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Density of measures related to orthogonal polynomials

Norman Levenberg a · Franck Wielonsky b

To our good friend Len Bos

Abstract

Let K ⊂ Cd , d ≥ 1 be compact and M(K) be the convex set of Borel probability measures supported
in K. We show that various natural subclasses of M(K) associated with regular asymptotic n−th root
behavior of corresponding orthonormal polynomials are dense in the standard weak topology under mild
assumptions on K .

1 Introduction

In the theory of orthogonal polynomials on the complex plane, one starts with a (positive) Borel measure µ of finite total mass and
compact support K in the complex plane C. Without loss of generality, one may assume µ is a probability measure, µ(K) = 1; we
write M(K) for the set of all Borel probability measures with support in K . When K is not polar, a key issue, as carefully described
in the book [8], is to determine when the sequence of orthonormal polynomials {pn,µ} in L2(µ), where deg pn = n, exhibit regular
asymptotic (n−th root) behavior. This means that the sequence of subharmonic functions { 1

n log |pn,µ(z)|} approximate in a
precise way the Green function V ∗K (z) := limsupζ→z VK(ζ), where

VK(z) = sup
� 1

deg(p)
log |p(z)| : p ∈

⋃

n

Pn, ||p||K := sup
K
|p| ≤ 1

�

(1)

and Pn denotes the (holomorphic) polynomials of degree at most n. One writes that such a µ belongs to the class Reg; see
Definition 2.6. Several sufficient conditions are known which imply that µ ∈ Reg. The definition (1) makes sense for compact
sets K ⊂ Cd , d > 1. For µ ∈M(K), a theory of orthogonal polynomials associated to compact sets in Cd for d > 1 was developed
in [3], including an appropriate notion of Reg class. In this higher dimensional setting, much less is known regarding sufficient
conditions for µ to belong to Reg.

In the next section, we state some known sufficient conditions for µ ∈ Reg in both the one and several variable settings.
Our goal in this note is to show that under some natural hypotheses on K , these conditions, and hence µ belonging to Reg, is a
generic condition within M(K).

2 Sufficient conditions for µ ∈ Reg

For the moment, we work in Cd where d ≥ 1. Recall that a real-valued function u on a domain D ⊂ Cd is plurisubharmonic
(psh) in D if it is uppersemicontinuous (usc) and u|D∩L is subharmonic on components of D ∩ L for each complex line L ⊂ Cd .
A set E ⊂ Cd is pluripolar (polar if d = 1) if there exists u 6≡ −∞ psh (subharmonic if d = 1) on a neighborhood of E with
E ⊂ {u= −∞}. We write L(Cd) for the set of u psh in Cd of at most logarithmic growth; i.e.,

L(Cd) = {u psh in Cd : u(z)≤ log |z|+O(1), |z| →∞}.

In particular, given a polynomial p ∈
⋃

n Pn, the function u(z) = (deg(p))−1 log |p(z)| ∈ L(Cd). For a bounded subset E of Cd , we
define

VE(z) := sup{u(z) : u ∈ L(Cn), u≤ 0 on E}. (2)

Note that if E ⊂ F then VF ≤ VE . If K is compact, (2) agrees with the function defined by (1) (cf., [5], Theorem 5.1.7). In this
setting, the usc regularization V ∗K (z) := limsupζ→z VK(ζ) is either identically +∞ or else V ∗K ∈ L(Cd). We assume throughout
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this note that V ∗K 6≡ +∞; this occurs precisely when K is not (pluri)polar (cf., [5], Corollary 5.2.2). Moreover, if V ∗K 6≡ +∞ it is
known that V ∗K ∈ L+(Cd) where

L+(Cd) = {u ∈ L(Cd) : u(z)− log |z|=O(1), |z| →∞},

and that V ∗K = 0 on K \ Z where Z is a pluripolar set.
Next, we say K is a regular compact set if V ∗K is continuous. There are several known sufficient conditions for regularity

of a compact set K ⊂ Cd ; if d = 1, this is equivalent to the unbounded component Ω of the complement of K being a regular
domain for the Dirichlet problem. We denote by µK ∈M(K) the equilibrium measure of K; if d = 1, this is the unique measure in
M(K) of minimal logarithmic energy; if d ≥ 1 it is the Monge-Ampère measure (dd c V ∗K )

d associated to V ∗K . For d > 1 and u a
real-valued function of class C2 on a domain in Cd , (dd cu)d = cddetH(u)dV where cd > 0 is a dimensional constant,

H(u) := [
∂ 2u

∂ z j ∂̄ zk

] j,k=1,...,d

is the complex Hessian of u, and dV is Lebesgue measure on Cd = R2d . In particular, if u is psh, (dd cu)d is a positive, absolutely
continuous measure. For a locally bounded psh function u, such as V ∗K , one can still define (dd cu)d as a positive measure which
puts no mass on pluripolar sets, cf., [5]. The support SK of µK is contained in ∂Ω if d = 1 and, in general, is contained in the
Shilov boundary of K with respect to the uniform algebra P(K) generated by the polynomials restricted to K , i.e., the smallest
closed subset E of K such that for all p ∈ P(K), ||p||K = ||p||E . In particular, SK has empty interior. Finally, since V ∗K ∈ L+(Cd) if K
is not pluripolar, for such sets, in particular, for regular compact sets, the measure µK puts no mass on pluripolar sets.

Given µ ∈M(K) where V ∗K ∈ L(Cd), we consider the following subclasses of M(K) to which µ may or may not belong:

Definition 2.1. (Erdös-Turan) We say µ ∈M(K) satisfies the Erdös-Turan condition if

dµ
dµK

> 0 almost everywhere with respect to µK ;

i.e., writing dµ= f dµK + dµs where f ∈ L1(µK) we have f > 0 µK -a.e. We write µ ∈ E(K).

Definition 2.2. (Szegö) We say µ ∈M(K) satisfies the Szegö property if µ ∈ E(K) and
∫

K
log f dµK > −∞. We write µ ∈ S(K).

Definition 2.3. (Determining [9, 7]) We say µ ∈M(K) is determining for K if for each Borel subset E of K with µ(E) = µ(K)
(E is called a carrier of µ), we have V ∗E = V ∗K . We write µ ∈ D(K).

Definition 2.4. (Bernstein-Markov) We say that (K ,µ) satisfies a Bernstein-Markov property if for all pk ∈ Pk,

||pk||K := sup
z∈K
|pk(z)| ≤ Mk||pk||L2(µ) with limsup

k→∞
M1/k

k = 1.

Equivalently, for any sequence {p j} of nonzero polynomials with deg(p j)→ +∞,

limsup
j→∞

� ||p j ||K
||p j ||L2(µ)

�1/deg(p j )

≤ 1.

We write µ ∈ B(K).

Definition 2.5. (Psh Bernstein-Markov [2]) We say that (K ,µ) satisfies a plurisubharmonic Bernstein-Markov property if for
all ε > 0, there exists C = C(ε, K) such that for all p ≥ 1,

sup
K

epu = (sup
K

eu)p ≤ C(1+ ε)p||eu||pLp(µ)

for all u ∈ L(Cn). We write µ ∈ PB(K).

Definition 2.6. (Reg) We say µ ∈ Reg if for any sequence {p j} of nonzero polynomials with deg(p j)→ +∞,

limsup
j→∞

� |p j(z)|
||p j ||L2(µ)

�1/deg(p j )

≤ exp(V ∗K (z))

1. locally uniformly for z ∈ C; i.e., if d = 1;

2. pointwise for z ∈ Cd if d > 1.

Remark 1. If d = 1, µ ∈ Reg if and only if

lim sup
n→∞

1
n

log |pn,µ(z)| ≤ V ∗K (z) locally uniformly for z ∈ C

where {pn,µ} with deg(pn,µ) = n are the orthonormal polynomials in L2(µ) (Theorem 3.2.1 [8]); if d > 1, an analogous pointwise
inequality characterization exists (Theorem 3.3 [3]).
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Note these definitions make sense in Cd for any d ≥ 1 although we have not seen E(K) nor S(K) used unless d = 1. Following [6,
p.134], we will say that a measure µ ∈M(K) is C-absolutely continuous if it does not charge pluripolar sets, that is µ(Z) = 0 if Z
is pluripolar. We shall denote by M′(K) the subset of M(K) of C-absolutely continuous measures, and by Ma(K) the subset of
M(K) of absolutely continuous measures with respect to µK .

We summarize what is known relating the above criteria; cf., [8], Chapter 4, [2], [3], and [4] for the proofs.

Proposition 2.1. Let K ⊂ Cd with V ∗K ∈ L(Cd) where d ≥ 1.
1) If K is regular, then

D(K) ⊂ B(K) = Reg,

and the inclusion is proper. Moreover,
D(K)∩M′(K) = PB(K)∩M′(K) ⊂ B(K)

and the last inclusion is proper.
2) If d = 1, for a general compact set K,

S(K) ⊂ E(K) ⊂ D(K) ⊂ Reg,

and each inclusion is proper.

In Proposition 3.5 below, we prove that for a compact set K ⊂ Cd , the inclusion E(K) ⊂ D(K) also holds true.

3 Results

Throughout this section we let K ⊂ Cd compact with V ∗K ∈ L(Cd). Here, we say a sequence of measures converges weakly (or in
the weak-* topology) to a measure µ, and we write µn→ µ, if

lim
n→∞

∫

K

f dµn =

∫

K

f dµ, for all f ∈ C(K).

Lemma 3.1. For K ⊂ Cd as above, E(K) is dense in M(K); i.e., given µ ∈M(K), there exists {µn} ⊂ E(K) with µn→ µ weakly.

Proof. Let µ ∈M(K) \ E(K). Since measures from E(K) can have arbitrary singular parts, we may assume, without loss of
generality, that µ is absolutely continuous with respect to µK . Write dµ= f dµK where f ∈ L1(µK). Let A be a Borel subset of K
with f > 0 a.e. with respect to µK on K \ A, f = 0 a.e. with respect to µK on A, and µK(A)> 0. Thus

1= µ(K) =

∫

K

f dµ=

∫

K\A
f dµ.

Define
fn(z) = 1/n, z ∈ A; fn(z) =

�

1−µK(A)/n
�

f (z), z ∈ K \ A,

and set dµn := fndµK . Clearly fn ∈ L1(µK) and µn ∈ E(K) for each n. If h ∈ C(K), we have
∫

K

hdµn =
1
n

∫

A

hdµK +
�

1−µK(A)/n
�

∫

K\A
hf dµK

=
1
n

∫

A

hdµK +
�

1−µK(A)/n
�

∫

K

hdµ

=
1
n
[

∫

A

hdµK −µK(A)

∫

K

hdµ] +

∫

K

hdµ→
∫

K

hdµ, as n→∞.

Remark 2. The proof shows in particular that E(K)∩Ma(K) is dense in Ma(K).

In fact, the smaller Szegö class is sufficient to approximate M(K).

Proposition 3.2. For K ⊂ Cd as above, S(K) is dense in M(K); i.e., given µ ∈M(K), there exists {µn} ⊂ S(K) with µn→ µ weakly.

Proof. Let µ ∈M(K) \ S(K). Since measures from S(K) can have arbitrary singular parts, we may again assume, without loss of
generality, that µ is absolutely continuous with respect to µK . Write dµ= f dµK where f ∈ L1(µK) with f ≥ 0 and

∫

K
f dµK = 1.

Then µ ∈ S(K) if and only if f > 0 a.e. µK and
∫

K

log f dµK > −∞.

To prove our result, from Lemma 3.1 it suffices to show for µ ∈ E(K) \S(K) that there exists {µn} ⊂ S(K) with µn→ µ weakly.
Thus we suppose dµ = f dµK satisfies f > 0 a.e. with respect to µK but

∫

K
log f dµK = −∞. To construct µn, we let An ⊂ K
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be a Borel set such that f > 1/n a.e. µK on An and f ≤ 1/n a.e µK on K \ An. Then µ ∈ E(K) implies that µK(An)↗ 1 and
∪nAn =: K \ P where µK(P) = 0. We define

fn(z) = 1/n for z ∈ K \ (An ∪ P) and

fn(z) = αn f (z) for z ∈ An ∪ P where αn :=
1− (1/n)µK(K \ (An ∪ P))

µ(An ∪ P)
.

It is straightforward that 0< αn < 1 and limn→∞ αn = 1. We now define

dµn := fndµK .

Since αn > 0 and f > 0 a.e. with respect to µK , we have fn > 0 a.e. with respect to µK . To see that µn ∈ S(K), note by construction
µn ∈M(K). Moreover, we have

∫

K

log fndµK =

∫

K\(An∪P)

log fndµK +

∫

An∪P

log fndµK

≥ (log
1
n
) ·µK(K \ (An ∪ P)) + (log

αn

n
) ·µK(An ∪ P)> −∞.

Finally, to show µn→ µ weakly, let h ∈ C(K). Then
∫

K

hdµn =
1
n

∫

K\(An∪P)

hdµK +αn

∫

An∪P

hf dµK →
∫

K

hf dµK =

∫

K

hdµ, as n→∞

since limn→∞ αn = 1 and µK(An)↗ 1.

From Proposition 2.1, since E(K) ⊂ D(K) ⊂ B(K) for K ⊂ C regular, we have the following.

Corollary 3.3. For K ⊂ C regular, B(K) is dense in M(K).

Remark 3. The class B(K) is a much larger class than E(K) as, e.g., there exist discrete measures µ ∈ B(K), i.e., consisting entirely
of atoms. Indeed, any compact set K admits a Bernstein-Markov measure µ with a countable (and hence pluripolar) carrier (so
µ ∈ B(K) \ D(K) [4].

For our next result, we will need a version of the domination principle; cf., [1].

Proposition 3.4. Let u ∈ L(Cd) and v ∈ L+(Cd). Then

u≤ v, (dd c v)d -a.e. =⇒ u≤ v in Cd .

Proposition 3.4 is not necessarily true if only v ∈ L(Cd); indeed, in this case, if d > 1, the Monge-Ampère measure (dd c v)d is not
necessarily well-defined.

We have the following.

Proposition 3.5. For K ⊂ Cd as above, E(K) ⊂ D(K). Thus, from Lemma 3.1, D(K) is dense in M(K).

Proof. Let µ ∈ E(K); i.e., dµ = f dµK + dµs where f ∈ L1(µK) with f ≥ 0 and f > 0 µK -a.e. Let E ⊂ K be a Borel set with
µ(E) = µ(K) = 1. Clearly V ∗K ≤ V ∗E . To prove the reverse inequality, let u ∈ L(Cd) with u≤ 0 on E; we want to show that u≤ V ∗K
in Cd . Suppose first that µs = 0. Since µ(E) = µ(K), i.e.,

∫

E

f dµK =

∫

K

f dµK ,

we have, on one hand, f = 0 µK -a.e. on K \ E. On the other hand, f > 0 µK -a.e. Thus,

µK(K \ E) = µK((K \ E)∩ { f = 0})≤ µK({ f = 0}) = 0

which implies that u≤ 0 µK -a.e. Since V ∗K = 0 µK -a.e. and V ∗K ∈ L+(Cd), by Proposition 3.4 we get u≤ V ∗K in Cd .
In the general case, we note that the absolutely continuous part of µ with respect to µK , i.e., f dµK , is determining for K

since f > 0 µK -a.e. Precisely, one should renormalize f dµK to get a probability measure; i.e., using c f dµK for c > 1 so that
∫

K
c f dµK =

∫

K
dµK so that c f dµK is determining for K (the carriers for f dµK and c f dµK are the same). But if µs 6= 0, a subset

E of K is a carrier of dµ= f dµK + dµs if and only if it is a carrier of f dµK and a carrier of dµs. Hence, for E a carrier of dµ, we
have V ∗E ≤ V ∗K by the first part of the proof.

Remark 4. If d = 1, Proposition 3.5 can be proved using logarithmic energy; see pp. 102-103 of [8].

Corollary 3.6. For K ⊂ Cd regular, PB(K)∩Ma(K) is dense in Ma(K).

Proof. Since µK ∈M′(K), we have Ma(K) ⊂M′(K). Also, by item 1) of Proposition 2.1, D(K) ∩M′(K) = PB(K) ∩M′(K),
hence D(K)∩Ma(K) = PB(K)∩Ma(K). Thus,

E(K)∩Ma(K) ⊂ D(K)∩Ma(K) = PB(K)∩Ma(K),

which, together with Remark 2, proves the result.
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