

lomites Research Notes on Approximation

Volume 17 · 2024 · Pages 28–32

Density of measures related to orthogonal polynomials

Norman Levenberg *^a* · Franck Wielonsky *^b*

To our good friend Len Bos

Abstract

Let $K\subset\mathbb{C}^d$, $d\geq 1$ be compact and $\mathcal{M}(K)$ be the convex set of Borel probability measures supported in *K*. We show that various natural subclasses of M(*K*) associated with regular asymptotic *n*−th root behavior of corresponding orthonormal polynomials are dense in the standard weak topology under mild assumptions on *K*.

1 Introduction

In the theory of orthogonal polynomials on the complex plane, one starts with a (positive) Borel measure μ of finite total mass and compact support *K* in the complex plane C. Without loss of generality, one may assume μ is a probability measure, $\mu(K) = 1$; we write $\mathcal{M}(K)$ for the set of all Borel probability measures with support in K . When K is not polar, a key issue, as carefully described in the book [[8](#page-4-0)], is to determine when the sequence of orthonormal polynomials $\{p_{n,\mu}\}\$ in $L^2(\mu)$, where deg $p_n = n$, exhibit regular asymptotic (*n*−th root) behavior. This means that the sequence of subharmonic functions $\{\frac{1}{n}\log|p_{n,\mu}(z)|\}$ approximate in a precise way the Green function $V_K^*(z) := \limsup_{\zeta \to z} V_K(\zeta)$, where

$$
V_K(z) = \sup\left(\frac{1}{\deg(p)}\log|p(z)| : p \in \bigcup_n \mathcal{P}_n, \ ||p||_K := \sup_K |p| \le 1\right) \tag{1}
$$

and \mathcal{P}_n denotes the (holomorphic) polynomials of degree at most *n*. One writes that such a μ belongs to the class **Reg**; see Definition [2.6.](#page-1-0) Several sufficient conditions are known which imply that *µ* ∈ **Reg**. The definition [\(1\)](#page-0-0) makes sense for compact sets $K \subset \mathbb{C}^d$, $d > 1$. For $\mu \in \mathcal{M}(K)$, a theory of orthogonal polynomials associated to compact sets in \mathbb{C}^d for $d > 1$ was developed in [[3](#page-4-1)], including an appropriate notion of **Reg** class. In this higher dimensional setting, much less is known regarding sufficient conditions for μ to belong to **Reg.**

In the next section, we state some known sufficient conditions for $\mu \in \text{Reg}$ in both the one and several variable settings. Our goal in this note is to show that under some natural hypotheses on K , these conditions, and hence μ belonging to **Reg**, is a generic condition within M(*K*).

2 Sufficient conditions for *µ* ∈ **Reg**

For the moment, we work in \mathbb{C}^d where $d \ge 1$. Recall that a real-valued function *u* on a domain $D \subset \mathbb{C}^d$ is plurisubharmonic (psh) in *D* if it is uppersemicontinuous (usc) and $u|_{D \cap L}$ is subharmonic on components of $D \cap L$ for each complex line $L \subset \mathbb{C}^d$. A set $E \subset \mathbb{C}^d$ is *pluripolar* (polar if $d = 1$) if there exists $u \neq -\infty$ psh (subharmonic if $d = 1$) on a neighborhood of *E* with *E* ⊂ {*u* = −∞}. We write *L*(\mathbb{C}^d) for the set of *u* psh in \mathbb{C}^d of at most logarithmic growth; i.e.,

$$
L(\mathbb{C}^d) = \{u \text{ psh in } \mathbb{C}^d : u(z) \le \log |z| + \mathcal{O}(1), |z| \to \infty\}.
$$

In particular, given a polynomial $p \in \bigcup_n \mathcal{P}_n$, the function $u(z) = (\deg(p))^{-1} \log |p(z)| \in L(\mathbb{C}^d)$. For a bounded subset *E* of \mathbb{C}^d , we define

$$
V_E(z) := \sup \{ u(z) : \ u \in L(\mathbb{C}^n), \ u \le 0 \text{ on } E \}. \tag{2}
$$

Note that if $E \subset F$ then $V_F \leq V_E$. If *K* is compact, [\(2\)](#page-0-1) agrees with the function defined by [\(1\)](#page-0-0) (cf., [[5](#page-4-2)], Theorem 5.1.7). In this setting, the usc regularization $V_K^*(z) := \limsup_{\zeta \to z} V_K(\zeta)$ is either identically $+\infty$ or else $V_K^* \in L(\mathbb{C}^d)$. We assume throughout

*^a*Department of Mathematics, Indiana University, USA

*b*Department of Mathematics, Université Aix-Marseille, France

this note that *V*_K^{*} ≠ +∞; this occurs precisely when *K* is not (pluri)polar (cf., [[5](#page-4-2)], Corollary 5.2.2). Moreover, if *V*_K^{*} ≠ +∞ it is known that $V_K^* \in L^+(\mathbb{C}^d)$ where

$$
L^+(\mathbb{C}^d) = \{u \in L(\mathbb{C}^d) : u(z) - \log|z| = \mathcal{O}(1), \ |z| \to \infty\},\
$$

and that $V_K^* = 0$ on $K \setminus Z$ where *Z* is a pluripolar set.

Next, we say *K* is a regular compact set if V_K^* is continuous. There are several known sufficient conditions for regularity of a compact set *K* ⊂ C *d* ; if *d* = 1, this is equivalent to the unbounded component *Ω* of the complement of *K* being a regular domain for the Dirichlet problem. We denote by $\mu_K \in \mathcal{M}(K)$ the *equilibrium measure* of *K*; if $d = 1$, this is the unique measure in $\mathcal{M}(K)$ of minimal logarithmic energy; if $d \ge 1$ it is the Monge-Ampère measure $(dd^c V_K^*)^d$ associated to V_K^* . For $d > 1$ and u a real-valued function of class C^2 on a domain in \mathbb{C}^d , $(dd^c u)^d=c_d\det H(u)dV$ where $c_d>0$ is a dimensional constant,

$$
H(u):=[\frac{\partial^2 u}{\partial z_j\bar\partial z_k}]_{j,k=1,\ldots,d}
$$

is the complex Hessian of *u*, and dV is Lebesgue measure on $\mathbb{C}^d=\mathbb{R}^{2d}$. In particular, if *u* is psh, $(dd^c u)^d$ is a positive, absolutely continuous measure. For a locally bounded psh function *u*, such as V_k^* , one can still define $(dd^c u)^d$ as a positive measure which puts no mass on pluripolar sets, cf., [[5](#page-4-2)]. The support S_K of μ_K is contained in $\partial\Omega$ if $d=1$ and, in general, is contained in the Shilov boundary of *K* with respect to the uniform algebra *P*(*K*) generated by the polynomials restricted to *K*, i.e., the smallest closed subset E of K such that for all $p \in P(K)$, $||p||_K = ||p||_E$. In particular, S_K has empty interior. Finally, since $V_K^* \in L^+(\mathbb{C}^d)$ if K is not pluripolar, for such sets, in particular, for regular compact sets, the measure μ_K puts no mass on pluripolar sets.

Given $\mu \in \mathcal{M}(K)$ where $V_K^* \in L(\mathbb{C}^d)$, we consider the following subclasses of $\mathcal{M}(K)$ to which μ may or may not belong:

Definition 2.1. (**Erdös-Turan**) We say $\mu \in \mathcal{M}(K)$ satisfies the Erdös-Turan condition if

$$
\frac{d\mu}{d\mu_K} > 0
$$
 almost everywhere with respect to μ_K ;

i.e., writing $d\mu = f d\mu_K + d\mu_s$ where $f \in L^1(\mu_K)$ we have $f > 0$ μ_K -a.e. We write $\mu \in E(K)$.

Definition 2.2. (Szegö) We say $\mu \in \mathcal{M}(K)$ satisfies the Szegö property if $\mu \in E(K)$ and $\int_K \log f d\mu_K > -\infty$. We write $\mu \in S(K)$. **Definition 2.3.** (Determining [[9,](#page-4-3) [7](#page-4-4)]) We say $\mu \in \mathcal{M}(K)$ is determining for K if for each Borel subset E of K with $\mu(E) = \mu(K)$ (*E* is called a *carrier* of μ), we have $V_E^* = V_K^*$. We write $\mu \in D(K)$.

Definition 2.4. (Bernstein-Markov) We say that (K, μ) satisfies a Bernstein-Markov property if for all $p_k \in \mathcal{P}_k$,

$$
||p_k||_K := \sup_{z \in K} |p_k(z)| \le M_k ||p_k||_{L^2(\mu)} \text{ with } \limsup_{k \to \infty} M_k^{1/k} = 1.
$$

Equivalently, for any sequence $\{p_j\}$ of nonzero polynomials with $\deg(p_j) \to +\infty$,

$$
\limsup_{j\to\infty}\left(\frac{||p_j||_K}{||p_j||_{L^2(\mu)}}\right)^{1/\deg(p_j)}\leq 1.
$$

We write $\mu \in B(K)$.

Definition [2](#page-4-5).5. (Psh Bernstein-Markov [2]) We say that (K, μ) satisfies a plurisubharmonic Bernstein-Markov property if for all $\epsilon > 0$, there exists $C = C(\epsilon, K)$ such that for all $p \ge 1$,

$$
\sup_K e^{pu} = (\sup_K e^u)^p \le C(1+\epsilon)^p ||e^u||_{L^p(\mu)}^p
$$

for all $u \in L(\mathbb{C}^n)$. We write $\mu \in PB(K)$.

Definition 2.6. (Reg) We say $\mu \in \text{Reg}$ if for any sequence $\{p_j\}$ of nonzero polynomials with $\deg(p_j) \to +\infty$,

$$
\limsup_{j\to\infty}\left(\frac{|p_j(z)|}{\|p_j\|_{L^2(\mu)}}\right)^{1/\deg(p_j)} \leq \exp(V_K^*(z))
$$

- 1. locally uniformly for $z \in \mathbb{C}$; i.e., if $d = 1$;
- 2. pointwise for $z \in \mathbb{C}^d$ if $d > 1$.

Remark 1. If $d = 1$, $u \in \text{Reg}$ if and only if

$$
\limsup_{n \to \infty} \frac{1}{n} \log |p_{n,\mu}(z)| \le V_K^*(z) \text{ locally uniformly for } z \in \mathbb{C}
$$

where $\{p_{n,\mu}\}$ with $\deg(p_{n,\mu}) = n$ are the orthonormal polynomials in $L^2(\mu)$ (Theorem 3.2.1 [[8](#page-4-0)]); if $d > 1$, an analogous pointwise inequality characterization exists (Theorem 3.3 [[3](#page-4-1)]).

Note these definitions make sense in \mathbb{C}^d for any $d\geq 1$ although we have not seen $E(K)$ nor $S(K)$ used unless $d=1$. Following [[6,](#page-4-6) p.134], we will say that a measure $\mu \in \mathcal{M}(K)$ is C-absolutely continuous if it does not charge pluripolar sets, that is $\mu(Z) = 0$ if *Z* is pluripolar. We shall denote by $\mathcal{M}'(K)$ the subset of $\mathcal{M}(K)$ of C-absolutely continuous measures, and by $\mathcal{M}_a(K)$ the subset of $\mathcal{M}(K)$ of absolutely continuous measures with respect to $\mu_K.$

We summarize what is known relating the above criteria; cf., $[8]$ $[8]$ $[8]$, Chapter [4](#page-4-7), $[2]$ $[2]$ $[2]$, $[3]$ $[3]$ $[3]$, and $[4]$ for the proofs.

Proposition 2.1. *Let* $K \subset \mathbb{C}^d$ *with* $V_K^* \in L(\mathbb{C}^d)$ *where* $d \geq 1$ *. 1) If K is regular, then*

$$
D(K)\subset B(K)=\text{Reg},
$$

and the inclusion is proper. Moreover,

$$
D(K) \cap \mathcal{M}'(K) = PB(K) \cap \mathcal{M}'(K) \subset B(K)
$$

and the last inclusion is proper.

2) If d = 1*, for a general compact set K,*

$$
S(K)\subset E(K)\subset D(K)\subset \textbf{Reg},
$$

and each inclusion is proper.

In Proposition [3.5](#page-3-0) below, we prove that for a compact set *K* ⊂ \mathbb{C}^d , the inclusion *E*(*K*) ⊂ *D*(*K*) also holds true.

3 Results

Throughout this section we let $K \subset \mathbb{C}^d$ compact with $V_K^* \in L(\mathbb{C}^d)$. Here, we say a sequence of measures converges weakly (or in the weak-* topology) to a measure μ , and we write $\mu_n \rightarrow \mu$, if

$$
\lim_{n\to\infty}\int_K f d\mu_n = \int_K f d\mu, \quad \text{ for all } f \in C(K).
$$

Lemma 3.1. For $K \subset \mathbb{C}^d$ as above, $E(K)$ is dense in $\mathcal{M}(K)$; i.e., given $\mu \in \mathcal{M}(K)$, there exists $\{\mu_n\} \subset E(K)$ with $\mu_n \to \mu$ weakly.

Proof. Let $\mu \in \mathcal{M}(K) \setminus E(K)$. Since measures from $E(K)$ can have arbitrary singular parts, we may assume, without loss of generality, that μ is absolutely continuous with respect to μ_K . Write $d\mu = f d\mu_K$ where $f \in L^1(\mu_K)$. Let A be a Borel subset of K with $f > 0$ a.e. with respect to μ_K on $K \setminus A$, $f = 0$ a.e. with respect to μ_K on A , and $\mu_K(A) > 0$. Thus

$$
1 = \mu(K) = \int_K f d\mu = \int_{K \backslash A} f d\mu.
$$

Define

$$
f_n(z) = 1/n, \ z \in A; \qquad f_n(z) = \big(1 - \mu_K(A)/n\big) f(z), \ z \in K \setminus A,
$$

and set $d\mu_n := f_n d\mu_K$. Clearly $f_n \in L^1(\mu_K)$ and $\mu_n \in E(K)$ for each n. If $h \in C(K)$, we have

$$
\int_{K} h d\mu_{n} = \frac{1}{n} \int_{A} h d\mu_{K} + (1 - \mu_{K}(A)/n) \int_{K\setminus A} h f d\mu_{K}
$$
\n
$$
= \frac{1}{n} \int_{A} h d\mu_{K} + (1 - \mu_{K}(A)/n) \int_{K} h d\mu
$$
\n
$$
= \frac{1}{n} \Big[\int_{A} h d\mu_{K} - \mu_{K}(A) \int_{K} h d\mu \Big] + \int_{K} h d\mu \to \int_{K} h d\mu, \text{ as } n \to \infty.
$$

Remark 2. The proof shows in particular that $E(K) \cap M_a(K)$ is dense in $M_a(K)$.

In fact, the smaller Szegö class is sufficient to approximate $\mathcal{M}(K)$.

Proposition 3.2. For $K \subset \mathbb{C}^d$ as above, $S(K)$ is dense in $\mathcal{M}(K)$; i.e., given $\mu \in \mathcal{M}(K)$, there exists $\{\mu_n\} \subset S(K)$ with $\mu_n \to \mu$ weakly.

Proof. Let $\mu \in \mathcal{M}(K) \setminus S(K)$. Since measures from $S(K)$ can have arbitrary singular parts, we may again assume, without loss of generality, that μ is absolutely continuous with respect to μ_K . Write $d\mu = f d\mu_K$ where $f \in L^1(\mu_K)$ with $f \ge 0$ and $\int_K f d\mu_K = 1$. Then $\mu \in S(K)$ if and only if $f > 0$ a.e. μ_K and

$$
\int_K \log f \, d\mu_K > -\infty.
$$

To prove our result, from Lemma [3.1](#page-2-0) it suffices to show for $\mu \in E(K) \setminus S(K)$ that there exists $\{\mu_n\} \subset S(K)$ with $\mu_n \to \mu$ weakly. Thus we suppose $d\mu = f d\mu_K$ satisfies $f > 0$ a.e. with respect to μ_K but $\int_K \log f d\mu_K = -\infty$. To construct μ_n , we let $A_n \subset K$

be a Borel set such that $f > 1/n$ a.e. μ_K on A_n and $f \le 1/n$ a.e μ_K on $K \setminus A_n$. Then $\mu \in E(K)$ implies that $\mu_K(A_n) \nearrow 1$ and $\cup_n A_n$ =: *K* \ *P* where μ _{*K*}(*P*) = 0. We define

$$
f_n(z) = 1/n \text{ for } z \in K \setminus (A_n \cup P) \text{ and}
$$

$$
f_n(z) = \alpha_n f(z) \text{ for } z \in A_n \cup P \text{ where } \alpha_n := \frac{1 - (1/n)\mu_K(K \setminus (A_n \cup P))}{\mu(A_n \cup P)}.
$$

It is straightforward that $0 < \alpha_n < 1$ and $\lim_{n \to \infty} \alpha_n = 1$. We now define

 $d\mu_n := f_n d\mu_K$.

Since $\alpha_n > 0$ and $f > 0$ a.e. with respect to μ_K , we have $f_n > 0$ a.e. with respect to μ_K . To see that $\mu_n \in S(K)$, note by construction μ_n ∈ *M*(*K*). Moreover, we have

$$
\int_{K} \log f_{n} d\mu_{K} = \int_{K \setminus (A_{n} \cup P)} \log f_{n} d\mu_{K} + \int_{A_{n} \cup P} \log f_{n} d\mu_{K}
$$
\n
$$
\geq (\log \frac{1}{n}) \cdot \mu_{K}(K \setminus (A_{n} \cup P)) + (\log \frac{\alpha_{n}}{n}) \cdot \mu_{K}(A_{n} \cup P) > -\infty.
$$

Finally, to show $\mu_n \to \mu$ weakly, let $h \in C(K)$. Then

$$
\int_{K} h d\mu_{n} = \frac{1}{n} \int_{K \setminus (A_{n} \cup P)} h d\mu_{K} + \alpha_{n} \int_{A_{n} \cup P} h f d\mu_{K} \to \int_{K} h f d\mu_{K} = \int_{K} h d\mu, \text{ as } n \to \infty
$$

since $\lim_{n\to\infty} \alpha_n = 1$ and $\mu_K(A_n) \nearrow 1$.

From Proposition [2.1,](#page-2-1) since $E(K) \subset D(K) \subset B(K)$ for $K \subset \mathbb{C}$ regular, we have the following.

Corollary 3.3. *For* $K \subset \mathbb{C}$ *regular,* $B(K)$ *is dense in* $\mathcal{M}(K)$ *.*

Remark 3. The class $B(K)$ is a much larger class than $E(K)$ as, e.g., there exist discrete measures $\mu \in B(K)$, i.e., consisting entirely of atoms. Indeed, any compact set *K* admits a Bernstein-Markov measure *µ* with a countable (and hence pluripolar) carrier (so $\mu \in B(K) \setminus D(K)$ [[4](#page-4-7)].

For our next result, we will need a version of the domination principle; cf., [[1](#page-4-8)]. **Proposition 3.4.** *Let* $u \in L(\mathbb{C}^d)$ and $v \in L^+(\mathbb{C}^d)$. *Then*

$$
u \le v
$$
, $(dd^c v)^d$ -a.e. $\implies u \le v$ in \mathbb{C}^d .

Proposition [3.4](#page-3-1) is not necessarily true if only $v \in L(\mathbb{C}^d)$; indeed, in this case, if $d > 1$, the Monge-Ampère measure $(dd^c v)^d$ is not necessarily well-defined.

We have the following.

Proposition 3.5. For $K \subset \mathbb{C}^d$ as above, $E(K) \subset D(K)$. Thus, from Lemma [3.1,](#page-2-0) $D(K)$ is dense in $\mathcal{M}(K)$.

Proof. Let $\mu \in E(K)$; i.e., $d\mu = f d\mu_K + d\mu_s$ where $f \in L^1(\mu_K)$ with $f \ge 0$ and $f > 0$ μ_K -a.e. Let $E \subset K$ be a Borel set with $\mu(E) = \mu(K) = 1$. Clearly $V_K^* \le V_E^*$. To prove the reverse inequality, let $u \in L(\mathbb{C}^d)$ with $u \le 0$ on E; we want to show that $u \le V_K^*$ in \mathbb{C}^d . Suppose first that $\mu_s = 0$. Since $\mu(E) = \mu(K)$, i.e.,

$$
\int_E f d\mu_K = \int_K f d\mu_K,
$$

we have, on one hand, $f = 0$ μ_K -a.e. on $K \setminus E$. On the other hand, $f > 0$ μ_K -a.e. Thus,

$$
\mu_K(K \setminus E) = \mu_K((K \setminus E) \cap \{f = 0\}) \le \mu_K(\{f = 0\}) = 0
$$

which implies that $u \le 0$ μ_K -a.e. Since $V_K^* = 0$ μ_K -a.e. and $V_K^* \in L^+(\mathbb{C}^d)$, by Proposition [3.4](#page-3-1) we get $u \le V_K^*$ in \mathbb{C}^d .

In the general case, we note that the absolutely continuous part of μ with respect to μ_K , i.e., $f d\mu_K$, is determining for *K* since $f > 0$ μ_K -a.e. Precisely, one should renormalize $f d\mu_K$ to get a probability measure; i.e., using $cf d\mu_K$ for $c > 1$ so that $\int_K cf d\mu_K = \int_K d\mu_K$ so that $cf d\mu_K$ is determining for K (the carriers for $fd\mu_K$ and $cf d\mu_K$ are the same). But if $\mu_s \neq 0$, a subset E of K is a carrier of $d\mu=f d\mu_{\scriptscriptstyle{K}}+d\mu_{\scriptscriptstyle{s}}$ if and only if it is a carrier of $f d\mu_{\scriptscriptstyle{K}}$ and a carrier of $d\mu_{\scriptscriptstyle{s}}.$ Hence, for E a carrier of $d\mu$, we have $V_E^* \leq V_K^*$ by the first part of the proof. \Box

Remark 4*.* If $d = 1$, Proposition [3.5](#page-3-0) can be proved using logarithmic energy; see pp. 102-103 of [[8](#page-4-0)].

Corollary 3.6. *For* $K \subset \mathbb{C}^d$ *regular,* $PB(K) \cap M_a(K)$ *is dense in* $M_a(K)$ *.*

Proof. Since $\mu_K \in \mathcal{M}'(K)$, we have $\mathcal{M}_a(K) \subset \mathcal{M}'(K)$. Also, by item 1) of Proposition [2.1,](#page-2-1) $D(K) \cap \mathcal{M}'(K) = PB(K) \cap \mathcal{M}'(K)$, hence $D(K) \cap M_a(K) = PB(K) \cap M_a(K)$. Thus,

$$
E(K) \cap \mathcal{M}_a(K) \subset D(K) \cap \mathcal{M}_a(K) = PB(K) \cap \mathcal{M}_a(K),
$$

which, together with Remark [2,](#page-2-2) proves the result.

References

- [1] E. Bedford, B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, *Ann. Inst. Fourier (Grenoble)*, **38** (1988), no. 4, 133-171.
- [2] R. Berman, S. Boucksom and D. W. Nystrom, Fekete points and convergence towards equilibrium on complex manifolds, *Acta Math.*, **207** (2011), no. 1, 1-27.
- [3] T. Bloom, Orthogonal polynomials in C *n* , *Indiana Univ. Math. J.*, **46** (1997), no. 2, 427-452.
- [4] T. Bloom, N. Levenberg, F. Piazzon, F. Wielonsky, Bernstein-Markov: a survey, *Dolomites Res. Notes Approx.*, **8** (2015), Special Issue, 75-91.
- [5] M. Klimek, Pluripotential Theory, Clarendon Press, Oxford, 1991.
- [6] N. S. Landkof, Foundations of modern potential theory, *Grundlehren der mathematischen Wissenschaften* 180. Springer-Verlag, New York-Heidelberg, 1972.
- [7] J. Siciak, Families of polynomials and determining measures. Ann. Fac. Sci. Toulouse Math., 9 (1988), 193-211.
- [8] H. Stahl and V. Totik, *General Orthogonal Polynomials*, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, 1992.
- [9] J.L. Ullman, Orthogonal polynomials for general measures. I. Rational approximation and interpolation (Tampa, Fla., 1983), 524-528, Lecture Notes in Math., 1105, Springer, Berlin, 1984.