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Iterates of positive linear operators and linear systems of equations
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Abstract

When studying the iterates of certain positive linear operators, systems of linear equations are naturally
involved. The last step in investigating the limit of such iterates is represented by a special kind of system
of equations. Problems of this type involving several classical operators are studied in the literature. In
this paper, we investigate the iterates of new positive linear operators and the corresponding systems of
equations. To solve the system we use an iterative algorithm. The approximate solution is used in order
to approximate the limit of the iterates of operators.

1 Introduction
The EMML algorithm (see [4], [20]) was pioneered by L.A. Shepp and Y. Vardi in 1982 and independently by K. Lange and R.
Carson in 1984, using the Expectation-Maximization (EM) algorithm in order to compute Maximum Likelihood (ML) estimates
for the problem of tomography reconstruction (see [14]). The same algorithm was obtained by W.H. Richardson in 1972 and
independently by L.B. Lucy in 1974, in the setting of restoration of astronomical images (see [14]).

EMML can be considered as a numerical procedure for calculating maximum likelihood estimates, or alternatively as an
iterative procedure for solving a class of linear systems of equations (see [20], [14], [3], [5], [6], [19]).

The Image Space Reconstruction Algorithm (ISRA) was introduced by M. E. Daube-Witherspoon and G. Muehllehner in 1986,
in the context of the Positron Emission Tomography problem. It serves to obtain Least-Squares estimates of the emission densities
(see [14]). Alternatively, ISRA can be viewed as a procedure for solving linear systems (see [20], [14], [3], [5], [6], [19]).

In [4] the authors introduced an algorithm A(p), depending on a real parameter p, such that:

(a) A(1) coincides with EMML, and A(−1) with a version of ISRA;

(b) A(p) minimizes a suitable generalized Kullback-Leibler distance and solves a specific problem of convex optimization
involving generalized log-likelihood functions and least-squares functions;

(c) A(p) solves iteratively linear systems from a certain class and assigns generalized solutions to inconsistent systems.

Practical applications of A(p) involving the Bernstein-Bézier representation of polynomials, B-spline interpolation, inverse
problem for Markov chains and the problem of finding the stationary distribution of a Markov chain are presented in [4]. In
this paper we present new applications of the algorithm A(p), involving the iterates of certain Markov operators, i.e., positive
linear operators which preserve the constant functions. Such iterates and their limits are studied in Ergodic Theory as well as in
Approximation Theory. In many cases, the problem of finding the limit is reduced to solving a linear system of equations, see, e.g.,
[2], [9], [10] and the references therein. We will show that in such situations the algorithm A(p) can be successfully applied.

The algorithm A(p) is recalled in Section 2. In Section 3 we consider a family of Stancu operators, see [7], [8], and investigate
the limit of the iterates of such an operator. Section 4 is devoted to a modification of the sequence of Bernstein operators Bn on
C[0,1], introduced by Schnabl [17] in order to investigate the global saturation of the sequence (Bn). We show that they can
be obtained as a particular case of Stancu operators, and so the results from Section 3 can be applied. In Section 5 we present
numerical examples. Section 6 is concerned with conclusions and further work.

Let Πn be the space of polynomial functions of degree at most n. By ei(t) we denote the monomial of degree i.

2 The A(p) algorithm
Consider the integers m ≥ 1, n ≥ 1, the matrix A = (ai j)i=1,...,n; j=1,...,m with ai j ≥ 0,

∑n
i=1 ai j > 0,
∑m

j=1 ai j > 0, i = 1, . . . , n,
j = 1, . . . , m and the vector b = (b1, . . . , bn)t with bi > 0, i = 1, . . . , n.

We will study the system of linear equations
Ax = b, (1)

where x = (x1, . . . , xm)t ∈ Rm.
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Denote Km := {x ∈ Rm : x j > 0, j = 1, . . . , m}.
To solve the system (1) we will use the following algorithm A(p), p ∈ R (see [4]).

A(p) : x (k+1)
r = x (k)r

�∑n
i=1 air

�

bi/(Ax (k))i
�p

∑n
i=1 air

�1/p

, k ≥ 0, (2)

for p ̸= 0 and r = 1, . . . , m.

A(0) : x (k+1)
r = x (k)r

n
∏

i=1

�

bi

(Ax (k))i

�air/
∑n

s=1 asr

, k ≥ 0, (3)

for p = 0 and r = 1, . . . , m.
Starting with x (0) := (x (0)1 , x (0)2 , · · · , x (0)m ) ∈ Km, we compute successively x (1), x (2), · · · , using (2) or alternatively (3). So, we

get the sequence (x (k))k≥0 in Km.
The convergence of this sequence is governed by the general rules of the Expectation-Maximization Algorithm (see [14], [4]).

If we denote
x∗ := lim

k→∞
x (k),

then x∗ is a generalized solution of (1). For details and several examples see [14], [4]. Other examples will be provided in
Section 5.

In particular, let T be a regular stochastic matrix,

T =





p11 p12 · · · p1n
p21 p22 · · · p2n
· · · · · · · · · · · ·
pn1 pn2 · · · pnn



 .

It is well known that the system
§

T t x = x ,
x1 + · · ·+ xn = 1, (4)

has a unique solution x = (x1, . . . , xn)t .
It was remarked in [4] that (4) is equivalent to







p11 x1 + (p21 + 1)x2 + · · ·+ (pn1 + 1)xn = 1,
(p12 + 1)x1 + p21 x2 + · · ·+ (pn2 + 1)xn = 1,
· · ·
(p1n + 1)x1 + (p2n + 1)x2 + · · ·+ pnn xn = 1.

(5)

3 A family of Stancu operators
Let α,β ,γ be some positive numbers with α≥ 0 and 0≤ β ≤ γ. Stancu [18] introduced and studied the following positive linear
operator S<α,β ,γ>

n : C[0,1]→ Πn, where

S<α,β ,γ>
n ( f ; x) :=

n
∑

i=0

w(α)n,i (x) f
�

i + β
n+ γ

�

, x ∈ [0, 1]. (6)

Here

w(α)n,i (x) :=
�

n
i

�

x [i,−α](1− x)[n−i,−α]

1[n,−α]
, x ∈ [0,1], i = 0, . . . , n,

are the fundamental polynomials and

y [0,−α] := 1,

y [m,−α] := y(y +α) · · · (y + (m− 1)α), m ∈ N.

Mühlbach [15, 16] and Lupaş [12, 11] introduced the operators Bα : C[0,1]→ C[0,1], defined as

Bα f (x) :=











f (0), x = 0,
1

B(αx ,α(1− x))

∫ 1

0
tαx−1 (1− t)α(1−x)−1 f (t) dt (0< x < 1),

f (1) (x = 1).
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The Stancu operators have the following representation by means of the Bernstein operators (see [7])

S<α,β ,γ>
n ( f ; x) = BαBn

�

f ◦
�

n
n+ γ

e1 +
β

n+ γ
e0

�

; x
�

=



























f
�

β

n+ γ

�

, x = 0

1

B
�

x
a , 1−x

α

�

∫ 1

0
t

x
a −1(1− t)

1−x
α −1Bn

�

f ◦
�

n
n+ γ

e1 +
β

n+ γ
e0

�

; t
�

d t, x ∈ (0,1),

f
�

n+ β
n+ γ

�

, x = 1,

where B(p, q), p, q > 0 is the Beta function.

Theorem 3.1. [7] The eigenvalues of S<α,β ,γ>
n are λαn,0 = 1, λαn,1 =

n
n+ γ

and

λαn, j =
n(n− 1) . . . (n− j + 1)

(n+ γ) j

1
(α+ 1)(2α+ 1) . . . (α( j − 1) + 1)

, j = 2, . . . , n.

The corresponding (normalized) eigenfunctions are qn,0 = e0 and qn, j(x) = e j(x) + a( j)n, j−1e j−1(x) + · · ·+ a( j)n,0e0(x), j = 1, . . . , n, with
uniquely determined coefficients.

Theorem 3.2. [7] If n ∈ N is fixed and α > 0, 0≤ β ≤ γ, γ > 0, then for all f ∈ C[0, 1],

lim
m→∞

S<α,β ,γ>
n

m
f = bα0 e0.

The scalar coefficient bα0 of e0 is a convex combination of "certain" values of the function f , namely,

bα0 =
n
∑

j=0

dαj f
�

j + β
n+ γ

�

,

with dαj , 0≤ j ≤ n, independent of f .

In order to prove Theorem 3.2, the authors used the eigenstructure of S<α,β ,γ>
n , described in Theorem 3.1. In fact, consider

the basis of Πn formed with the eigenpolynomials
�

qn,0, qn,1, . . . , qn,n

	

and also the basis formed with the fundamental Stancu

polynomials
¦

w(α)n,0, w(α)n,1, . . . , w(α)n,n

©

. The transition matrix between the two bases is defined by

wαn,0 = θ0,0 · qn,0 + · · ·+ θn,0 · qn,n

. . .

wαn,n = θ0,n · qn,0 + · · ·+ θn,n · qn,n.

Then (see [7, p.122]) the coefficients dαj from Theorem 3.2 are given by dαj = θ0, j , j = 0, 1, . . . , n.
If 0 < β < γ, an alternative method for finding the coefficients dα0 , dα1 , . . . , dαn is described in [7, Remark.1]. To present it,

consider the matrix

T :=









w(α)n,0(a0) w(α)n,1(a0) · · · w(α)n,n(a0)

w(α)n,0(a1) w(α)n,1(a1) · · · w(α)n,n(a1)
· · · · · · · · · · · ·

w(α)n,0(an) w(α)n,1(an) · · · w(α)n,n(an)









, (7)

where a j :=
j + β
n+ γ

, j=0,1,. . . ,n.

It is a stochastic matrix and all entries are strictly positive. Consequently, the system of equations














T t





dα0
...

dαn



=





dα0
...

dαn



 ,

dα0 + · · ·+ dαn = 1,

(8)

has exactly one solution and this gives us the coefficients dαj from Theorem 3.2.

Remark 1. More general results can be found in [2].
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4 A special case
Let ϕ(x) = x(1− x). For n ∈ N, f ∈ C[0,1], and 0< x < 1, let us denote (see [17])

Cn f (x) =
1
ϕ(x)

Bn(ϕ f )(x), (9)

where Bn is the classical Bernstein operator, i.e.,

Bn f (x) =
n
∑

i=0

pn,i(x) f
�

i
n

�

, pn,i(x) :=
�

n
i

�

x i(1− x)n−i ,

i = 0,1, . . . , n, x ∈ [0,1].
By continuity, the function Cn f can be extended to the interval [0,1]. The operators Cn were deeply investigated in [17].
Let us remark that for n≥ 2, and 0< x < 1,

An f (x) :=
n

n− 1
Cn f (x) =

n
n− 1

1
x(1− x)

n
∑

k=0

�

n
k

�

x k(1− x)n−k.
k
n

�

1−
k
n

�

f
�

k
n

�

=
n

n− 1
1

x(1− x)

n−1
∑

k=1

�

n
k

�

k
n

n− k
n

x k(1− x)n−k f
�

k
n

�

=
n−k
∑

k=1

�

n− 2
k− 1

�

x k−1(1− x)n−1−k f
�

k
n

�

.

Consequently, we have the operators An : C[0, 1]→ C[0,1], n≥ 2, given by

An f (x) =
n−2
∑

j=0

�

n− 2
j

�

x j(1− x)n−2− j f
�

j + 1
n

�

. (10)

It is easy to verify that
An = S<0,1,2>

n−2 . (11)

Therefore, the operators studied in [17] are strongly related with Stancu operators.

5 Numerical examples
Example 5.1. In (11) let us take n= 5. We get

A5 f (x) = S<0,1,2>
3 f (x)

= (1− x)3 f
�

1
5

�

+ 3x(1− x)2 f
�

2
5

�

+ 3x2(1− x) f
�

3
5

�

+ x3 f
�

4
5

�

.

In this specific case the matrix T t from (4) is

T t =
1

125





64 27 8 1
48 54 36 12
12 36 54 48
1 8 27 64



 .

The system (5) becomes






64x1 + 152x2 + 133x3 + 126x4 = 125,
173x1 + 54x2 + 161x3 + 137x4 = 125,
137x1 + 161x2 + 54x3 + 173x4 = 125,
126x1 + 133x2 + 152x3 + 64x4 = 125.

Table 1. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = −1

k 0 50 100 150 200
x (k)1 0.0714285714 0.1534326211 0.1782629219 0.1831218342 0.1840130160
x (k)2 0.4285714286 0.3462868724 0.3217265249 0.3168778113 0.3159869721
x (k)3 0.4285714286 0.3462868728 0.3217265257 0.3168778118 0.3159869722
x (k)4 0.0714285714 0.1534326212 0.1782629222 0.1831218349 0.1840130164

Table 2. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = 0

k 0 50 100 150 200
x (k)1 0.0714285714 0.1533971601 0.1782429620 0.1831176476 0.1840122386
x (k)2 0.4285714286 0.3464618006 0.3217517235 0.3168821746 0.3159877561
x (k)3 0.4285714286 0.3464618006 0.3217517231 0.3168821739 0.3159877559
x (k)4 0.0714285714 0.1533971604 0.1782429613 0.1831176470 0.1840122380
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Table 3. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = 1

k 0 50 100 150 200
x (k)1 0.0714285714 0.1532686696 0.1782022231 0.1831095912 0.1840107565
x (k)2 0.4285714286 0.3467313304 0.3217977769 0.3168904088 0.3159892436
x (k)3 0.4285714286 0.3467313304 0.3217977767 0.3168904086 0.3159892437
x (k)4 0.0714285714 0.1532686698 0.1782022234 0.1831095914 0.1840107566

According to Theorem 3.2,

lim
m→∞

S<0,1,2>
3

m
f ≈
§

0.184 f
�

1
5

�

+ 0.315 f
�

2
5

�

+ 0.315 f
�

3
5

�

+ 0.184 f
�

4
5

�ª

e0.

Example 5.2. In (6) we consider n= 3, α= 1, β = 2, γ= 3. Then, we have

S<1,2,3>
3 f (x) =

(1− x)(2− x)(3− x)
6

f
�

1
3

�

+
x(1− x)(2− x)

2
f
�

1
2

�

+
x(x + 1)(1− x)

2
f
�

2
3

�

+
x(x + 1)(x + 2)

6
f
�

5
6

�

.

In this case the matrix T t from (4) is

T t =





40/81 5/16 14/81 91/1296
5/27 3/16 4/27 35/432
4/27 3/16 5/27 55/432

14/81 5/16 40/81 935/1296



 .

The system (5) becomes






40/81x1 + 21/16x2 + 95/81x3 + 1387/1296x4 = 1,
32/27x1 + 3/16x2 + 31/27x3 + 467/432x4 = 1,
31/27x1 + 19/16x2 + 5/27x3 + 487/432x4 = 1,
95/81x1 + 21/16x2 + 121/81x3 + 935/1296x4 = 1.

Table 4. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = 0

k 0 50 100 150 200
x (k)1 0.2407 0.2008878908 0.2007358646 0.2007069010 0.2007047845
x (k)2 0.1551 0.1252139744 0.1251678719 0.1251592125 0.1251585815
x (k)3 0.1275 0.1475247062 0.1475612683 0.1475681899 0.1475686951
x (k)4 0.5065 0.5263734260 0.5265349946 0.5265656967 0.5265679387

According to Theorem 3.2,

lim
m→∞

S<1,2,3>
3

m
f ≈
§

0.2007 f
�

1
3

�

+ 0.1251 f
�

1
2

�

+ 0.1475 f
�

2
3

�

+ 0.5265 f
�

5
6

�ª

e0.

Example 5.3. Let c ∈ [1,∞), n≥ 1, a, b > −1,

ϕn,i(t) :=
t ci+a(1− t)c(n−i)+b

B(ci + a+ 1, c(n− i) + b+ 1)
, t ∈ [0,1], i = 0,1, . . . , n.

The Mache-Zhou operator is defined as (see [13]):

Pn f (x) :=
n
∑

i=0

pn,i(x)

∫ 1

0

f (t)ϕn,i(t)d t.

Th limit of the iterates of Pn was determined in [1] (see also [2]), up to solving a linear system of equations.
For n= 3, c = 1, a = 1, b = 2 that system is equivalent to (see (5))







336x1 + 930x2 + 840x3 + 780x4 = 720,
972x1 + 270x2 + 960x3 + 900x4 = 720,
828x1 + 900x2 + 240x3 + 990x4 = 720,
744x1 + 780x2 + 840x3 + 210x4 = 720.

Table 5. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = −2

k 0 50 100 150 200
x (k)1 0.2657 0.2847443610 0.2847828587 0.2843701646 0.2841754795
x (k)2 0.3638 0.3431329449 0.3418709107 0.3416953871 0.3416400194
x (k)3 0.2781 0.2627557436 0.2609266164 0.2603800485 0.2601639800
x (k)4 0.0952 0.1078555881 0.1112018255 0.1124999328 0.1130359147
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Table 6. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = 0

k 0 50 100 150 200
x (k)1 0.2657 0.2869649702 0.2870756173 0.2863686541 0.2859984357
x (k)2 0.3638 0.3451406564 0.3435428082 0.3431263754 0.3429687678
x (k)3 0.2781 0.2587648338 0.2569442874 0.2569657113 0.2570584815
x (k)4 0.0952 0.1091262668 0.1124369469 0.1135392006 0.1139743049

Table 7. Values of x (k)1 , x (k)2 , x (k)3 , x (k)4 for p = 2

k 0 50 100 150 200
x (k)1 0.2657 0.2847780080 0.2847990630 0.2843788150 0.2841805796
x (k)2 0.3638 0.3431409560 0.3418775488 0.3416992042 0.3416425785
x (k)3 0.2781 0.2627823074 0.2609393522 0.2603834089 0.2601630650
x (k)4 0.0952 0.1077900627 0.1111639649 0.1124833683 0.1130295306

According to Theorem 3.2,

lim
m→∞

P3
m f ≈

¨

11.97

∫ 1

0

t(1− t)5 f (t)d t + 35.91

∫ 1

0

t2(1− t)4 f (t)d t

+ 35.98

∫ 1

0

t3(1− t)3 f (t)d t + 11.865

∫ 1

0

t4(1− t)2 f (t)d t

«

e0.

We conclude this section by modifying the operators from Example 5.1 and Example 5.2 in the sense described in [2, Sect.
4.5]. We will see that the limits of the iterates will change dramatically.

Example 5.4. Let p0(x) = (1− x)3, p1(x) = x3, p2(x) = 3(1− x)2 x , p3(x) = 3(1− x)x2, x ∈ [0, 1]. Instead of the operator from
Example 5.1, consider the operator S : C[0,1]→ C[0, 1],

S f (x) := p0(x) f (0) + p1(x) f (1) + p2(x) f
�

2
5

�

+ p3(x) f
�

3
5

�

.

To find lim
m→∞

Sm f we apply the general results from [2]. Namely, consider the matrix

M :=









p0(0) p1(0) p2(0) p3(0)
p0(1) p1(1) p2(1) p3(1)
p0

�

2
5

�

p1

�

2
5

�

p2

�

2
5

�

p3

�

2
5

�

p0

�

3
5

�

p1

�

3
5

�

p2

�

3
5

�

p3

�

3
5

�









According to [2, Th.2.2],
lim

m→∞
Sm f (x) = p0(x) f (0) + p1(x) f (1) + p2(x)v2( f ) + p3(x)v3( f ),

where
v( f ) := ( f (0), f (1), v2( f ), v3( f ))

t

is the unique solution to M v( f ) = v( f ). We get

v2( f ) =
1

107
(63 f (0) + 44 f (1)) , v3( f ) =

1
107

(44 f (0) + 63 f (1)) ,

so that

lim
m→∞

Sm f (x) = (1− x)3 f (0) + x3 f (1) +
3

107
(1− x)2 x (63 f (0) + 44 f (1))

+
3

107
(1− x)x2(44 f (0) + 63 f (1)),

for f ∈ C[0,1], uniformly with respect to x ∈ [0,1].

Example 5.5. Let p0(x) =
(1− x)(2− x)(3− x)

6
, p1(x) =

x(x + 1)(x + 2)
6

, p2(x) =
x(1− x)(2− x)

2
, p3(x) =

x(x + 1)(1− x)
2

.

Instead of the operator from Example 5.2, let us consider S : C[0, 1]→ C[0,1],

S f (x) := p0(x) f (0) + p1(x) f (1) + p2(x) f
�

1
2

�

+ p3(x) f
�

2
3

�

.

Using the same arguments as in Example 5.4 we find

lim
m→∞

Sm f (x) =
(1− x)(2− x)(3− x)

6
f (0) +

x(1+ x)(2+ x)
6

f (1)

+
x(1− x)(2− x)

274
(62 f (0) + 75 f (1)) +

x(x + 1)(1− x)
822

(121 f (0) + 290 f (1)).
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6 Conclusions and further work
The EMML and the ISRA algorithms can be used in particular for solving certain classes of systems of linear equations. The
algorithm A(p) introduced in [4] serves to a similar goal. In fact A(−1) coincides with a version of ISRA, while A(1) coincides
with EMML. The systems of linear equations mentioned above can be solved iteratively with A(p). They appear in the study of
limits of iterates of positive linear operators. Results of this type were established in many papers (see [2], [9], [10] and the
references therein). In this paper we consider the iterates of operators of Stancu type (see [7]). The corresponding system of
linear equations was determined in [7]. We use the algorithm A(p) in order to solve iteratively such a system. An interesting
modification of the classical Bernstein operators Bn was introduced by R. Schnabl in [17] in order to investigate the global
saturation of the sequence (Bn)n≥1. We prove that the operators introduced by R. Schnabl are Stancu type operators from the
family mentioned above. For the study of their iterates we use again the algorithm A(p). Similar problems are investigated for
the Mache-Zhou operators. Numerical experiments illustrate the general results.

As further work we propose to extend the results in order to cover other classes of operators. Moreover, we intend to compare
the algorithm A(p) with other algorithms and to improve its performances.
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