

Dolomites Research Notes on Approximation

Volume 17 · 2024 · Pages 28-32

Density of measures related to orthogonal polynomials

Norman Levenberg^a · Franck Wielonsky^b

To our good friend Len Bos

Abstract

Let $K \subset \mathbb{C}^d$, $d \ge 1$ be compact and $\mathcal{M}(K)$ be the convex set of Borel probability measures supported in *K*. We show that various natural subclasses of $\mathcal{M}(K)$ associated with regular asymptotic *n*—th root behavior of corresponding orthonormal polynomials are dense in the standard weak topology under mild assumptions on *K*.

1 Introduction

In the theory of orthogonal polynomials on the complex plane, one starts with a (positive) Borel measure μ of finite total mass and compact support K in the complex plane \mathbb{C} . Without loss of generality, one may assume μ is a probability measure, $\mu(K) = 1$; we write $\mathcal{M}(K)$ for the set of all Borel probability measures with support in K. When K is not polar, a key issue, as carefully described in the book [8], is to determine when the sequence of orthonormal polynomials $\{p_{n,\mu}\}$ in $L^2(\mu)$, where deg $p_n = n$, exhibit regular asymptotic (n-th root) behavior. This means that the sequence of subharmonic functions $\{\frac{1}{n} \log |p_{n,\mu}(z)|\}$ approximate in a precise way the Green function $V_K^*(z) := \limsup_{\zeta \to z} V_K(\zeta)$, where

$$V_{K}(z) = \sup\left(\frac{1}{\deg(p)}\log|p(z)|: p \in \bigcup_{n} \mathcal{P}_{n}, \ ||p||_{K} := \sup_{K}|p| \le 1\right)$$
(1)

and \mathcal{P}_n denotes the (holomorphic) polynomials of degree at most *n*. One writes that such a μ belongs to the class **Reg**; see Definition 2.6. Several sufficient conditions are known which imply that $\mu \in \text{Reg}$. The definition (1) makes sense for compact sets $K \subset \mathbb{C}^d$, d > 1. For $\mu \in \mathcal{M}(K)$, a theory of orthogonal polynomials associated to compact sets in \mathbb{C}^d for d > 1 was developed in [3], including an appropriate notion of **Reg** class. In this higher dimensional setting, much less is known regarding sufficient conditions for μ to belong to **Reg**.

In the next section, we state some known sufficient conditions for $\mu \in \text{Reg}$ in both the one and several variable settings. Our goal in this note is to show that under some natural hypotheses on *K*, these conditions, and hence μ belonging to **Reg**, is a generic condition within $\mathcal{M}(K)$.

2 Sufficient conditions for $\mu \in \text{Reg}$

For the moment, we work in \mathbb{C}^d where $d \ge 1$. Recall that a real-valued function u on a domain $D \subset \mathbb{C}^d$ is *plurisubharmonic* (psh) in D if it is uppersemicontinuous (usc) and $u|_{D\cap L}$ is subharmonic on components of $D \cap L$ for each complex line $L \subset \mathbb{C}^d$. A set $E \subset \mathbb{C}^d$ is *pluripolar* (polar if d = 1) if there exists $u \not\equiv -\infty$ psh (subharmonic if d = 1) on a neighborhood of E with $E \subset \{u = -\infty\}$. We write $L(\mathbb{C}^d)$ for the set of u psh in \mathbb{C}^d of at most logarithmic growth; i.e.,

$$L(\mathbb{C}^d) = \{ u \text{ psh in } \mathbb{C}^d : u(z) \le \log |z| + \mathcal{O}(1), \ |z| \to \infty \}.$$

In particular, given a polynomial $p \in \bigcup_n \mathcal{P}_n$, the function $u(z) = (\deg(p))^{-1} \log |p(z)| \in L(\mathbb{C}^d)$. For a bounded subset *E* of \mathbb{C}^d , we define

$$V_E(z) := \sup\{u(z) : u \in L(\mathbb{C}^n), u \le 0 \text{ on } E\}.$$
(2)

Note that if $E \subset F$ then $V_F \leq V_E$. If *K* is compact, (2) agrees with the function defined by (1) (cf., [5], Theorem 5.1.7). In this setting, the usc regularization $V_K^*(z) := \limsup_{\zeta \to z} V_K(\zeta)$ is either identically $+\infty$ or else $V_K^* \in L(\mathbb{C}^d)$. We assume throughout

^aDepartment of Mathematics, Indiana University, USA

^bDepartment of Mathematics, Université Aix-Marseille, France

this note that $V_K^* \not\equiv +\infty$; this occurs precisely when *K* is not (pluri)polar (cf., [5], Corollary 5.2.2). Moreover, if $V_K^* \not\equiv +\infty$ it is known that $V_K^* \in L^+(\mathbb{C}^d)$ where

$$L^+(\mathbb{C}^d) = \{ u \in L(\mathbb{C}^d) : u(z) - \log |z| = \mathcal{O}(1), |z| \to \infty \},\$$

and that $V_{K}^{*} = 0$ on $K \setminus Z$ where Z is a pluripolar set.

Next, we say *K* is a regular compact set if V_K^* is continuous. There are several known sufficient conditions for regularity of a compact set $K \subset \mathbb{C}^d$; if d = 1, this is equivalent to the unbounded component Ω of the complement of *K* being a regular domain for the Dirichlet problem. We denote by $\mu_K \in \mathcal{M}(K)$ the *equilibrium measure* of *K*; if d = 1, this is the unique measure in $\mathcal{M}(K)$ of minimal logarithmic energy; if $d \ge 1$ it is the Monge-Ampère measure $(dd^c V_K^*)^d$ associated to V_K^* . For d > 1 and *u* a real-valued function of class C^2 on a domain in \mathbb{C}^d , $(dd^c u)^d = c_d \det H(u) dV$ where $c_d > 0$ is a dimensional constant,

$$H(u) := \left[\frac{\partial^2 u}{\partial z_i \bar{\partial} z_k}\right]_{j,k=1,\dots,d}$$

is the complex Hessian of u, and dV is Lebesgue measure on $\mathbb{C}^d = \mathbb{R}^{2d}$. In particular, if u is psh, $(dd^c u)^d$ is a positive, absolutely continuous measure. For a locally bounded psh function u, such as V_K^* , one can still define $(dd^c u)^d$ as a positive measure which puts no mass on pluripolar sets, cf., [5]. The support S_K of μ_K is contained in $\partial\Omega$ if d = 1 and, in general, is contained in the Shilov boundary of K with respect to the uniform algebra P(K) generated by the polynomials restricted to K, i.e., the smallest closed subset E of K such that for all $p \in P(K)$, $||p||_K = ||p||_E$. In particular, S_K has empty interior. Finally, since $V_K^* \in L^+(\mathbb{C}^d)$ if Kis not pluripolar, for such sets, in particular, for regular compact sets, the measure μ_K puts no mass on pluripolar sets.

Given $\mu \in \mathcal{M}(K)$ where $V_K^* \in L(\mathbb{C}^d)$, we consider the following subclasses of $\mathcal{M}(K)$ to which μ may or may not belong:

Definition 2.1. (Erdös-Turan) We say $\mu \in \mathcal{M}(K)$ satisfies the Erdös-Turan condition if

$$\frac{d\mu}{d\mu_{K}}$$
 > 0 almost everywhere with respect to μ_{K} ;

i.e., writing $d\mu = f d\mu_K + d\mu_s$ where $f \in L^1(\mu_K)$ we have $f > 0 \mu_K$ -a.e. We write $\mu \in E(K)$.

Definition 2.2. (Szegö) We say $\mu \in \mathcal{M}(K)$ satisfies the Szegö property if $\mu \in E(K)$ and $\int_{K} \log f d\mu_{K} > -\infty$. We write $\mu \in S(K)$. **Definition 2.3.** (Determining [9, 7]) We say $\mu \in \mathcal{M}(K)$ is determining for *K* if for each Borel subset *E* of *K* with $\mu(E) = \mu(K)$ (*E* is called a *carrier* of μ), we have $V_{E}^{*} = V_{K}^{*}$. We write $\mu \in D(K)$.

Definition 2.4. (Bernstein-Markov) We say that (K, μ) satisfies a Bernstein-Markov property if for all $p_k \in \mathcal{P}_k$,

$$||p_k||_{\mathcal{K}} := \sup_{z \in \mathcal{K}} |p_k(z)| \le M_k ||p_k||_{L^2(\mu)}$$
 with $\limsup_{k \to \infty} M_k^{1/k} = 1$

Equivalently, for any sequence $\{p_i\}$ of nonzero polynomials with $\deg(p_i) \rightarrow +\infty$,

$$\limsup_{j\to\infty}\left(\frac{||p_j||_K}{||p_j||_{L^2(\mu)}}\right)^{1/\deg(p_j)} \le 1.$$

We write $\mu \in B(K)$.

Definition 2.5. (Psh Bernstein-Markov [2]) We say that (K, μ) satisfies a plurisubharmonic Bernstein-Markov property if for all $\epsilon > 0$, there exists $C = C(\epsilon, K)$ such that for all $p \ge 1$,

$$\sup_{K} e^{pu} = (\sup_{K} e^{u})^{p} \le C(1+\epsilon)^{p} ||e^{u}||_{L^{p}(\mu)}^{p}$$

for all $u \in L(\mathbb{C}^n)$. We write $\mu \in PB(K)$.

Definition 2.6. (Reg) We say $\mu \in \text{Reg}$ if for any sequence $\{p_i\}$ of nonzero polynomials with $\text{deg}(p_i) \to +\infty$,

$$\limsup_{j\to\infty} \left(\frac{|p_j(z)|}{||p_j||_{L^2(\mu)}}\right)^{1/\deg(p_j)} \le \exp(V_K^*(z))$$

- 1. locally uniformly for $z \in \mathbb{C}$; i.e., if d = 1;
- 2. pointwise for $z \in \mathbb{C}^d$ if d > 1.

Remark 1. If $d = 1, \mu \in \text{Reg}$ if and only if

$$\limsup_{n \to \infty} \frac{1}{n} \log |p_{n,\mu}(z)| \le V_K^*(z) \text{ locally uniformly for } z \in \mathbb{C}$$

where $\{p_{n,\mu}\}$ with deg $(p_{n,\mu}) = n$ are the orthonormal polynomials in $L^2(\mu)$ (Theorem 3.2.1 [8]); if d > 1, an analogous pointwise inequality characterization exists (Theorem 3.3 [3]).

Note these definitions make sense in \mathbb{C}^d for any $d \ge 1$ although we have not seen E(K) nor S(K) used unless d = 1. Following [6, p.134], we will say that a measure $\mu \in \mathcal{M}(K)$ is C-absolutely continuous if it does not charge pluripolar sets, that is $\mu(Z) = 0$ if Z is pluripolar. We shall denote by $\mathcal{M}'(K)$ the subset of $\mathcal{M}(K)$ of C-absolutely continuous measures, and by $\mathcal{M}_a(K)$ the subset of $\mathcal{M}(K)$ of absolutely continuous measures with respect to μ_K .

We summarize what is known relating the above criteria; cf., [8], Chapter 4, [2], [3], and [4] for the proofs.

Proposition 2.1. Let $K \subset \mathbb{C}^d$ with $V_K^* \in L(\mathbb{C}^d)$ where $d \ge 1$. 1) If K is regular, then

I

$$D(K) \subset B(K) = \operatorname{Reg},$$

and the inclusion is proper. Moreover,

$$\mathcal{D}(K) \cap \mathcal{M}'(K) = \mathcal{PB}(K) \cap \mathcal{M}'(K) \subset \mathcal{B}(K)$$

and the last inclusion is proper.

2) If d = 1, for a general compact set K,

$$S(K) \subset E(K) \subset D(K) \subset \mathbf{Reg},$$

and each inclusion is proper.

In Proposition 3.5 below, we prove that for a compact set $K \subset \mathbb{C}^d$, the inclusion $E(K) \subset D(K)$ also holds true.

3 Results

Throughout this section we let $K \subset \mathbb{C}^d$ compact with $V_K^* \in L(\mathbb{C}^d)$. Here, we say a sequence of measures converges weakly (or in the weak-* topology) to a measure μ , and we write $\mu_n \to \mu$, if

$$\lim_{n\to\infty}\int_K f\,d\mu_n=\int_K f\,d\mu,\quad\text{for all }f\in C(K).$$

Lemma 3.1. For $K \subset \mathbb{C}^d$ as above, E(K) is dense in $\mathcal{M}(K)$; i.e., given $\mu \in \mathcal{M}(K)$, there exists $\{\mu_n\} \subset E(K)$ with $\mu_n \to \mu$ weakly.

Proof. Let $\mu \in \mathcal{M}(K) \setminus E(K)$. Since measures from E(K) can have arbitrary singular parts, we may assume, without loss of generality, that μ is absolutely continuous with respect to μ_K . Write $d\mu = f d\mu_K$ where $f \in L^1(\mu_K)$. Let A be a Borel subset of K with f > 0 a.e. with respect to μ_K on $K \setminus A$, f = 0 a.e. with respect to μ_K on A, and $\mu_K(A) > 0$. Thus

$$1 = \mu(K) = \int_{K} f \, d\mu = \int_{K \setminus A} f \, d\mu$$

Define

$$f_n(z) = 1/n, \ z \in A; \qquad f_n(z) = \left(1 - \mu_K(A)/n\right) f(z), \ z \in K \setminus A$$

and set $d\mu_n := f_n d\mu_K$. Clearly $f_n \in L^1(\mu_K)$ and $\mu_n \in E(K)$ for each *n*. If $h \in C(K)$, we have

$$\int_{K} h d\mu_{n} = \frac{1}{n} \int_{A} h d\mu_{K} + (1 - \mu_{K}(A)/n) \int_{K \setminus A} h f d\mu_{K}$$

$$= \frac{1}{n} \int_{A} h d\mu_{K} + (1 - \mu_{K}(A)/n) \int_{K} h d\mu$$

$$= \frac{1}{n} [\int_{A} h d\mu_{K} - \mu_{K}(A) \int_{K} h d\mu] + \int_{K} h d\mu \rightarrow \int_{K} h d\mu, \quad \text{as } n \rightarrow \infty.$$

Remark 2. The proof shows in particular that $E(K) \cap \mathcal{M}_a(K)$ is dense in $\mathcal{M}_a(K)$.

In fact, the smaller Szegö class is sufficient to approximate $\mathcal{M}(K)$.

Proposition 3.2. For $K \subset \mathbb{C}^d$ as above, S(K) is dense in $\mathcal{M}(K)$; i.e., given $\mu \in \mathcal{M}(K)$, there exists $\{\mu_n\} \subset S(K)$ with $\mu_n \to \mu$ weakly.

Proof. Let $\mu \in \mathcal{M}(K) \setminus S(K)$. Since measures from S(K) can have arbitrary singular parts, we may again assume, without loss of generality, that μ is absolutely continuous with respect to μ_K . Write $d\mu = f d\mu_K$ where $f \in L^1(\mu_K)$ with $f \ge 0$ and $\int_K f d\mu_K = 1$. Then $\mu \in S(K)$ if and only if f > 0 a.e. μ_K and

$$\int_{K} \log f \, d\mu_{K} > -\infty.$$

To prove our result, from Lemma 3.1 it suffices to show for $\mu \in E(K) \setminus S(K)$ that there exists $\{\mu_n\} \subset S(K)$ with $\mu_n \to \mu$ weakly. Thus we suppose $d\mu = f d\mu_K$ satisfies f > 0 a.e. with respect to μ_K but $\int_K \log f d\mu_K = -\infty$. To construct μ_n , we let $A_n \subset K$

be a Borel set such that f > 1/n a.e. μ_K on A_n and $f \le 1/n$ a.e μ_K on $K \setminus A_n$. Then $\mu \in E(K)$ implies that $\mu_K(A_n) \nearrow 1$ and $\bigcup_n A_n =: K \setminus P$ where $\mu_K(P) = 0$. We define

$$f_n(z) = 1/n \text{ for } z \in K \setminus (A_n \cup P) \text{ and}$$
$$f_n(z) = \alpha_n f(z) \text{ for } z \in A_n \cup P \text{ where } \alpha_n := \frac{1 - (1/n)\mu_K(K \setminus (A_n \cup P))}{\mu(A_n \cup P)}.$$

It is straightforward that $0 < \alpha_n < 1$ and $\lim_{n \to \infty} \alpha_n = 1$. We now define

>

 $d\mu_n:=f_nd\mu_K.$

Since $\alpha_n > 0$ and f > 0 a.e. with respect to μ_K , we have $f_n > 0$ a.e. with respect to μ_K . To see that $\mu_n \in S(K)$, note by construction $\mu_n \in \mathcal{M}(K)$. Moreover, we have

$$\int_{K} \log f_n d\mu_K = \int_{K \setminus (A_n \cup P)} \log f_n d\mu_K + \int_{A_n \cup P} \log f_n d\mu_K$$

$$: (\log \frac{1}{n}) \cdot \mu_K(K \setminus (A_n \cup P)) + (\log \frac{\alpha_n}{n}) \cdot \mu_K(A_n \cup P) > -\infty$$

Finally, to show $\mu_n \rightarrow \mu$ weakly, let $h \in C(K)$. Then

$$\int_{K} h d\mu_{n} = \frac{1}{n} \int_{K \setminus (A_{n} \cup P)} h d\mu_{K} + \alpha_{n} \int_{A_{n} \cup P} h f d\mu_{K} \to \int_{K} h f d\mu_{K} = \int_{K} h d\mu, \quad \text{as } n \to \infty$$

since $\lim_{n\to\infty} \alpha_n = 1$ and $\mu_K(A_n) \nearrow 1$.

From Proposition 2.1, since $E(K) \subset D(K) \subset B(K)$ for $K \subset \mathbb{C}$ regular, we have the following.

Corollary 3.3. For $K \subset \mathbb{C}$ regular, B(K) is dense in $\mathcal{M}(K)$.

Remark 3. The class B(K) is a much larger class than E(K) as, e.g., there exist discrete measures $\mu \in B(K)$, i.e., consisting entirely of atoms. Indeed, any compact set K admits a Bernstein-Markov measure μ with a countable (and hence pluripolar) carrier (so $\mu \in B(K) \setminus D(K)$ [4].

For our next result, we will need a version of the domination principle; cf., [1].

Proposition 3.4. Let $u \in L(\mathbb{C}^d)$ and $v \in L^+(\mathbb{C}^d)$. Then

$$u \leq v, (dd^c v)^d$$
-a.e. $\implies u \leq v \text{ in } \mathbb{C}^d.$

Proposition 3.4 is not necessarily true if only $v \in L(\mathbb{C}^d)$; indeed, in this case, if d > 1, the Monge-Ampère measure $(dd^c v)^d$ is not necessarily well-defined.

We have the following.

Proposition 3.5. For $K \subset \mathbb{C}^d$ as above, $E(K) \subset D(K)$. Thus, from Lemma 3.1, D(K) is dense in $\mathcal{M}(K)$.

Proof. Let $\mu \in E(K)$; i.e., $d\mu = f d\mu_K + d\mu_s$ where $f \in L^1(\mu_K)$ with $f \ge 0$ and f > 0 μ_K -a.e. Let $E \subset K$ be a Borel set with $\mu(E) = \mu(K) = 1$. Clearly $V_K^* \le V_E^*$. To prove the reverse inequality, let $u \in L(\mathbb{C}^d)$ with $u \le 0$ on E; we want to show that $u \le V_K^*$ in \mathbb{C}^d . Suppose first that $\mu_s = 0$. Since $\mu(E) = \mu(K)$, i.e.,

$$\int_E f \, d\mu_K = \int_K f \, d\mu_K,$$

we have, on one hand, $f = 0 \mu_K$ -a.e. on $K \setminus E$. On the other hand, $f > 0 \mu_K$ -a.e. Thus,

$$\mu_{K}(K \setminus E) = \mu_{K}((K \setminus E) \cap \{f = 0\}) \le \mu_{K}(\{f = 0\}) = 0$$

which implies that $u \leq 0$ μ_K -a.e. Since $V_K^* = 0$ μ_K -a.e. and $V_K^* \in L^+(\mathbb{C}^d)$, by Proposition 3.4 we get $u \leq V_K^*$ in \mathbb{C}^d .

In the general case, we note that the absolutely continuous part of μ with respect to μ_K , i.e., $f d\mu_K$, is determining for K since $f > 0 \mu_K$ -a.e. Precisely, one should renormalize $f d\mu_K$ to get a probability measure; i.e., using $cf d\mu_K$ for c > 1 so that $\int_K cf d\mu_K = \int_K d\mu_K$ so that $cf d\mu_K$ is determining for K (the carriers for $f d\mu_K$ and $cf d\mu_K$ are the same). But if $\mu_s \neq 0$, a subset E of K is a carrier of $d\mu = f d\mu_K + d\mu_s$ if and only if it is a carrier of $f d\mu_K$ and a carrier of $d\mu_s$. Hence, for E a carrier of $d\mu$, we have $V_E^* \leq V_K^*$ by the first part of the proof.

Remark 4. If d = 1, Proposition 3.5 can be proved using logarithmic energy; see pp. 102-103 of [8].

Corollary 3.6. For $K \subset \mathbb{C}^d$ regular, $PB(K) \cap \mathcal{M}_a(K)$ is dense in $\mathcal{M}_a(K)$.

Proof. Since $\mu_K \in \mathcal{M}'(K)$, we have $\mathcal{M}_a(K) \subset \mathcal{M}'(K)$. Also, by item 1) of Proposition 2.1, $D(K) \cap \mathcal{M}'(K) = PB(K) \cap \mathcal{M}'(K)$, hence $D(K) \cap \mathcal{M}_a(K) = PB(K) \cap \mathcal{M}_a(K)$. Thus,

$$E(K) \cap \mathcal{M}_{a}(K) \subset D(K) \cap \mathcal{M}_{a}(K) = PB(K) \cap \mathcal{M}_{a}(K),$$

which, together with Remark 2, proves the result.

References

- [1] E. Bedford, B. A. Taylor, Plurisubharmonic functions with logarithmic singularities, *Ann. Inst. Fourier (Grenoble)*, **38** (1988), no. 4, 133-171.
- [2] R. Berman, S. Boucksom and D. W. Nystrom, Fekete points and convergence towards equilibrium on complex manifolds, *Acta Math.*, 207 (2011), no. 1, 1-27.
- [3] T. Bloom, Orthogonal polynomials in \mathbb{C}^n , Indiana Univ. Math. J., **46** (1997), no. 2, 427-452.
- [4] T. Bloom, N. Levenberg, F. Piazzon, F. Wielonsky, Bernstein-Markov: a survey, Dolomites Res. Notes Approx., 8 (2015), Special Issue, 75-91.
- [5] M. Klimek, *Pluripotential Theory*, Clarendon Press, Oxford, 1991.
- [6] N. S. Landkof, Foundations of modern potential theory, *Grundlehren der mathematischen Wissenschaften* 180. Springer-Verlag, New York-Heidelberg, 1972.
- [7] J. Siciak, Families of polynomials and determining measures. Ann. Fac. Sci. Toulouse Math., 9 (1988), 193-211.
- [8] H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, 1992.
- [9] J.L. Ullman, Orthogonal polynomials for general measures. I. Rational approximation and interpolation (Tampa, Fla., 1983), 524-528, Lecture Notes in Math., 1105, Springer, Berlin, 1984.