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Abstract

An iterative numerical method is proposed for solving nonlinear fractional Volterra integral equations.
This method is based on Picard iterations and at each iterative step we will apply a piecewise Bernstein
polynomial approximation technique. The convergence of the method is proved by providing the error
estimate in the discrete and continuous approximation. The theoretical results are tested on some
numerical examples, illustrating the performances of the proposed method.
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1 Introduction
In this work we present the effectiveness of the piecewise Bernstein polynomial functions when are applied for approximating
the solution of nonlinear fractional Volterra integral equations. The study of fractional integral and differential equations is
motivated by their applicability in mapping real world phenomena and processes. The exact solution computation sometimes is
very difficult, especially for automatic calculations made by modern computers, so an approximation method can be useful in this
situations.

Fractional calculus is widely used in many applications in science such as physics, engineering, modeling, biomedical
applications [28], pulses of sound reflections [8], neural networks [21], [13], some optimal control problems which are typically
nonlinear, are ruled by Volterra integral or Volterra integral derivative systems [25].

There are different definitions for the fractional integral like Riemann-Liouville, Hadamard, Atangana–Baleanu (see [2] and
[6]) and the most intensive studied fractional order integral equation is the Abel’s equation (see [2], [4], [12], [14], [16], [24],
[29]). Several numerical methods were developed for solving fractional Volterra integral equations, such as Galerkin method,
collocation, Taylor series (see [1], [4], [22], [26], [27]), product integration (see [1], [3], [7], [11], [18], [19]), multistep
Adams-Bashforth techniques (see [5], [9], and [10]), fast Fourier transform techniques (see [13]), Runge-Kutta procedures (see
[16]), Bernstein polynomial approximation with Voronovskaia’s type error estimate (see [29]), Tau method using Jacobi functions
(see [24]), Haar, Legendre and Riesz wavelet (see [23] and [31]), piecewise linear functions (see [20]), Lagrange polynomials
collocation (see [7]), Legendre spectral collocation (see [32]), Nyström methods (see [3]), Adomian decomposition (see [17]),
homotopy perturbation (see [14]), variational iteration (see [30]).

In that follows, we construct an iterative method based on Picard iterations and piecewise Bernstein polynomials applied at
each iterative step, for approximating the solution of the following fractional type Riemann-Liouville nonlinear Volterra integral
equation:

x (t) = g (t) +
1
Γ (α)

t
∫

0

H (t, s) (t − s)α−1 f (s, x (s)) ds, t ∈ [0, T], α ∈ (0, 1) . (1)

The first section of this work is devoted to some boundedness and Lipshitz properties of the sequence of Picard iterations, while
in the second section we present the construction of the Bernstein splines iterative method. Then, the convergence of this method
is proved by providing the error estimates in the discrete and continuous approximation. In the last two sections we present some
numerical experiments and concluding remarks.
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2 The sequence of successive approximations
In order to obtain the existence and uniqueness of the solution of equation (1), we consider the integral operator A : C [0, T]→
C [0, T] given by the following expression:

A(x) (t) = g (t) +
1
Γ (α)

t
∫

0

H (t, s) (t − s)α−1 f (s, x (s)) ds, α ∈ (0,1) (2)

Theorem 2.1. If f : [0, T]×R→ R, g : [0, T]→ R and H : [0, T]× [0, T]→ R+ are continuous, α ∈ (0,1) and MH ≥ 0 is such
that max

t,s∈[0,T]
H (t, s) = MH and if f is Lipschitz on its second argument, with Lipschitz constant L, then under the following condition

w
not.
=

LTαMH

Γ (α+ 1)
< 1 (3)

the integral equation (1) has a unique solution x∗ ∈ C (0, T ) .

Proof. After elementary computation, the integral operator (2) is a contraction, having

|A(x) (t)− A(y) (t)|= 1
Γ (α)

�

�

�

�

t
∫

0

H (t, s) (t − s)α−1 [ f (s, x (s))− f (s, y (s))] ds

�

�

�

�

≤ LTαMH
Γ (α+1) ∥x − y∥∞ , ∀x , y ∈ C ([0, T]) , ∀t ∈ [0, T]

which means

∥A(x)− A(y)∥∞ ≤
LTαMH

Γ (α+ 1)
∥x − y∥∞ , ∀x , y ∈ C ([0, T])

and based on the condition (3), by using the Banach Fixed Point Principle, we obtain the desired result.

Defining the sequence of succesive approximation as

x0 (t) = g (t) , t ∈ [0, T]

xm+1 (t) = A(xm) (t) = g (t) +
1
Γ (α)

t
∫

0

H (t, s) (t − s)α−1 f (s, xm (s)) ds

we get lim
m→∞

xm (t) = x∗ (t) , ∀t ∈ [0, T] and the following error estimates:

∥x∗ − xm∥∞ ≤
wm

1−w
∥x1 − x0∥∞ , ∀m ∈ N∗

∥x∗ − xm∥∞ ≤
w

1−w
∥xm − xm−1∥∞ , ∀m ∈ N∗.

Definition 2.1. For a given α, β > 0, a function f : [a, b]→ R is (α,β)−Lipschitz if there exist L1, L2 ≥ 0 such that

| f (x)− f (y)| ≤ L1 |x − y|α + L2 |x − y|β , ∀x , y ∈ [a, b] .

The classical Lipchitz property is equivalent with the case (1,1)−Lipschitz. Concerning the properties of Picard iterations we
can obtain the following result.

Theorem 2.2. Under the conditions of Theorem 2.1, the sequence of the successive approximations is uniformly bounded and under
supplementary conditions:

∃LHt
> 0 such that |H (t1, s)−H (t2, s)| ≤ LHt

|t1 − t2| , ∀t1, t2 ∈ [0, T]

and
∃Lg > 0 such that |g (t1)− g (t2)| ≤ Lg |t1 − t2| , ∀t1, t2 ∈ [0, T]

it is uniform (1,α)−Lipschitz.

Proof. We have the following relation:

|xm (t)| ≤ |xm (t)− xm−1 (t)|+ . . .+ |x1 (t)− x0 (t)|+ |x0 (t)|

Let us consider M0 = max
s∈[0,T]
| f (s, g (s))|. Now we compute

|x1 (t)− x0 (t)| ≤
1
Γ (α)

�

�

�

�

�

�

t
∫

0

H (t, s) (t − s)α−1 f (s, x0 (s)) ds

�

�

�

�

�

�

≤
TαMH M0

Γ (α+ 1)
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obtaining ∥x1 − x0∥∞ ≤
TαMH M0
Γ (α+1) and also

|xm (t)− xm−1 (t)| ≤
MH L
Γ (α)

t
∫

0

(t − s)α−1 |xm−1 (s)− xm−2 (s)| ds

≤
LTαMH

Γ (α+ 1)
∥xm−1 − xm−2∥∞ .

By induction we get
∥xm − xm−1∥∞ ≤ wm−1 ∥x1 − x0∥∞ , ∀m ∈ N∗

giving us
|xm (t)| ≤
�

wm−1 +wm−2 + . . .+w+ 1
�

∥x1 − x0∥∞ + ∥x0∥∞
≤ 1

1−w ·
TαMH M0
Γ (α+1) +Mg

not.
= M , ∀t ∈ [0, T] , m ∈ N∗

that is the uniform boundedness of the sequence (xm)m∈N , where Mg = max
t∈[0,T]
|g (t)| = max

t∈[0,T]
|x0 (t)|. Moreover, we have

| f (s, xm (s))| ≤ | f (s, xm (s))− f (s, x0 (s))|+ | f (s, x0 (s))|
≤ L |xm (s)− x0 (s)|+M0

≤
L

1−w
·

TαMH M0

Γ (α+ 1)
+M0

not.
= M f ,∀s ∈ [0, T] , m ∈ N (4)

that is the uniform boundedness of the sequence of functions (Fm)m∈N, Fm (t)
not.
= f (t, xm (t)). Now, let us consider arbitrary

0≤ t1 ≤ t2 ≤ T , and we see that

|xm+1 (t1)− xm+1 (t2)| ≤ |g (t1)− g (t2)|+
1
Γ (α)
·

·

�

�

�

�

�

�

t1
∫

0

H (t1, s) (t1 − s)α−1 f (s, xm (s)) ds−

t2
∫

0

H (t2, s) (t2 − s)α−1 f (s, xm (s)) ds

�

�

�

�

�

�

≤ 1
Γ (α)

t1
∫

0

�

�H (t1, s) (t1 − s)α−1 −H (t2, s) (t2 − s)α−1
�

� | f (s, xm (s))| ds+

+Lg |t1 − t2|+
1
Γ (α)

�

�

�

�

�

t2
∫

t1

H (t2, s) (t2 − s)α−1 f (s, xm (s)) ds

�

�

�

�

�

, ∀m ∈ N.

In the case t1 ≤ t2 (the case t2 ≤ t1 being approached similarly) we have (t2 − s)α−1 ≤ (t1 − s)α−1 and tα1 − tα2 ≤ 0, for s ∈ (0, t),
obtaining

|xm+1 (t1)− xm+1 (t2)| ≤ Lg |t1 − t2|+
M f LHt

Tα

Γ (α+ 1)
|t1 − t2|+

M f MH

Γ (α)

t1
∫

0

�

�(t1 − s)α−1 − (t2 − s)α−1
�

� ds+
MH M f

Γ (α+ 1)
|t1 − t2|

α

The expression inside the modulus is positive, because of our supposition, so we obtain for the integral:
t1
∫

0

�

�(t1 − s)α−1 − (t2 − s)α−1
�

� ds =

t1
∫

0

(t1 − s)α−1 − (t2 − s)α−1 ds =
tα1 − tα2 + (t2 − t1)

α

α
≤
(t2 − t1)

α

α
=
|t1 − t2|

α

α

resulting

|xm+1 (t1)− xm+1 (t2)| ≤
�

Lg +
M f LHt

Tα

Γ (α+ 1)

�

|t1 − t2|+
2MH M f

Γ (α+ 1)
|t1 − t2|

α ,∀m ∈ N.

and denoting Lx1
= Lg +

TαM f LHt
Γ (α+1) and Lx2

=
2MH M f
Γ (α+1) we can write

|xm+1 (t1)− xm+1 (t2)| ≤ Lx1
|t1 − t2|+ Lx2

|t1 − t2|
α ,∀t1, t2 ∈ [0, T], m ∈ N

which is the uniform (1,α)-Lipschitz property of the Picard iterations (xm)m∈N .

Remark 1. For an arbitrary t ∈ [0, T] , if f is γ−Lipschitz on its first argument and H is Lipschitz on its second argument, the
product HFm is uniform (1,α)-Lipschitz too. Indeed, we get

|H (t, s1) Fm (s1)−H (t, s2) Fm (s2)| ≤
≤ |H (t, s1) (Fm (s1)− Fm (s2))|+ |(H (t, s1)−H (t, s2)) Fm (s2)| ≤
≤ MH

�

γ |s1 − s2|+ L
�

Lx1
|s1 − s2|+ Lx2

|s1 − s2|
α
��

+ LHs
M |s1 − s2| ≤

≤
�

γMH + LHs
M + LMH Lx1

�

|s1 − s2|+ LMH Lx2
|s1 − s2|

α

for all m ∈ N∗ and for any s1, s2 ∈ [0, T]. Let us denote L0 = γMH + LHs
M + LMH Lx1

and L′ = LMH Lx2
, and we see that

�

�H (t, s) Fm (s)−H
�

t, s′
�

Fm

�

s′
��

�≤ L0

�

�s− s′
�

�+ L′
�

�s− s′
�

�

α
,∀s, s′ ∈ [0, T] (5)

for all t ∈ [0, T], m ∈ N.
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3 Bernstein splines approximation
On each iterative step, instead of calculating the value of xm, which implies the computation of a fractional integral, we will
approximate a part of the expression inside the integral with Bernstein type splines.

Let us consider a uniform partition of [0, T], with the knots t i = ih, i = 1, n, n ∈ N, where h = T
n is the stepsize. On each

subinterval [t i , t i+1] , i = 0, n− 1 we will consider the following Bernstein polynomial of degree q. The Bernstein polynomial of
degree q approximating a given function f ∈ C [a, b] has the expression,

Bq f (s) =
1

(b− a)q

q
∑

j=0

C j
q (s− a) j (b− s)q− j f

�

a+
(b− a) j

q

�

, ∀s ∈ [a, b] .

In the approximation formula,
f (s) = Bq f (s) + Rq f (s)

the reminder Rq f (s) is estimated by using the inequality of Lorentz (see [15]) :

�

�Rq f (s)
�

�≤
5
4
ω

�

f ,
b− a
p

q

�

, ∀s ∈ [a, b]

where ω refers to the modulus of continuity.
Integrating the approximation formula, we get the following quadrature:

∫ b

a

f (s) ds =

∫ b

a

Bq f (s) ds+

∫ b

a

Rq f (s) ds.

Let us introduce now the sequence of functions

Fm,k (s)
de f .
= H (tk, s) · f (s, xm (s)) , ∀s ∈ [0, T] , m ∈ N, k = 0, n

which is uniformly bounded, according to (4):
�

�Fm,k (s)
�

�≤ MH M f , ∀s ∈ [0, T] , m ∈ N, k = 0, n.

Now, the sequence of successive approximations becomes

xm+1 (tk) = g (tk) +
1
Γ (α)

tk
∫

0

Fm,k (s) (tk − s)α−1 ds

= g (tk) +
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

�

Bq,i

�

Fm,k

�

(s) + Rm,i (s)
�

(tk − s)α−1 ds

where Bq,i

�

Fm,k

�

is the Bernstein polynomial approximating the function Fm,k on each subinterval [t i−1, t i] and at each iterative
step m :

Bq,i

�

Fm,k

�

(s) =
1
hq

q
∑

j=0

C j
q (s− t i−1)

j (t i − s)q− j Fm,k

�

t i−1 +
jh
q

�

, s ∈ [t i−1, t i] .

We define
xm+1 (tk) = g (tk) +

1
hqΓ (α) ·

·
∑k

i=1

ti
∫

ti−1

�

q
∑

j=0
C j

q (s− t i−1)
j (t i − s)q− j Fm,k

�

t i−1 +
jh
q

�

�

·

· (tk − s)α−1 ds = g (tk) +
1

hqΓ (α) ·

·
k
∑

i=1

q
∑

j=0
C j

q

ti
∫

ti−1

(s− t i−1)
j (t i − s)q− j (tk − s)α−1 ds · Fm,k

�

t i−1 +
jh
q

�

with Fm,k

�

t i−1 +
jh
q

�

= H
�

tk, t i−1 +
jh
q

�

f
�

t i−1 +
jh
q , xm

�

t i−1 +
jh
q

��

, where xm is the approximated value of xm calculated at the
previous step on the knots, resulting the formula

xm+1 (tk) = xm+1 (tk) + Rm+1 (tk) , ∀m ∈ N

In the integrals from this last formula we will make the change of variable s = t i−1 + uh, ds = hdu obtaining:

ti
∫

ti−1

(s− t i−1)
j (t i − s)q− j (tk − s)α−1 ds =

= hq+α
1
∫

0

(u) j (1− u)q− j (k− i − u+ 1)α−1 du
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and denoting ψ j,k (i)
not.
=

1
∫

0

(u) j (1− u)q− j (k− i − u+ 1)α−1 du we get the expression of xm+1 :

xm+1 (tk) = g (tk) +
hα

Γ (α)

k
∑

i=1

q
∑

j=0

C j
q ·ψ j,k (i) · Fm,k

�

t i−1 +
jh
q

�

Now, for m ∈ N and l = 0, q we obtain the following iterative algorithm:

x0

�

tk +
lh
q

�

= g
�

tk +
lh
q

�

xm+1

�

tk +
lh
q

�

= g
�

tk +
lh
q

�

+

+
hα

Γ (α)

k
∑

i=1

q
∑

j=0

C j
q ·ψ j,k+ l

q
(i) · Fm,k

�

t i−1 +
jh
q

�

+

+
hα

Γ (α)

q
∑

j=0

C j
q ·ψ j,k+ l

q
(k+ 1) · Fm,k

�

tk +
jh
q

�

, k = 0, n− 1

xm+1 (tn) = g (tn) +
hα

Γ (α)

n
∑

i=1

q
∑

j=0

C j
q ·ψ j,n (i) · Fm,n

�

t i−1 +
jh
q

�

(6)

having

ψ j,k+ l
q
(i) =















1
∫

0

(u) j (1− u)q− j
�

k+ l
q − (i − 1)− u
�α−1

du i = 1, k

l
q
∫

0

(u) j (1− u)q− j
�

l
q − u
�α−1

du i = k+ 1.

The relation (6) can be written as xm+1

�

tk +
lh
q

�

= xm+1

�

tk +
lh
q

�

+Rm,k+ l
q
. The algorithm stops when the difference between two

consecutive iterations are under a given tolerance ϵ > 0 for all tk, k = 0, n, so the at the first m ∈ N∗ for which |xm (tk)− xm−1 (tk)|<
ϵ, ∀k = 0, n.

After obtaining the computed values at the last iterative step on the knots, we can provide the continuous approximation of
the solution by using a Bernstein spline approximation:

Bq,m (t) =
1
hq

q
∑

j=0

C j
q (t − t i−1)

j (t i − t)q− j xm

�

t i−1 +
jh
q

�

, t ∈ [t i−1, t i] , i = 1, n.

4 Convergence analysis
Concerning the convergence of this proposed iterative method we obtain the main result of this work, as follows.

Theorem 4.1. Suppose that the following conditions are fulfilled:

1. f : [0, T]×R→ R, g : [0, T]→ R and H : [0, T]× [0, T]→ R+ are continuous functions

2. f is L−Lipschitz on its second argument

3. w
not.
= LTαMH

Γ (α+1) < 1.

Then the sequence (xm (tk))m∈N∗ , k = 0, n approximates the solution x∗ of the Volterra integral equation (1), having the error
estimate on the mesh knots:

|x∗ (tk)− xm (tk)| ≤
Tα

(1−w) Γ (α+ 1)
·

�

wmM0MH +
5
4

�

L0h
p

q
+

L′hα
�p

q
�α

��

(7)

The error estimate in the continuous Bernstein-spline approximation is:

�

�x∗ (t)− Bq,m (t)
�

�≤
TαM0MH wm

(1−w) Γ (α+ 1)
+

+
5
4

�

Lx1
h
p

q
+

Lx2
hα
�p

q
�α

�

+
5Tα
�

L0h
p

q +
L′hα

(pq)α
�

4 (1−w) Γ (α+ 1)
, ∀t ∈ [0, T], m ∈ N∗. (8)
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Proof. Let us calculate some of the first Picard iterations (xm)m∈N:

x1 (tk) = g (tk) +
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

F0,k (s) (tk − s)α−1 ds

= g (tk) +
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

�

Bq,i F0,k (s) + R0,i (s)
�

(tk − s)α−1 ds

= x1 (tk) + R1 (tk)

where

x1 (tk) = g (tk) +
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

Bq,i F0,k (s) (tk − s)α−1 ds

= g (tk) +
1
Γ (α)

k
∑

i=1

1
hq

q
∑

j=0

C j
qhq+αψ j,k (i) F0,k

�

t i−1 +
jh
q

�

and

R1 (tk) =
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

R0,i (s) (tk − s)α−1 ds

with
�

�R0,i (s)
�

�≤ 5
4ω
�

F0,k, hp
q

�

,∀s ∈ [t i−1, t i] , i = 1, k. Therefore we get

�

�R1 (tk)
�

�≤
1
Γ (α)

5
4
ω

�

F0,k,
h
p

q

� k
∑

i=1

ti
∫

ti−1

(tk − s)α−1 ds ≤
5ω
�

F0,k, hp
q

�

Tα

4Γ (α+ 1)
.

Let us denote RF1

�

t j

�

=
�

�F1,k

�

t j

�

− F1,k

�

t j

��

� . We have the following inequality
�

�F1,k

�

t j

�

− F1,k

�

t j

��

�=
�

�H
�

tk, t j

�

· f
�

s, xm

�

t j

��

−H
�

tk, t j

�

· f
�

s, xm

�

t j

���

�

≤ MH L
�

�x1

�

t j

�

− x1

�

t j

��

�≤ MH L
�

�R1

�

t j

��

�

and it obtains

x2 (tk) = g (tk) +
1
Γ (α)

∑k
i=1

ti
∫

ti−1

H (tk, s) (tk − s)α−1 f (s, x1 (s)) ds

= g (tk) +
1
Γ (α)

∑k
i=1

ti
∫

ti−1

�

Bq,1,i (s) + R1,i (s)
�

(tk − s)α−1 ds = g (tk)+

+ 1
Γ (α) ·
∑k

i=1

ti
∫

ti−1

�

1
hq

∑q
j=0 C j

q (s− t i−1)
j (t i − s)q− j F1,k

�

t i−1 +
jh
q

��

·

· (tk − s)α−1 ds+ 1
Γ (α)

∑k
i=1

ti
∫

ti−1

R1,i (s) (tk − s)α−1 ds = g (tk) +
1
Γ (α) ·

·
∑k

i=1

ti
∫

ti−1

�

1
hq

∑q
j=0 C j

q (s− t i−1)
j (t i − s)q− j F1,k

�

t i−1 +
jh
q

��

· (tk − s)α−1 ds

+ 1
Γ (α) ·
∑k

i=1

ti
∫

ti−1

�

1
hq

∑q
j=0 C j

q (s− t i−1)
j (t i − s)q− j RF1

�

t i−1 +
jh
q

��

·

· (tk − s)α−1 ds+ 1
Γ (α)

∑k
i=1

ti
∫

ti−1

R1,i (s) (tk − s)α−1 ds = x2 (tk) + R2 (tk)

where

x2 (tk) = g (tk) +
1
Γ (α)
·

·
k
∑

i=1

ti
∫

ti−1

�

1
hq

q
∑

j=0

C j
q (s− t i−1)

j (t i − s)q− j F1,k

�

t i−1 +
jh
q

�

�

·

· (tk − s)α−1 ds

= g (tk) +
1
Γ (α)

hα
k
∑

i=1

q
∑

j=0

C j
qψ j,k (i) F1,k

�

t i−1 +
jh
q

�
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and

�

�R2 (tk)
�

� ≤
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

�

1
hq

q
∑

j=0

C j
q (s− t i−1)

j (t i − s)q− j MH L

�

�

�

�

R1

�

t i−1 +
jh
q

�

�

�

�

�

�

·

· (tk − s)α−1 ds+
1
Γ (α)

k
∑

i=1

ti
∫

ti−1

�

�R1,i (s)
�

� (tk − s)α−1 ds

≤
5MH Lω
�

F0,k, hp
q

�

Tα

4Γ (α) Γ (α+ 1)

k
∑

i=1

ti
∫

ti−1

1
hq

� q
∑

j=0

C j
q (s− t i−1)

j (t i − s)q− j

�

· (tk − s)α−1 ds+
5ω
�

F1,k, hp
q

�

4Γ (α)

k
∑

i=1

ti
∫

ti−1

(tk − s)α−1 ds.

Since
q
∑

j=0

C j
q (s− t i−1)

j (t i − s)q− j = hq

and
k
∑

i=1

ti
∫

ti−1

(tk − s)α−1 ds =
tαk
α
≤

Tα

α

we obtain
�

�R2 (tk)
�

�≤
5MH Lω
�

F0,k, hp
q

�

Tα

4Γ (α+ 1) Γ (α+ 1)
Tα +

5ω
�

F1,k, hp
q

�

4Γ (α+ 1)
Tα

and denoting ω
�

Fm, hp
q

�

=max
i=0,m
k=1,n

ω
�

Fi,k, hp
q

�

we get

�

�R2 (tk)
�

�≤
5ω
�

F1, hp
q

�

Tα

4Γ (α+ 1)

�

MH LTα

Γ (α+ 1)
+ 1
�

, ∀k = 1, n.

Since LTαMH
Γ (α+1) = w, by induction we obtain:

�

�Rm (tk)
�

� ≤
5ω
�

Fm−1, hp
q

�

Tα

4Γ (α+ 1)

�

wm−1 +wm−2 + · · ·+w2 +w+ 1
�

≤
5ω
�

Fm−1, hp
q

�

Tα

4Γ (α+ 1)
1−wm

1−w
≤

5ω
�

Fm−1, hp
q

�

Tα

4 (1−w) Γ (α+ 1)

We obtain the same relation for
�

�

�Rm

�

tk +
lh
q

�

�

�

� but in this case we will denote

ω

�

Fm,
h
p

q

�

=max
i=0,m
k=1,n
l=0,q

ω

�

Fi,k+ l
q
,

h
p

q

�

, where Fi,k+ l
q
(s)

de f .
= H
�

tk +
lh
q

, s
�

· f (s, x i (s)) , ∀s ∈ [0, T]

The estimate |x∗ (tk)− xm (tk)| ≤
wm

1−w
TαMH M0
Γ (α+1) can be deduced from relations

∥xm − xm−1∥∞ ≤ wm−1 ∥x1 − x0∥∞ and ∥x1 − x0∥∞ ≤
TαMH M0

Γ (α+ 1)

proved in Section 2, and thus

|x∗ (tk)− xm (tk)| ≤ |x∗ (tk)− xm (tk)|+ |xm (tk)− xm (tk)|

≤
wm

1−w
TαMH M0

Γ (α+ 1)
+

5ω
�

Fm−1, hp
q

�

Tα

4 (1−w) Γ (α+ 1)

=
Tα

(1−w) Γ (α+ 1)

�

wmM0MH +
5
4
ω

�

Fm−1,
h
p

q

��

.
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According to the Lipschitz property (5), we get the error estimate (7):

|x∗ (tk)− xm (tk)| ≤
TαM0MH wm

(1−w) Γ (α+ 1)
+

5Tα
�

L0h
p

q +
L′hα

(pq)α
�

4 (1−w) Γ (α+ 1)

for all k = 0, n, m ∈ N∗. For the last part of demonstration we consider the Bernstein spline approximating the Picard iterations
(xm)m∈N∗ , given by

Bm,q (t) =
1
hq

q
∑

k=0

C k
q (t − t i−1)

k(t i − t)q−k · xm

�

t i−1 +
kh
q

�

, t ∈ [t i−1, t i], i = 1, n

and since
�

�x∗ (t)− Bm,q (t)
�

�≤ |x∗ (t)− xm (t)|+
�

�xm (t)− Bm,q (t)
�

�+
�

�Bm,q (t)− Bm,q (t)
�

�

we get
�

�x∗ (t)− Bm,q (t)
�

�≤
TαM0MH wm

(1−w) Γ (α+ 1)
+

5
4

�

Lx1
h
p

q
+

Lx2
hα
�p

q
�α

�

+

+
1
hq

q
∑

k=0

C k
q (t − t i−1)

k(t i − t)q−k

�

�

�

�

xm

�

t i−1 +
kh
q

�

− xm

�

t i−1 +
kh
q

�

�

�

�

�

≤

≤
TαM0MH wm

(1−w) Γ (α+ 1)
+

5
4

�

Lx1
h
p

q
+

Lx2
hα
�p

q
�α

�

+
5Tα
�

L0h
p

q +
L′hα

(pq)α
�

4 (1−w) Γ (α+ 1)

obtaining the error estimate (8). From (8) we see that the order of convergence is


xm − Bm,q



= O (hα) .

Remark 2. In the same manner, the method of Bernstein splines can be applied for nonlinear weakly singular Volterra integral
equations too. Since the case of using Bernstein splines with degree q = 1 corresponds to the trapezoidal product integration, as
a particular case of the Bernstein splines method, the accuracy of this method for degree q > 1 will be better due to the uniform
approximation properties of the Bernstein polynomials. This aspect will be tested in the next section on some numerical examples.

5 Numerical experiments
In order to test the theoretical convergence stated in Theorem 4.1 and to illustrate the accuracy of the proposed method we
present below some numerical examples.

Example 5.1. Consider the following fractional integral equation:

x (t) =
1
Γ (α)

∫ t

0

(t − s)−
1
2 x2 (s) ds+ t

1
2

�

1−
4t

3
p
π

�

, t ∈ [0,1] (9)

where α = 1
2 , H (t, s) = 1, f (s, x (s)) = [x (s)]2 , g (t) = t

1
2

�

1− 4t
3
p
π

�

and T = 1. The exact solution is x∗ (t) =
p

t. We will

consider n = 10 and 100, and the number of iterations is m = 30. The pointwise errors are en,i = |xm (t i)− x∗ (t i)| , i = 0, n,
observing that max

i=0,n
|xm (t i)− x∗ (t i)| = |xm (tn)− x∗ (tn)|. We put q = 1 and q = 5 and the numerical results are presented in

Tables 1 and 2.
t i\en,i m= 30, n= 10 m= 30, n= 100
0, 0 0 0
0, 2 3, 24E − 017 3,17E − 017
0, 4 3, 32E − 016 2,68E − 016
0, 6 2, 05E − 012 5,63E − 016
0, 8 1, 47E − 09 2,76E − 012
1, 0 3, 11E − 07 2,73E − 09
Table 1. Numerical results for (9) with q = 1

t i\en,i m= 30, n= 10 m= 30, n= 100
0, 0 0 0
0, 2 3, 47E − 017 6,09E − 020
0, 4 2, 64E − 018 2,58E − 016
0, 6 1, 92E − 014 5,28E − 016
0, 8 3, 60E − 011 2,43E − 012
1, 0 1, 59E − 08 2,51E − 09
Table 2. Numerical results for (9) with q = 5
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Example 5.2. Now, we consider the weakly singular integral equation (Example 1 in [18])

x (t) =
1

12

∫ t

0

x2 (s) (t − s)−
1
2 ds+ t

1
2

�

1−
1
9

t
�

, t ∈ [0, 1] (10)

having the exact solution x∗ (t) =
p

t, and α = 1
2 , f (s, x (s)) = x2 (s), g (t) = t

1
2
�

1− 1
9 t
�

, H (t, s) = 1
12 , T = 1. The numerical

results obtained with q = 5, m= 5 and m= 10 iterations, and taking n= 10 and n= 20 are presented in Table 3 in terms of the
pointwise errors en,i = |xm (t i)− x∗ (t i)| , i = 0, n. By considering em =max

i=0,n
|xm (t i)− x∗ (t i)| , we present in Table 4 a comparison

with the results from [18], Table 1, page 12.

m= 5 m= 10
t i\en,i n= 10 n= 20 n= 10 n= 20
0,0 0 0 0 0
0,1 4,86E − 012 2, 56E − 012 2,24E − 018 1, 07E − 018
0,2 2,31E − 010 1, 80E − 010 6,17E − 018 3, 20E − 018
0,3 2,68E − 09 2, 36E − 09 1,11E − 016 1, 81E − 017
0,4 1,61E − 08 1, 50E − 08 2,04E − 015 1, 39E − 015
0,5 6,62E − 08 6, 30E − 08 2,23E − 014 1, 68E − 014
0,6 2,12E − 07 2, 04E − 07 1,61E − 013 1, 32E − 013
0,7 5,67E − 07 5, 52E − 07 8,84E − 013 7, 60E − 013
0,8 1,33E − 06 1, 31E − 06 3,91E − 012 3, 48E − 012
0,9 2,84E − 06 2, 79E − 06 1,46E − 011 1, 33E − 011
1,0 5,58E − 06 5, 51E − 06 4,78E − 011 4, 43E − 011

Table 3. Numerical results for (10) with q = 5

n/em m= 5 m= 10
n= 12, in Table 1, [18] 2.799443E − 04 6.91396E − 07
n= 10, in Table 3 5, 58E − 06 4,78E − 011
n= 24, in Table 1, [18] 5.567188E − 06 4.690204E − 09
n= 20, in Table 3 5, 51E − 06 4,43E − 011

Table 4. Comparison between the results in Table 3 and Table 1 from [18]

Example 5.3. Let us consider the following weakly singular integral equation (Example 2 in [18])

x (t) =
1

18

∫ t

0

�

sin2 (s) + x2 (s)
�

(t − s)−
2
3 ds+ cos (t)−

1
6

t
1
3 , t ∈
h

0,
π

4

i

. (11)

The exact solution is x∗ (t) = cos (t) and we have α = 1
3 , H (t, s) = 1, T = π

4 , f (s, x (s)) = 1
18

�

sin2 (s) + x2 (s)
�

, g (t) =

cos (t)− 1
6 t

1
3 . The iterative algorithm of Bernstein-splines was applied with q = 4, m = 5 and m = 10 iterations, and taking

n= 10 and n= 20. The numerical results em =max
i=0,n
|xm (t i)− x∗ (t i)| , i = 0, n, are presented in Table 5, including a comparison

with the results from [18], Table 2, page 13.

n/em m= 5 m= 10
n= 12, in Table 2, [18] 2.315358E − 04 9.363611E − 07
n= 10, in Table 5 4,40E − 05 5,50E − 09
n= 24, in Table 2, [18] 4.412851E − 05 5.525447E − 09
n= 20, in Table 5 4,45E − 05 5,60E − 09

Table 5. Comparison of our results for (11) with q = 4
and the results from Table 2 in [18]

Example 5.4. Finally, we test the performances of the proposed method on the following fractional Volterra integral equation:

x (t) =
1

4Γ (α)

∫ t

0

(t − s)−
1
2 x2 (s) ds+
Æ

t (1− t)−
t
p

t (5− 4t)
15
p
π

(12)

where we have α = 1
2 , H (t, s) = 1

4 , f (s, x (s)) = [x (s)]2 , g (t) =
p

t (1− t) − t
p

t(5−4t)
15
p
π

and T = 1. The exact solution is:

x∗ (t) =
p

t (1− t). For the test of convergence we consider n = 30, 60 and 120, and choose the number of iterations m = 30. In
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Tables 6 and 7 we give the pointwise errors en,i = |xm (t i)− x∗ (t i)| , i = 0, n, by taking q = 1 and q = 5:

t i n= 30 n= 60 n= 120
0,0 0 0 0
0,2 2, 30E − 05 5,89E − 06 1,50E − 06
0,4 3, 53E − 05 8,99E − 06 2,28E − 06
0,6 4, 56E − 05 1,16E − 05 2,93E − 06
0,8 5, 39E − 05 1,37E − 05 3,45E − 06
1,0 5, 83E − 05 1,48E − 05 3,73E − 06
Table6. Numerical results for (12) with q = 1

t i n= 30 n= 60 n= 120
0,0 0 0 0
0,2 4, 62E − 06 1,18E − 06 3,01E − 07
0,4 7, 11E − 06 1,81E − 06 4,57E − 07
0,6 9, 19E − 06 2,33E − 06 5,87E − 07
0,8 1, 09E − 05 2,75E − 06 6,92E − 07
1,0 1, 18E − 05 2,97E − 06 7,48E − 07
Table7. Numerical results for (12) with q = 5

6 Conclusions
In our main result, Theorem 4.1, we proved the convergence of the Bernstein splines iterative method applied to nonlinear
fractional Volterra integral equations, providing the error estimate in the discrete and continuous approximation. The order of
convergence is O (hα) for α ∈ (0,1), where h is the stepsize.

After analysing our numerical results we concluded two things: first, under the contraction condition, the Picard-Banach
iterations combined with Bernstein type splines generate an effective approximation method. The second observation is that
increasing the degree of Bernstein polynomials the accuracy is improved, but doesn’t have a huge impact on the obtained
numerical results. This is because when we have more intermediate nodes on a given iterative step, m, we obtain a better
appproximation for xm, not for the exact solution x∗. But increasing the number of iterations will give us better results. Although,
the use of Berstein splines with degree q = 4 or q = 5, will provide better results than those provided with the degree q = 1 (see
Example 5.4). This is expected because of the nice uniform approximation and shape preserving properties of the Bernstein
polynomials.

Comparing the obtained results at Example 5.1 we observe better results when the number of points are increased from
n = 10 to n = 100, which confirm the convergece of the method. Moreover, the results in Table 2 are improved when the
Bernstein polynomial degree increases by q = 1 to q = 5 . Since the case q = 1 corresponds to the trapezoidal product integration
technique, by comparing Tables 1 and 2, we infer that the iterative Bernstein splines method provides better results, as was
expected from theoretical point of view. Since the trapezoidal product integration is the particular case q = 1 in our method, the
results for q = 5 are better, as can be viewed at Example 5.2, too (see Table 4). Comparing the results obtained at Example 5.3,
in Table 5, with the results from [18], Table 2, we observe similar results in the case of n = 20 and m = 24 points, respectively. At
the last numerical example we see that the convergence of the Bernstein splines method is confirmed again (by comparing the
results for n= 30, n= 60, and n= 120 points) better accuracy being observed when the Bernstein polynomial degree increases
from q = 1 to q = 5.

As a final remark, we observe the following advantage of the Bernstein splines method: when the polynomial degree is
changed to high values, the accuracy is improved without a significant enhancement of the computational complexity. This is
not the case when the product integration techniques are based on Newton-Cotes quadrature formulas. In this context, the
performances and limitations of the techniques using high degree Lagrange polynomials in the product integration rule are
mentioned in [10] and [11].
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