
end if
uk ← sgn bz

end if
sgn←− sgn

end for
return Q0, . . . ,Qn, u0, . . . , un, t0, . . . , tn
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Algorithm 17 Barycentric(Q0, . . . ,Qn, u0, . . . , un, t0, . . . , tn, t)

Q← 0
d ← 0
for k← 0(1)n do

u← t − tk

if u= 0 then return Qk

end if
u← uk/u
Q←Q+ uQk

d ← d + u
end for
Q←Q/d
return Q

Algorithm 18 Barycentric2(Q0, . . . ,Qn, u0, . . . , un, t0, . . . , tn, t)

Q1← 0
d1← 0
Q2← 0
d2← 0
for k← 0(1)n do

u← t − tk

nk ← n− k
if u= 0 then return {Qk,Qnk

}
end if
v← unk

/u
u← uk/u
Q1←Q1 + uQk

d1← d1 + u
Q2←Q2 + vQnk

d2← d2 + v
end for
Q1←Q1/d1
Q2←Q2/d2
return {Q1,Q2}
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