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Abstract

In a recent paper almost sure unisolvence of RBF interpolation at random points with no polynomial
addition was proved, for Thin-Plate Splines and Radial Powers with noninteger exponent. The proving
technique left unsolved the case of odd exponents. In this short note we prove almost sure polynomial-
free unisolvence in such instances, by a deeper analysis of the interpolation matrix determinant and
fundamental properties of analytic functions.
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1 Introduction
Interpolation by Radial Basis Functions (RBF) is nowadays one of the basic tools of scattered data approximation and meshfree
methods. In the case of Positive Definite RBF, such as Gaussians or Inverse Multiquadrics, unisolvence is guaranteed by the fact
that the interpolation matrix is (symmetric) positive definite. Traditionally, the case of Conditionally Positive Definite (CPD)
RBF of order m, such as MultiQuadrics and Polyharmonic Splines, is treated by adding a suitable polynomial term of degree
m− 1, ensuring that the interpolation matrix becomes positive definite; cf., e.g., [4, 5]. For CPD-RBF of order m = 1, such
as MultiQuadrics and distance functions, it is however theoretically known that the polynomial-free interpolation matrix is
nonsingular itself in any dimension, cf. [7]. Unisolvence was also proved in the very special case of univariate cubic powers of
distance functions [1].

Though it has been known for a long time that Polyharmonic Splines can have nonsingular polynomial-free interpolation
matrices in many applications, cf. e.g. [9] with the references therein, their polynomial-free unisolvence has not been studied
theoretically. It is worth recalling the following statement that appeared in the popular treatise [4]: “There is no result that states
that interpolation with Thin-Plate Splines (or any other strictly conditionally positive definite function of order m≥ 2) without the
addition of an appropriate degree m− 1 polynomial is well-posed”, and the situation did not apparently change until very recently.

Indeed, polynomial-free unisolvence has been reconsidered experimentally in [9]. On the other hand, two meaningful
theoretical results have been proved in the framework of random sampling. The first concerns interpolation by fixed centers [3],
whereas the second treats the standard and more difficult case of centers coinciding with the sampling points [2]. In both cases
one of the key aspects is that Polyharmonic Splines φ(‖x − x‖2), that correspond to the radial functions

φ(r) = r2k log(r) , k ∈ N (TPS: Thin-Plate Splines, order m= k+ 1)

and
φ(r) = rν , 0< ν /∈ 2N (RP, Radial Powers, order m= dν/2e) ,

are real analytic functions off their center x , due to analyticity of the univariate functions φ(·) and
p
· in R+. Concerning the role

of analyticity in unisolvence by random sampling it is also worth quoting the recent paper [10], where nevertheless only spaces
of fixed analytic functions independent of the sampling points were considered.

However, the proving technique in [2] was able to treat TPS and RP with noninteger exponent, but left unsolved the most
usual case for RP, i.e. that of odd integer exponents. In this brief note we fill the gap, by a deeper analysis of the interpolation
matrix determinant, resorting to some fundamental properties of analytic functions. The result is stated in the following:

Theorem 1.1. Let Ω be an open connected subset of Rd , d ≥ 2, and {x i}i≥1 be a sequence of independent and identically distributed
random points with respect to any given probability density σ ∈ L1

+(Ω). Moreover, let Vn =
�

φ(‖x i − x j‖2)
�

, 1≤ i, j ≤ n, φ(r) = rν,
be the interpolation matrix with respect to RP with odd integer exponent ν= 2k+ 1, 0≤ k ∈ N.

Then, for every n≥ 2 the matrix Vn is a.s. (almost surely) nonsingular.
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Proof. Let us define for convenience φ j(x) = φ(‖x − x j‖2), and

V (φ1, . . . ,φn; y1, . . . , yn) = [φ j(yi)] , 1≤ i, j ≤ n ,

so that Vn = V (φ1, . . . ,φn; x1, . . . , xn). Notice that the diagonal of Vn is zero, since φ(0) = 0. Now, the functions {φ j(x)} are
linearly independent in Ω if and only if the points {x j} are distinct. Clearly, this is a necessary condition for unisolvence. In fact,
if the functions {φ j(x)} were linearly dependent, one of them would be linear combination of the others (which are analytic in Ω
off their centers) and thus would become analytic at its own center. It is also worth recalling that a subset of Ω has null measure
with respect to dσ = σ(x) d x , if it has null Lebesgue measure (i.e., it is a so-called “null set”).

First, we prove by induction on n≥ 2 that
(i) x1, . . . , xn are a.s. distinct;
(ii) the subdeterminant δn−1 = det(V (φ1, . . . ,φn−1; x2, . . . , xn)) is a.s. nonzero.

Then, by (i) and (ii) we shall prove that Vn itself is a.s. nonsingular.
The statements (i) and (ii) hold for n = 2, 3. Indeed, the probability that x2 = x1 given x1 and that x3 = x1 or x3 = x2 given

x1, x2 is zero, since the probability that a random point belongs to any finite set is zero (a finite set being a null set). This entails
that δ1 = det(V (φ1; x2)) = φ1(x2) is a.s. positive. Moreover, δ2 = det(V (φ1,φ2; x2, x3)) = φ1(x2)φ2(x3) is a.s. positive too.

We make now the inductive step. The points {x1, . . . , xn+1} are a.s. distinct because such are {x1, . . . , xn} and the probability
that xn+1 coincides with one of them is zero, a finite set being a null set. That is, (i) holds for n+ 1.

As for (ii), consider the matrix W (x) = V (φ1, . . . ,φn−1,φn; x2, . . . , xn, x), that is

W (x) =







































φ1(x2) 0 φ3(x2) · · · φn−1(x2) φn(x2)

φ1(x3) φ2(x3) 0 · · · φn−1(x3) φn(x3)

...
...

...
. . .

...
...

φ1(xn−1) φ2(xn−1) φ3(xn−1) · · · 0 φn(xn−1)

φ1(xn) φ2(xn) φ3(xn) · · · φn−1(xn) 0

φ1(x) φ2(x) φ3(x) · · · φn−1(x) φn(x)







































Developing the determinant of W (x) by Laplace rule along the last row we get

G(x) = det(W (x)) = δn−1φn(x) + cn−1φn−1(x) + · · ·+ c1φ1(x) ,

where the {c j} are the corresponding minors with the appropriate sign, that do not depend on x . Therefore, G is an analytic
function in the open connected set Ω \ {x1, . . . , xn}, being G ∈ span(φ1, . . . ,φn). We recall indeed that each basis function
φ j(x) = φ(‖x − x j‖2) = φ(

Æ

〈x − x j , x − x j〉 ) (where 〈·, ·〉 denotes the Euclidean scalar product in Rd), is not only infinitely
differentiable but also more importantly real analytic in Rd \ {x j}, due to analyticity of the univariate real functions φ(·) andp
· in R+. Moreover, G is a.s. not identically zero in Ω, because δn−1 is nonzero and the {φ j} are linearly independent in Ω, by

inductive hypothesis. On the other hand, by continuity in Ω, G(x) is a.s. not identically zero also in Ω \ {x1, . . . , xn}.
Then, δn = det(W (xn+1)) = G(xn+1) is a.s. nonzero, since the zero set of a not identically zero real analytic function on an

open connected set in Rd is a null set (cf. [8] for an elementary proof). More precisely, denoting by ZG the zero set of G in Ω, we
have that

ZG = (ZG ∩ {x1, . . . , xn})∪ (ZG ∩ (Ω \ {x1, . . . , xn})) .
Hence ZG is a null set if G 6≡ 0, because the first intersection is a finite set, and the second is the zero set of a not identically zero
real analytic function. Considering the probability of the corresponding events we can then write

prob{G(xn+1) = 0}= prob{G ≡ 0}+ prob{G 6≡ 0 & xn+1 ∈ ZG}= 0+ 0= 0 .

That is, also (ii) holds for n+ 1 and the inductive step is completed.
We can now prove that Vn is a.s. nonsingular for n≥ 2. The assertion is clearly true for n = 2, since det(V2) = −φ2(x1)φ1(x2) =

−φ2
1(x2) 6= 0. For n≥ 3, consider the n× n matrix

U(x) =







































0 φ2(x1) · · · φn−2(x1) φn−1(x1) φ1(x)

φ1(x2) 0 · · · φn−2(x2) φn−1(x2) φ2(x)

...
...

. . .
...

...
...

φ1(xn−2) φ2(xn−2) · · · 0 φn−1(xn−2) φn−2(x)

φ1(xn−1) φ2(xn−1) · · · φn−2(xn−1) 0 φn−1(x)

φ1(x) φ2(x) · · · φn−2(x) φn−1(x) 0






































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Applying Laplace determinantal rule to the n-th row, we get

F(x) = det(U(x)) = α1(x)φ1(x) + · · ·+αn−1(x)φn−1(x) ,

where α1, . . . ,αn−1 are the corresponding minors with the appropriate sign and clearly α j ∈ span(φ1, . . . ,φn−1). Then, F is real
analytic in Ω \ {x1, . . . , xn−1} since it belongs to the function algebra generated by the analytic functions φ1, . . . ,φn−1 (cf. e.g. [6]
for the properties of real analytic functions). The claim is that F(x) is a.s. not identically zero in Ω.

Expanding the computation of α1(x) and αn−1(x), it is easy to see that

F(x) = −dn−2φ
2
n−1(x) + A(x)φn−1(x) + B(x) , dn−2 = det(Vn−2) ,

where A ∈ span(φ1, . . . ,φn−2) and B(x) ∈ span(φ jφk , 1 ≤ j, k ≤ n− 2) are real analytic in Ω \ {x1, . . . , xn−2}. More precisely,
developing α1(x) and αn−1(x) by Laplace rule using the last column we obtain

A(x) = (−1)n+1φ1(x)det(V (φ2, . . . ,φn−1; x1, . . . , xn−2))

+(−1)3n−1φ1(x)det(V (φ1, . . . ,φn−2; x2, . . . , xn−1)) + C(x)

where C ∈ span(φ2, . . . ,φn−2), from which follows

A(x) = (−1)n+12δn−2φ1(x) + C(x) ,

since V (φ2, . . . ,φn−1; x1, . . . , xn−2) = V t(φ1, . . . ,φn−2; x2, . . . , xn−1) and hence the two matrices above have the same determinant.
Notice that A is a.s. not identically zero in Ω, because by inductive hypothesis δn−2 is nonzero and φ1, . . . ,φn−1 are linearly

independent. And more, being continuous in Ω and analytic in the open connected set Ω \ {x1, . . . , xn−2}, it is a.s. not identically
zero also there, otherwise by continuity it would be a.s. identically zero on the whole Ω. Then, it is a.s. not identically zero in a
neighborhood of xn−1, because its zero set must be a null set in Ω \ {x1, . . . , xn−2} (cf. e.g. [8]).

Assume now that F ≡ 0. Then we would have dn−2φ
2
n−1 − B ≡ Aφn−1. This leads to a contradiction, since dn−2φ

2
n−1 is a

polynomial of degree 2ν and B is analytic in a neighbourhood of xn−1, so that dn−2φ
2
n−1 − B is analytic in such a neighbourhood,

whereas Aφn−1 has a.s. a singularity at xn−1.
To prove the latter assertion, by A 6≡ 0 it follows that, in the direction of some unit vector u, the univariate analytic function

α(t) = A(xn−1 + tu) is not identically zero in a neighbourhood of t = 0. On the other hand, φn−1(xn−1 + tu) = φ(t) = |t|ν has a
discontinuity of the ν-th derivative.

If α(0) 6= 0, by Leibniz rule for the derivatives of a product this leads immediately to the fact that αφ has a discontinuity of
the ν-th derivative at t = 0. If α(0) = 0, by a well-known result on the zeros of real analytic functions, α(t) = tkβ(t), where k is
called the order of the zero, 1≤ k ∈ N, and β is (locally) analytic with β(0) 6= 0 (cf., e.g., [6]). Then, again by Leibniz rule, αφ
has a discontinuity of the (ν+ k)-th derivative at t = 0. In any case, Aφn−1 has a.s. a singularity at xn−1.

Observe that U(xn) = Vn since φn(xn) = 0 and φ j(xn) = φn(x j) for j = 1, . . . , n− 1. On the other hand, F is continuous in Ω
and analytic in the open connected set Ω \ {x1, . . . , xn−1}, and is a.s. not identically zero also there, otherwise by continuity it
would be a.s. identically zero on the whole Ω.

Then, defining ZF as above for G, we can conclude in the same way that prob{F(xn) = 0} = 0 and thus det(Vn) = F(xn) is a.s.
nonzero. �
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