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Density of measures related to orthogonal polynomials

Norman Levenberg? - Franck Wielonsky?

To our good friend Len Bos

Abstract

Let K ¢ C¢, d > 1 be compact and M(K) be the convex set of Borel probability measures supported
in K. We show that various natural subclasses of M(K) associated with regular asymptotic n—th root
behavior of corresponding orthonormal polynomials are dense in the standard weak topology under mild
assumptions on K.

1 Introduction

In the theory of orthogonal polynomials on the complex plane, one starts with a (positive) Borel measure u of finite total mass and
compact support K in the complex plane C. Without loss of generality, one may assume y is a probability measure, u(K) = 1; we
write M(K) for the set of all Borel probability measures with support in K. When K is not polar, a key issue, as carefully described
in the book [8], is to determine when the sequence of orthonormal polynomials {p,, ,} in L*(u), where deg p,, = n, exhibit regular
asymptotic (n—th root) behavior. This means that the sequence of subharmonic functions {% log|p,,,(2)|} approximate in a
precise way the Green function V;/(z) := limsup,_,, Vx({), where

1
deg(p)

and P, denotes the (holomorphic) polynomials of degree at most n. One writes that such a u belongs to the class Reg; see
Definition 2.6. Several sufficient conditions are known which imply that u € Reg. The definition (1) makes sense for compact
sets K € C¢, d > 1. For u € M(K), a theory of orthogonal polynomials associated to compact sets in C? for d > 1 was developed
in [3], including an appropriate notion of Reg class. In this higher dimensional setting, much less is known regarding sufficient
conditions for u to belong to Reg.

Vi (z) = sup( log|p(2)| : p € P, lIplly := sup|p| < 1) m

In the next section, we state some known sufficient conditions for u € Reg in both the one and several variable settings.
Our goal in this note is to show that under some natural hypotheses on K, these conditions, and hence u belonging to Reg, is a
generic condition within M(K).

2 Sufficient conditions for u € Reg

For the moment, we work in C? where d > 1. Recall that a real-valued function u on a domain D c C? is plurisubharmonic
(psh) in D if it is uppersemicontinuous (usc) and u|,,; is subharmonic on components of D N L for each complex line L c C¢.
A set E c C¢ is pluripolar (polar if d = 1) if there exists u Z —oo psh (subharmonic if d = 1) on a neighborhood of E with
E C {u=—00}. We write L(C%) for the set of u psh in C¢ of at most logarithmic growth; i.e.,

L(CY = {u pshin C? : u(z) < log |z| + O(1), |z| = oo}.

In particular, given a polynomial p € | J, P, the function u(z) = (deg(p)) " log|p(z)| € L(C?). For a bounded subset E of C¢, we
define
Ve(2) :=sup{u(z): ue L(C"), u<0onE}. 2)

Note that if E C F then V; < V;. If K is compact, (2) agrees with the function defined by (1) (cf., [5], Theorem 5.1.7). In this
setting, the usc regularization V;(z) := limsup,_,, V¢ ({) is either identically +o0 or else Vi € L(CY). We assume throughout
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this note that V7 # +00; this occurs precisely when K is not (pluri)polar (cf., [5], Corollary 5.2.2). Moreover, if Vi #Z +00 it is
known that V;f € L*(C?) where

LT(CY) = {ue L(CY) : u(z) —loglz| = O(1), |z| — oo},

and that V} =0 on K \ Z where Z is a pluripolar set.

Next, we say K is a regular compact set if V; is continuous. There are several known sufficient conditions for regularity
of a compact set K ¢ C%; if d = 1, this is equivalent to the unbounded component Q of the complement of K being a regular
domain for the Dirichlet problem. We denote by u, € M(K) the equilibrium measure of K; if d = 1, this is the unique measure in
M(K) of minimal logarithmic energy; if d > 1 it is the Monge-Ampere measure (ddCV;)d associated to V. Ford >1andu a
real-valued function of class C2 on a domain in C¢, (dd°u)? = c;detH(u)dV where c; > 0 is a dimensional constant,

2%u

HW) :=[——=ljk=1..4

0z;0z, "

is the complex Hessian of u, and dV is Lebesgue measure on C¢ = R??, In particular, if u is psh, (dd°u)? is a positive, absolutely
continuous measure. For a locally bounded psh function u, such as V;, one can still define (dd°u)? as a positive measure which
puts no mass on pluripolar sets, cf., [5]. The support Sy of uy is contained in Q if d = 1 and, in general, is contained in the
Shilov boundary of K with respect to the uniform algebra P(K) generated by the polynomials restricted to K, i.e., the smallest
closed subset E of K such that for all p € P(K), ||pllx = ||pllz. In particular, S, has empty interior. Finally, since V;; € LY (CHifK
is not pluripolar, for such sets, in particular, for regular compact sets, the measure uy puts no mass on pluripolar sets.

Given u € M(K) where Vi € L(C%), we consider the following subclasses of M(K) to which y may or may not belong:

Definition 2.1. (Erdds-Turan) We say u € M(K) satisfies the Erdgs-Turan condition if

d
d—“ > 0 almost everywhere with respect to p;
Uk
i.e., writing du = f dug + du, where f € L'(ug) we have f > 0 ug-a.e. We write u € E(K).
Definition 2.2. (Szeg6) We say u € M(K) satisfies the Szego property if u € E(K) and fK log f dug > —o0. We write u € S(K).

Definition 2.3. (Determining [9, 7]) We say u € M(K) is determining for K if for each Borel subset E of K with u(E) = u(K)
(E is called a carrier of u), we have V; = V. We write u € D(K).

Definition 2.4. (Bernstein-Markov) We say that (K, u) satisfies a Bernstein-Markov property if for all p;, € P,
- k
[1Pellx = sup[pe(2)] < Millpillyzq, with limsup M = 1.
z€K k— 00

Equivalently, for any sequence {p;} of nonzero polynomials with deg(p;) — +o0,

||Pj||1< )l/deg(pj)

lim sup(
||Pj | |L2(u)

jooo
We write u € B(K).

Definition 2.5. (Psh Bernstein-Markov [2]) We say that (K, u) satisfies a plurisubharmonic Bernstein-Markov property if for
all € > 0, there exists C = C(¢€,K) such that forall p > 1,

supef" = (supe")? < C(1+ e)PIIe”Il‘L’P(u)
K K

for all u € L(C"). We write u € PB(K).

Definition 2.6. (Reg) We say u € Reg if for any sequence {p;} of nonzero polynomials with deg(p;) — +0o0,
Ip,(2)| )l/degw

< exp(V;(2))
| |Pj | |L2(u)

limsup (

j—oo
1. locally uniformly for z € C; i.e., if d = 1;
2. pointwise for z € C¢ if d > 1.

Remark 1. If d =1, u € Reg if and only if

1
limsup - log|p,, ,(2)| < V¢ (2) locally uniformly for z € C

n—oo N

where {p, ,} with deg(p,,,) = n are the orthonormal polynomials in L?(u) (Theorem 3.2.1 [8]); if d > 1, an analogous pointwise
inequality characterization exists (Theorem 3.3 [3]).
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Note these definitions make sense in C¢ for any d > 1 although we have not seen E(K) nor S(K) used unless d = 1. Following [6,
p.134], we will say that a measure u € M(K) is C-absolutely continuous if it does not charge pluripolar sets, that is u(Z) =0 if Z
is pluripolar. We shall denote by M’(K) the subset of M(K) of C-absolutely continuous measures, and by M,(K) the subset of
M(K) of absolutely continuous measures with respect to .

We summarize what is known relating the above criteria; cf., [8], Chapter 4, [2], [3], and [4] for the proofs.

Proposition 2.1. Let K C C? with V' € L(C*) where d > 1.
1) If K is regular, then
D(K) c B(K) =Reg,

and the inclusion is proper. Moreover,
D(K)N M'(K)=PB(K)Nn M'(K) c B(K)

and the last inclusion is proper.
2) If d = 1, for a general compact set K,
S(K) C E(K) c D(K) C Reg,

and each inclusion is proper.

In Proposition 3.5 below, we prove that for a compact set K € C%, the inclusion E(K) ¢ D(K) also holds true.

3 Results

Throughout this section we let K ¢ C¢ compact with /A%S L(CY). Here, we say a sequence of measures converges weakly (or in
the weak-* topology) to a measure u, and we write u, — W, if

lim J fdu, =J fdu, forall f € C(K).
n—oo K K

Lemma 3.1. For K C C? as above, E(K) is dense in M(K); i.e., given u € M(K), there exists {u,} C E(K) with u, — u weakly.

Proof. Let u € M(K)\ E(K). Since measures from E(K) can have arbitrary singular parts, we may assume, without loss of
generality, that u is absolutely continuous with respect to ug. Write du = f dug where f € L'(ug). Let A be a Borel subset of K
with f > 0 a.e. with respect to uy on K \ A, f =0 a.e. with respect to p on A, and ug(A) > 0. Thus

1=u(K)=J fdu=J fdu.
K K\A

fi@)=1/n,z€4;  f,(z)=(1—uc(A)/n)f(2), 2 €K \A,
and set du,, := f,duy. Clearly f, € L*(uy) and u, € E(K) for each n. If h € C(K), we have

Define

J hdu, = %j hduyg +(1—MK(A)/n)f hfdug
K A K\A

= ljhdHK+(1_NK(A)/n)J hdy.
nJa

K

=1[J hduK—uK(A)f hd‘u]—i-j hd‘u.—>f hdu, asn— oo. O
n A K K K

Remark 2. The proof shows in particular that E(K) N M, (K) is dense in M ,(K).

In fact, the smaller Szegé class is sufficient to approximate M(K).
Proposition 3.2. For K c C? as above, S(K) is dense in M(K); i.e., given u € M(K), there exists {u,} C S(K) with u, — y weakly.
Proof. Let u € M(K)\ S(K). Since measures from S(K) can have arbitrary singular parts, we may again assume, without loss of

generality, that u is absolutely continuous with respect to ug. Write du = f dug where f € L'(ug) with f > 0 and fK fdug=1.
Then u € S(K) if and only if f > 0 a.e. ug and

f log f duyg > —o0.
K

To prove our result, from Lemma 3.1 it suffices to show for u € E(K) \ S(K) that there exists {u, } C S(K) with u,, — u weakly.
Thus we suppose du = fduy satisfies f > 0 a.e. with respect to uy but fK log f duy = —o0o. To construct u,, we let A, C K
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be a Borel set such that f > 1/n a.e. ugy onA, and f < 1/n a.e gy on K \ A,. Then u € E(K) implies that ug(4,) /1 and
U,A, =: K\ P where u,(P) =0. We define
fu(z)=1/nforz €K\ (A,UP)and

1—(1/n)ug(K\ (A, UP))
u(A, UP)

fu(2)=a,f(z) for z € A, UP where a, :=
It is straightforward that 0 < a, < 1 and lim,_,, @,, = 1. We now define

d:u‘n = fnd:uK‘

Since a, > 0 and f > 0 a.e. with respect to u,, we have f, > 0 a.e. with respect to ug. To see that u, € S(K), note by construction

U, € M(K). Moreover, we have
f log fduy = J log f,dy + f log f,dux
K K\(ApUP) ApUP

> (log ) 1 (K \ (4, UP)) + (10g °2) (4, UP) > —o00.

Finally, to show u, — u weakly, let h € C(K). Then

1
Jhd,un:—f hd,uK+anJ hfduKﬂfhfduKthdu, asn— 0o
K 1 Jk\(A,uP) AnUP K K

since lim,_, o, a, =1 and ug(4,) /1. O

From Proposition 2.1, since E(K) € D(K) € B(K) for K ¢ C regular, we have the following.
Corollary 3.3. For K C C regular, B(K) is dense in M(K).
Remark 3. The class B(K) is a much larger class than E(K) as, e.g., there exist discrete measures u € B(K), i.e., consisting entirely
of atoms. Indeed, any compact set K admits a Bernstein-Markov measure u with a countable (and hence pluripolar) carrier (so
p € B(K)\ D(K) [4].

For our next result, we will need a version of the domination principle; cf., [1].
Proposition 3.4. Let u€ L(C?) and v € L*(C?). Then

u<v, (ddv)¥-ae. = u<v inCL

Proposition 3.4 is not necessarily true if only v € L(C%); indeed, in this case, if d > 1, the Monge-Ampeére measure (ddv)? is not
necessarily well-defined.
We have the following.

Proposition 3.5. For K ¢ C? as above, E(K) C D(K). Thus, from Lemma 3.1, D(K) is dense in M(K).

Proof. Let u € E(K); i.e., du = fduy + du, where f € L'(u,) with f > 0 and f > 0 ug-a.e. Let E C K be a Borel set with
w(E) = u(K) = 1. Clearly V;} < V. To prove the reverse inequality, let u € L(C?%) with u < 0 on E; we want to show that u < Ve
in C?. Suppose first that u, = 0. Since u(E) = u(K), i.e.,

deuK=J fdug,
E K

we have, on one hand, f =0 ug-a.e. on K \ E. On the other hand, f > 0 ug-a.e. Thus,
px(K\ E) = p (K\E)N{f =0} < pe({f =0}) =0

which implies that u < 0 uy-a.e. Since Vi =0 ug-a.e. and V € L*(C%), by Proposition 3.4 we get u < V¢ in ce.

In the general case, we note that the absolutely continuous part of u with respect to uy, i.e., fduy, is determining for K
since f > 0 ug-a.e. Precisely, one should renormalize fduy to get a probability measure; i.e., using cf duy for ¢ > 1 so that
fK cfdug = fK dug so that cf duy is determining for K (the carriers for fduy and cf duy are the same). But if u, # 0, a subset
E of K is a carrier of du = fdug + du, if and only if it is a carrier of fdu, and a carrier of du,. Hence, for E a carrier of du, we
have V; < V' by the first part of the proof. O

Remark 4. 1f d = 1, Proposition 3.5 can be proved using logarithmic energy; see pp. 102-103 of [8].
Corollary 3.6. For K c C¢ regular; PB(K) N M, (K) is dense in M (K).

Proof. Since ux € M’'(K), we have M,(K) € M'(K). Also, by item 1) of Proposition 2.1, D(K) N M’(K) = PB(K) n M'(K),
hence D(K) N M, (K) = PB(K) N M,(K). Thus,
E(K) N M,(K) € D(K)N M,(K) = PB(K) N M,(K),

which, together with Remark 2, proves the result. O
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