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Abstract

This paper presents an efficient method for modeling horizontal covariances in three-dimensional
variational data assimilation (3D-VAR) using a fast anisotropic Gaussian convolution. Unlike conventional
isotropic Gaussian convolution, which assumes uniform spatial correlation scales, the proposed approach
introduces an adaptive anisotropic diffusion tensor that accounts for spatial heterogeneities. The method
is implemented through a non-orthogonal coordinate transformation, enabling an efficient recursive
filtering approximation of anisotropic Gaussian convolution. By incorporating spatially varying anisotropic
correlation structures, this approach improves background error covariance representation and enhances
information propagation in data assimilation. Numerical experiments show that the method effectively
captures directional dependencies while maintaining computational efficiency comparable to isotropic
convolution. This advancement aligns 3D-VAR with four-dimensional variational assimilation (4D-VAR)
by introducing flow-dependent anisotropic corrections within a computationally feasible framework.

Keywords: anisotropic Gaussian convolution, recursive filtering, data assimilation, anisotropic covariance modeling, anisotropic
diffusion tensor.

1 Introduction

Data assimilation is a fundamental process in numerical weather prediction and oceanography, aimed at optimally combining
observational data with model forecasts to improve state estimation. In three-dimensional variational assimilation (3D-VAR),
the background error covariance matrix, B, governs how observational information propagates in space [1, 2]. Traditional
implementations model horizontal covariances using isotropic Gaussian convolution, which assumes separable filtering along
the canonical (x, y) grid axes with either uniform or spatially varying correlation scales, but fails to account for directional
dependencies in geophysical flows [3]. Recursive filters and diffusion-based approaches have widely been employed to approximate
Gaussian convolutions. One-dimensional recursive filters, applied sequentially along two perpendicular directions, have been
introduced to approximate isotropic Gaussian convolutions [4]. In oceanography, explicit solutions of the diffusion equation
have been used to model horizontal error covariances [2], while implicit integration techniques have later been developed to
enhance numerical stability and computational efficiency [5]. Higher-order recursive filters have also been explored to improve
accuracy with fewer iterations [6]. To overcome the limitations of isotropic covariance models, various studies have introduced
anisotropy into spatial correlation structures [7, 8]. Building on these advances, this study presents an efficient method for
modeling anisotropic horizontal covariances in 3D-VAR by leveraging a fast anisotropic Gaussian convolution approximated. The
proposed approach extends isotropic methods by incorporating an adaptive anisotropic diffusion tensor, T, which locally adjusts
to spatial heterogeneities. This ensures that the correlation structure aligns with dynamically relevant directions, improving the
representation of background error covariances and enhancing the propagation of observational information. A key aspect of this
method is the application of a non-orthogonal coordinate transformation, which diagonalizes the diffusion tensor and enables a
computationally efficient approximation of anisotropic convolution along anisotropic directions through recursive filtering [9].
This transformation significantly reduces the complexity of direct convolution computations while preserving accuracy. Unlike
previous studies where recursive filters were applied only in isotropic settings, the proposed method extends their application
to anisotropic diffusion processes, leading to a more accurate representation of background error correlations in geophysical
applications. Numerical experiments confirm that the anisotropic recursive filter effectively models horizontal covariances while
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maintaining computational efficiency comparable to isotropic filtering. Moreover, the iterative solvers used for 3D-Var scheme
exhibit accelerated convergence under the proposed anisotropic modeling. The results demonstrate that the proposed method
captures flow-dependent structures and spatially varying correlation scales, making it a viable alternative to traditional isotropic
covariance models.

The remainder of this paper is structured as follows: Section 2 presents the mathematical formulation of 3D-VAR and covariance
modeling. Section 3 introduces the efficient decomposition of anisotropic Gaussian kernels using a non-orthogonal coordinate
transformation. Section 4 details the implementation of recursive filtering techniques for anisotropic convolution. Section 5
provides a comparative analysis of isotropic and anisotropic covariance modeling in 3D-VAR. Finally, Section 6 summarizes the
findings and discusses potential extensions toward advanced data assimilation schemes.

2 Mathematical Foundations of 3D-VAR and Covariance Modeling

The 3D-VAR method addresses the problem of combining a background model state and observational data at a given time ¢, to
produce an optimal estimate of the true state of a physical system at the same time t,. It typically minimizes a cost function such
as:

J(8) = 5(s—5,) B (5= 5,)+ 3y — MR (= H(s)), ®

where s is the state vector, s, is the background model state, B is the background error covariance matrix, y is the observation
state, # is the observation operator, which maps the model state to the observation space, ensuring consistency between model
predictions and observed data, and R is the observation error covariance matrix, assumed to be diagonal, reflecting the assumption
that observation errors are uncorrelated between different measurements. [1, 11, 15].

Let the physical domain Q C R® be discretized into a finite set of grid nodes

G={x€Q:i=1,...,N},

where N denotes the total number of spatial degrees of freedom, i.e., the dimension of the state space. The discrete state vector
is then

s = (s(x1),5(x,), . ..,s(xN))T eRV,

and the background error covariance matrix B € RV*¥ operates on this space.

In the particular case of a structured Cartesian grid with uniform resolution (Ax, Ay, Az), one has N = N, - N, - N,. More
generally, when the discretization is irregular with variable grid spacing and possibly non-uniform element geometry, the indexing
{x;}\V, is arbitrary and the above formulation remains valid, since it depends only on the total number of degrees of freedom N
and not on the mesh topology. In this framework, the grid spacing parameters can be interpreted as spatially varying mesh scales
Ax(x;), Ay(x,), Az(x;), allowing Equation (1) to be consistently defined on variable-resolution grids.

For simplicity and clarity in the following discussion, we assume a regular grid with uniform resolution. By linearizing #(s)
around s,, the cost function in 1 becomes quadratic and convex [4], ensuring the existence of a unique global minimum. The
linearized observation operator is expressed as:

H(s) ~ H(s,) +H(s—sp),

where H € RM*V is the Jacobian of H evaluated at s,, and M denotes the dimension of the observation space. Taking the gradient
of J(s) and setting it to zero leads to the following preconditioned linear system:

(I+BH'R'H)6s =BH'R™d, 2)

where 5s =s—s, € RY represents the correction to the background model state, and d =y — H(s;,) € RM is the misfit between
the model-predicted data and the observed data. By applying the Woodbury matrix identity, the solution of system 2 can be
written explicitly as

s = BH'(HBH" +R) d, 3

which coincides with the linear Kalman update [16]. However, in large-scale geophysical applications such as OceanVar [11],
NEMOVAR [17], the Met Office global system [18], and more recently JEDI-MPAS [15], the number of observations is often
comparable to the dimension of the state space (M ~ N). In such cases, the matrix HBH” + R is prohibitively large to invert
explicitly. Moreover, the background covariance matrix B is never assembled or stored explicitly, due to its dimensionality and
memory requirements.

For these reasons, the system in 2 is efficiently solved using iterative methods, which require repeated matrix-vector products
with the large covariance matrix B, about O(N?) operations at each iteration of the minimizer. To deal with this computational
challenge, efficient techniques are employed to approximate these products, often by representing B as B = V'V, ensuring that
the background error covariance matrix remains symmetric and positive semi-definite.
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The matrix V is in turn split into a sequence of linear operators [2], where each captures a specific physical aspect of the considered
system. For example, in oceanographic problems, such as OceanVar [11], the matrix V is defined as follows:

V= VDVqugVHVV: (4)

In Equation 4, the linear operator V,, transforms coefficients which multiply vertical EOFs into vertical profiles of temperature and
salinity defined at the model vertical levels. Vy; applies horizontal covariances on fields of temperature and salinity, V, calculates
the sea surface height error covariance from three-dimensional fields of temperature and salinity, V,,, calculates velocity from sea
surface height, temperature, and salinity, and V|, applies a divergence damping filter on the velocity field.

In 3D-VAR data assimilation, the background-error covariance operator for horizontal correlations Vy, acts as a smoothing
operator. It spreads the background error across neighboring grid points, imposing realistic horizontal spatial correlations on the
analysis variables. Mathematically, under isotropic assumptions, i.e., the same correlation structure in all horizontal directions,
Vj can be represented as a discrete convolution with a Gaussian kernel of a given correlation length scale o. Specifically, a
common choice for the covariance between two horizontal grid points x; and x; (at a fixed vertical level z = z,) is a Gaussian
function:

GalioJ) = 805 =% 0) = — exp(— ”X"_Xf”z) ®
’ ” 21 o2 202 ’

where ||x; —x;]| is the horizontal Euclidean distance between the two points. In practice, applying Vy; with this kernel corresponds
to replacing the error at each grid point with a weighted average of the surrounding points, with weights defined by the Gaussian
distribution (nearby points receive higher weight, and distant points negligible weight). This Gaussian smoothing effect (see
Figure 1a) ensures that the background errors vary smoothly in space, as is physically expected.
However, forming V; as an explicit matrix based on the kernel above is computationally infeasible for large systems. If there are
N, x N, horizontal grid points, then at each vertical level the matrix Gy, is of size (N,N,) x (NN, ). When extended over N,
vertical levels (often assuming separability so that horizontal correlations are applied independently at each level), V,; becomes
block-diagonal in the vertical and the full operator has size N x N with N = N,N, N,. A direct application of this operator would
require O(N?2) operations, which is prohibitive in large-scale geophysical applications. Instead, in practice Vy; is never assembled
explicitly as a dense matrix. The Gaussian smoothing is applied iteratively through efficient approximations, such as sequential
recursive filters [10, 12, 6] or implicit diffusion solvers [3, 5, 13, 14], which reduce the computational cost from O(N?) to O(N)
operations.
However, isotropic covariance models, despite being computationally efficient, fail to capture directional dependencies that are
essential in complex flow systems such as ocean currents or atmospheric jet streams [3]. In reality, background error correlations
can be elongated in one direction (e.g. along a coastline or a jet stream) and narrower in the perpendicular direction. Recent
studies, such as [14] on flow-dependent anisotropic diffusion filters, demonstrate that anisotropy can be efficiently represented
and handled within the diffusion-based framework.
To overcome the limitation of isotropy, Vy; is extended to model anisotropic horizontal covariances by using an oriented Gaussian
convolution, represented by the following horizontal kernel:

1
Gy(i,j) = g(x —X;; 0y, Oy, 0)=———exp (_% (x; _Xj)TT_l(Xi _Xj)): (6)

2no,0

u v
where T is the diffusion (covariance) tensor that defines the anisotropic Gaussian shape. In practice, one constructs:

@)

R R R cosf —sinf
T=RD,R7, where R= .

sin 6 cos 6

is the rotation matrix that rotates coordinates by an angle 6 with respect to the original x- and y-axes, defining new principal
axes u and v, i.e., the change of basis from the (u,v)-system to the original (x, y)-system, where the anisotropy manifests
(Figure 1b). The diagonal matrix D,, = diag(af, Uf) contains the squared correlation lengths (variances) along the rotated u-
and v-directions.

This anisotropic Gaussian convolution formulation allows the background-error covariance to stretch or contract differently in
horizontal directions, aligning the smoothing effect with known physical structures. For example, by choosing 0 to follow the
dominant flow direction, V,; will spread errors farther along the flow and less across it, yielding more realistic error covariances
aligned with geophysical dynamics. The diffusion tensor T can also account for non-uniform grid spacing (dx and dy) by
incorporating the grid metrics into o, and o,. In summary, extending V, to an anisotropic Gaussian convolution enables the
3D-VAR system to more accurately capture spatial error variability by aligning the covariance kernel with key physical characteris-
tics, such as dominant flow directions and environmental gradients, while still benefiting from the efficient convolution-based
implementation of the covariance operator.
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3 Efficient Decomposition of Anisotropic Gaussian Kernels for Computational Convolu-
tion

The objective in this paper is to realize the anisotropic Gaussian convolution in (6) by means of fast recursive Gaussian filters; to
this end, we employ the Infinite Impulse Response (IIR) approximation to Gaussian smoothing [10], in particular its accurate
third-order formulations successfully adopted in 3D-VAR systems [6]. The natural eigenframe (u, v), aligned with the principal
axes of anisotropy (Figure 1b), is not computationally convenient on a Cartesian mesh: the principal directions are typically
oblique with respect to the grid, so each filtering sweep along u and v would, at every horizontal level, require off-grid evaluations
with repeated one-dimensional linear (or bilinear on the Cartesian mesh) interpolations at non-integer locations in both causal
and anti-causal passes, increasing computational cost and introducing additional numerical smoothing. In the classical (x, y)-
orthogonal system, the convolution kernel in Equation 6 is not separable due to the non-diagonal nature of the anisotropic
diffusion tensor T. This lack of separability along the x- and y-axes prevents the direct application of recursive filters [10]. Then,
following [9], we therefore introduce an oblique change of variables (x, t) (t # u) (Figure 1c) via an LDLT factorization of T}
such that the convolution kernel in Equation 6 became separable along x- and t-axes and preserves the x-axis (a shear), so
that one pass is grid-aligned (along x) and only one pass is oblique (along t). This choice is particularly suited to the present
work, where we address the case of spatially varying anisotropy. In such a setting, it is advantageous to define a reference frame
in which at least one axis (here, the x-axis) remains fixed and aligned with the computational grid, while the other axis (t)
adapts locally to the varying orientation of anisotropy. In this way, the filtering procedure retains computational efficiency by
exploiting the grid alignment in one direction, while still capturing the local variability of anisotropic structures along the oblique
direction. In the (x, y)-orthogonal system, the t-axis is defined by ¢t : y = tan(¢)x with ¢ # 0 (see Figure 1c) and, in general,
¢ # 0, hence t # u. We seek a linear change of coordinates that diagonalizes the quadratic form x" T~'x and decouples it into
independent contributions along two axes. This is achieved by a change-of-basis matrix LT such that

x=L"x, & =(x,0, x'=(xy).

Under this mapping, the quadratic form has to diagonalize and decouple as:

x2  t?
X T'x=x"LD'L'x=%"D'% = — + —,
xt xt 2 2
oz o}

where D! = diag(1/02, 1/02). This decoupling is realized by applying an LDL" factorization to T~!, which yields the diagonal

matrix
sin?6  cos?@ 0
2 2
D_1 = O-v O-u
xt 1 >
0

o2sin® 0 + 02 cos? O
Consequently, the effective variances along the x- and t—axes are

2 .2
o’o
o?= e , o?=02sin*0 +o?cos’ 6. (8)
o2sin” 0 + o2 cos? 6

The determinant of T~ is preserved under the change of reference frame, hence, 020 = o202, Since the matrix L™" encodes the
coordinates of the x- and t-axes in the x-y reference system, we can determine the angle ¢, which defines the inclination of the
t-axis relative to the x-axis (as illustrated in Figure 1c). To achieve this, we compute the matrix L™ and derive the corresponding
expression for ¢:

(02 —0?%)cos(0)sin(H)

L= o2cos2(0)+o2sin*(0) |, ¢ = arctan(
0 1

2 29 + 2 a: 29
02 cos?(0) + o sin”( )), ©)

(02—02)cos(6)sin(0)

where o, # o, and 0 ¢ {0, /2, m,3m/2}. Then, we obtain T™! = LD;tlLTand the Gaussian function in the x-t coordinate system
can be represented in the following decoupled, quadratic form:

1 1 _
gx,0,,0,0)= meXP(_ExTDxtlx), (10)
X t

This approach ensures an accurate representation of anisotropic diffusion orientation in the transformed x-t coordinate system
and the decomposition of the anisotropic Gaussian kernel into independent components, enabling an efficient approximation of
Gaussian convolution starting from arbitrary orientations.
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Figure 1: Contour line representations of Gaussian functions: (a) isotropic Gaussian function in the x-y coordinate system, (b) anisotropic
Gaussian function in the x-y coordinate system, and (c) anisotropic Gaussian function in the x-t coordinate system.

4 Fast Recursive Filter for Anisotropic Gaussian Convolution with Spatially Varying Coef-
ficients
Isotropic convolution in the 3D-VAR method for modeling horizontal covariances has been efficiently approximated using first-
and third-order IIR recursive Gaussian filters [11, 6]. In this study, we extend this approach to the anisotropic case, where the
degree of anisotropy is not uniform but may vary from point to point across the grid. This spatial variability prevents the use of a
single global filter: instead, a local filtering strategy is required.
A key advantage of the (x, t) system, defined in Section 3, is that the x-axis remains the same for all points of the domain,
while the t-axis may change locally depending on the anisotropy tensor. Consequently, along the x-axis the filtering is always
grid-aligned, and only the recursive filter coefficients vary from point to point, since they depend on the local standard deviation
o,(i,j) (see Equation 8). In contrast, the filtering along the t-axis must be performed locally because both the orientation ¢ (i, j)
(see Equation 9) and the effective scale o,(i, j) (see Equation 8) vary spatially.
The recursive filter is applied to a discretized grid of N, x N, points at each vertical level z =z, k =1,...,N,, independently.
This is because the horizontal covariance operator Vy; (defined in Section 2) is block-diagonal with respect to the vertical index.
To keep the notation light, we adopt a purely two—dimensional notation. Consequently, the two 1-D filtering passes are performed
level-wise: along the x-axis the filter is applied globally (since the axis is common to all grid points and only the coefficients
depend on the local variance o (i, j)), while along the t-axis the filter must be applied locally, because both the orientation
¢ (i, j) and the effective scale o,(i, j) vary from point to point.
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4.1 Filtering along the x-axis

Specifically, the x-axis is aligned with the horizontal grid, whereas the t-axis is inclined at a local angle ¢ (i, j) relative to the
x-axis, as defined in Equation 9. Along the x-axis, the filtering with local standard deviation o, (i, j) acts in two stages: first, a
forward (causal) filtering step is performed for each j =1,...,N,, progressing from i = 1 to i = N,.. Subsequently, a backward
(anti-causal) filtering step is applied in reverse, starting from i = N, and proceeding back to i = 1. The recursive relationships
that govern these procedures [6, 10] are expressed in Box 1.

BOX 1 — Third-order recursive Gaussian filter along the x-axis (Vj=1,...,N,)

Forward boundary initialization. Define p,(1), p,(2), p.(3) according to Equation (11) in Subsection 4.4, using the local coefficients
aq(i, ), ax(i, ), as(i, j), B(i, ), i =1,2,3 evaluated at the corresponding grid points.
Forward (causal) pass.

Px(@) =B, s, )+ a1, ) px (i =1+ aai, I pe(i—2) + a3(i, I pe(i—3),  i=4,...,Ny.
Backward boundary initialization. Define s, (N, ), s, (N, + 1), s,(N, + 2) by the exact backward initialization as described in Subsection 4.4
Equation (19), again with local coefficients evaluated at the point (N,, j).
Backward (anti-causal) pass.

Se(@) =B, 1) px (@) + a1(f, sy (( + 1)+ as(i, j)s, (i +2) + az(i, j) s, (i + 3), i=N,—1,...,1.

Output mapping.
spe(i, ) =s,(@), i=1,...,N,.

Remark. The coefficients a4(i, j), a5(i, j), a3(i, j) and B(i, j) are computed pointwise from Box 3 in Subsection 4.3, using the local standard
deviation o, (i, j) (see Equation 8).

In Box 1, s, (i, j) is the input function, p,(i) is the forward-filtered function, s,(i) is the backward-filtered function, and
s¢ (i, ) represents the result of the filtering along the x-axis, mapped back to the grid at position (i,j). The coefficients
a,(i, ), ay(i, j), a5(i, j) and B(i, j) in Box 1 are computed from Box 3 in Subsection 4.3 as functions of the local variance o (i, j),
following the stable IIR formulations proposed in [10] and successfully applied in 3D-VAR systems [6].

4.2 Filtering along the t-axis

Before describing the implementation of the recursive filter along the t-axis, it is important to emphasize why this operation is
performed locally rather than globally. In this work we address the case of spatially varying anisotropy, where both the orientation
and the strength of anisotropy may change from point to point across the domain. In such a situation, applying a single global
filter along t would not be consistent, since the oblique direction that best captures anisotropy is not uniform. Instead, a local
filtering strategy is adopted: at each grid point (i, ), the oblique axis t is defined according to the local anisotropy tensor, ensuring
that the smoothing procedure follows the spatial variability of the field. This makes the convolution both computationally feasible
and physically consistent, aligning the filtering operation with the dominant local anisotropic structures.

For these reasons, filtering along the t-axis is carried out in the following way. At every grid point (i, j) on the grid of size N, x N,,,
the recursive Gaussian filter is applied to a discrete interval I; ;), centered at (i, ), with a radius of 3| o, (i, j)], where o, (i, j) is
the standard deviation derived in Equation 8, and |- | denotes the integer part of a real number. The filtering operation at each
point (i, j) of the N, x N, grid is restricted only to an interval of approximately [—30,(i, ), +30,(i, j)] along the t-direction,
since within this range the Gaussian kernel contains over 99% of its probability mass. This ensures that the smoothing effect of
the filter is both accurate and computationally efficient, as contributions outside this interval are negligible.

The filtering is performed along the local oblique line £ : y — j = tan(¢ (i, j))(x — i), so that both the scale and the orientation
adapt to the anisotropy at the given grid point. The procedure consists of two stages: first, a forward (causal) filtering step
is performed, progressing from j =1 to j = 6|0,(i, j)| + 1. Subsequently, a backward (anti-causal) filtering step is applied in
reverse, starting from j = 6|0 ,(i, j)| + 1 and proceeding back to j = 1 (see Figure 2). The recursive relationships governing these
procedures [9] are expressed in Box 2.

In Box 2, the term sf’x(x( 1),y )) represents values obtained by linear interpolation between the two nearest grid points along
the x-axis at the ordinate y(j) (see Figure 2), for each j =1,...,6|0,(i,j)] + 1, provided that (x(j), y(j)) lies within the grid
boundaries; otherwise, it is set to zero. The functions p,(j) and s,(j) denote the intermediate results of the forward and backward
filtering operations, respectively. The final output s f’t(x( 7),¥( j)) maps the filtered values back onto the grid using the same
interpolation scheme applied along the x-axis, and these contributions are then accumulated with the values previously computed
at the neighboring points.
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BOX 2 — Third-order recursive Gaussian filter along the t-axis (V (i, j) on the N, x N, grid)

Sampling coordinates along the local t-line. For a given center point (i, j) and local parameters o (i, ), ¢(i,j) (Equations 8-9), we
parametrize

t:y—j=tan(¢@N)(x~1)
over j=1,...,6lc.(i,j)]+1as

i=(Ble.GNI+1) .
—_—— t1,
tan($ (1, 7))

y(@)=j+j—BlodDI+1).

x(j) =

Sampling & interpolation at (x(j), y(j))- The input samples s; . (x(j), y(j)) are obtained by horizontal two-point linear interpolation at the
ordinate y(j) (see Figure 2):

ip=Ix(D),  w=x()—io,  spx(x(G),y(GN=Q=w)sg (o, y(G) +wspx(io +1, y()).
If the sampling point (x(j), ¥ (j)) lies outside the grid, we use zero-padding: both the sample s ,.(x(j), ¥(j)) and the local variance o, (x(j), ¥ (j))

(used to compute the filter coefficients from Box 3 in Subsection 4.3) are set to zero.

Forward boundary initialization. Define p,(1),p.(2),p,(3) as described in Subsection 4.4 Equation (11), using local coefficients
a1 (x(j), (7)), a2(x (), y (7)), as(x(j), ¥(j)) and B(x(j), ¥(j)) evaluated at j = 1,2, 3.
Forward (causal) pass.
pe() = BGx(), y(Nsp{x(1). ¥ (1)
+a1(x(G), y (G pe G — D+ az(x(j), y (1) pe (G —2) + a3 (x(7), y (D) pc (G — 3),
j=4,....6lo.( )]+1.

Backward boundary initialization. Define s,(6| (i, )] + 1), s,(6lo.(i, /)] +2), 5, (6lo (7, )] + 3) as in Subsection 4.4 Equation (19), with
the local coefficients evaluated at the point 6| o (i, )| + 1.
Backward (anti-causal) pass.

s:(7) =BG,y pe ()
+a1(x(), y(5) s G+ 1) + az(x(7), (7)) s (G + 2) + az(x(7), ¥y (7)) s (G + 3),
j=6lo.(,)],...,1.

Output mapping.
spdxG),y(D)=s.G),  i=1,...,6lo @] +1.

Remark. The coefficients a1 (x(j), y (j)), a2 (x(j), ¥y (j)), a3(x(j), ¥(j)) and B(x(j), y(j)) are computed from Box 3 in Subsection 4.3, using the
local scale o, (x(j), y(j)) (Equation 8).

Local t-axis sampling on a 15x10 grid, centre=(8,5), ¢=60", o=4

T T T T T T
10[H @O Centre node (jc) - yellow
Local t-axis (black)
9H @ Sampleson t(blue)
m  Neighbour grid points (red) 1/.
8

j (y-index)

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
i (x-index)

Figure 2: Local oblique filtering scheme on a 15 x 10 grid with center (i, j) = (8, 5), orientation ¢ = 60°, and scale o, = 4. Black line: oblique
t-axis; blue circles: sampling points (x(j),y(j)) for j = 1,...,25 along [—30,,+30,]; yellow square: central node (j. = 13); red squares:
neighbouring grid nodes for linear interpolation.
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4.3 Computation of filter coefficients and stability analysis

Following [10], the recursive Gaussian filter introduced in Boxes 1-2 is realised as a cascade of a causal IIR filter (forward pass)
and an anti—causal IIR filter (backward pass). For the causal transfer function to be Bounded-Input Bounded-Output (BIBO)
stable, its poles must lie strictly inside the unit circle in the complex z-plane, whereas for the anti-causal transfer function to be
BIBO-stable, its poles must lie strictly outside the unit circle.

In our formulation, the coefficients are spatially variable:

an (i, ), B(i,)) for the x—axis pass,  a,(x(j),y(7)), B(x(j),y(j)) for the t-axis pass, m=1,2,3.

These coefficients depend pointwise on the local standard deviations o (i, j) and o,(x(j), y(j)), and are computed according
to the analytical formulation reported in [6] and summarised in Box 3. The stability criterion is satisfied locally: at every grid
location, the causal filter retains all poles strictly within |z| < 1, whereas the anti—causal filter has all poles strictly within |z| > 1
in the complex z-plane [10]. This spectral separation ensures that the combined causal-anti-causal process remains BIBO—stable
under arbitrary spatial variations of the correlation length scales, providing a stable and accurate recursive approximation of the
anisotropic Gaussian convolution.

BOX 3 — Recursive filter coefficients as a function of the standard deviation o

alzﬂ: azzﬁs a3=$’ ﬂzm(l_al_az_a:")’
Qo 0 Qo
a, = 3.738128 + 5.788982 0 + 3.382473 2 4+ 1.000000 0%,
a; = 5.788982 0 + 6.764946 o* + 3.000000 03,
a, = —3.382473 % — 3.000000 03,
a; = 1.0000000°.

Note. The spatial index (i, j) is omitted from o for readability; in practice, all coefficients are computed pointwise from the local standard

deviation o (i, j) or o ,(x(j), y(j)).

To illustrate the behaviour of the isotropic and the anisotropic recursive Gaussian filters introduced in Boxes 1-2, we now present
two representative examples on a 100 x 100 grid with a Dirac impulse located at (iy, j,) = (50, 50). Both filters are implemented
using the third—order causal/anti-causal formulation derived in [6, 10], with coefficients defined in Box 3.

In the isotropic case (Figure 3a), the standard deviation o = 10 is constant and the diffusion tensor reduces to oI. The two
one—dimensional recursive passes (Box 1 along x, followed by the symmetric pass along y) produce a separable and radially
symmetric Gaussian smoothing. The resulting level sets are circular and concentric, confirming the isotropic nature of the
convolution.

In contrast, the anisotropic case (Figure 3b), where the diffusion tensor is expressed as T = RD,, R” (see Section 2), uses
spatially constant but unequal principal standard deviations (o, 0,) = (15,10) and an orientation 6 = 7/4 where the anisotropy
manifests. Here, the filtering along the oblique axis t (Box 2) operates in a rotated coordinate frame (x, t), with coefficients
locally adapted according to Equations 8-9. The output exhibits elongated and tilted level sets—elliptical contours aligned with
the diffusion tensor—which demonstrate the directional smoothing induced by anisotropy. Together, these examples visually
validate the theoretical formulation of the isotropic and anisotropic recursive filters.

4.4 Exact boundary conditions for third-order recursive filters

Incorrect initial conditions for the backward procedures in the recursive Gaussian filter cause significant amplitude and phase
(geometric position) distortion for all points within about three standard deviations from the last point of the right boundary. To
address this issue, we implement appropriate boundary conditions for the filters in Box 1 and Box 2 [19], which correct these
distortions in recursive filtering.

The boundary conditions for the forward procedures in Box 1 and Box 2 are derived in [10] under the assumption of a stationary
input signal to the left of the filtering interval of length N. They are formulated as:

p(1) B o 0 so(1) 0 0 0] |p(M)
p)|=| 0 B2 o0 so(2) [+ a2 0 0| |p@)], (11)
p(3) 0 0 BB [50(3) a,(3) a,(3) 0f | p(3)

where s, denotes the input to the filter and p represents the intermediate result of the forward (causal) filtering step. The
coefficients a, (i) for k = 1,2,3 and (i) (with spatial index j omitted for readability) are position-dependent filter coefficients
corresponding to the point being calculated, as specified in Box 3 (Subsection 4.3).
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Recursive 2D Gaussian Filter (o = 10) Anisotropic recursive filter (o,=15, 0,=10, 6=m/4)
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Figure 3: Comparison of the recursive Gaussian filtering in the isotropic and anisotropic cases on a 100 x 100 grid with a Dirac delta at
(50,50): (a) isotropic case (o = 10) with circular, concentric level sets showing radially symmetric smoothing, and (b) anisotropic case with
(0y,0,) = (10,5) and 6 = 7/4 showing elliptical, rotated level sets. In (b), Boxes 1-2 implement a separable scheme in the (x, t) frame,

producing oriented elliptical smoothing governed by (o, 0, 6).

To eliminate amplitude and phase distortions near the right boundary, the backward initial conditions s(N), s(N + 1), s(N + 2)
are set using the exact linear correction method proposed in [19], assuming here that the input signal s, is stationary and equal

to zero to the right of the filtering interval.
The method extends the forward-backward recursion to i — oo. For the third-order filter, the forward state evolves as

p(i) p(i—1) p(N) a, a, a,
p(i—1)| =A|p(i—2)| =A7" [p(N—-1) ], A=|1 0 0|, i>N, (12)
p(i—2) p(i—3) p(N—2) 0 1 o0

and the backward state as

s(1) p() s(i+1) p 0 O
s+1) | =B|pli—-1) | +A|s(i+2)|, B=|0 0 0|, i>N. (13)
s(i+2) p(i—2) s(i+3) 0 0 0
Combining Equations (12) and (13), we have
s(N) o p(N)
sS(IN+1) | = (ZAIBAI) p(N—=1)]. (14)
s(N +2) i=0 p(N—2)
s(N)
We need to calculate the 3 x 3 matrix M = Zf:o A'BA' that links the initial backward state |s(N + 1) | to the final forward state
s(N+2)
p(N)
p(N —1) |. By M’s recursive definition,
p(N—2)
M =B+ AMA, (15)

solving this 9 x 9 linear system (15) for M (see [19]) yields the exact boundary correction for the third-order recursive filter. The
transition matrix M is explicitly defined by:
1 My My My
M= o My, Mgy Mys |, (16)
Mz Mgy Mg
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where the matrix elements are given by:

my; =03 +ayf+ aﬁﬁ —B,

my, = _af%ﬁ —a a3 — alaﬁﬁ —aya3f3,
_ 2

my; =—a;az8 — azagﬁ,

my =—a1 8 —aya,f,

Myy = 010030 —a 038 + aﬁﬁ —a,p,

Mys = 1 05P + ayasf + a3 f —asff,

) 2
mg =—aif —ayasf +ayf —ayf,
2 2 3
my, =—a;a,5 + alagﬁ - a2a3ﬁ +aa3p + agﬁ —asf,
Mas = —a, a3 — ayasf. a7

The denominator D in Equation (16) is given by:

D=dlas+da,+aal+a’ —a,adas + 4o, 0,05 — oy o) + Ay g 18)
—a+aial+al—a,al+a,—af+2al—1.
The coefficients 3, a,, a,, a5 appearing in Equations (17) and (18) are evaluated at the last grid point (N, j), i.e., the rightmost
point where the signal exists before extending to zero, using the formulation provided in Box 3 with the local standard deviation
at that point.
The final forward-filtered values p(IV), p(N — 1) and p(N — 2) are used to compute the initial state of the backward (anti-causal)
pass through the transition matrix M, such that:

s(N) p(N)
sS(IN+1)[=M|p(N—-1)]. 19)
s(N+2) p(N—2)

This implementation ensures numerical stability and avoids loss of convergence in iterative solvers used for solving Equation 2 [12].

4.5 Computational complexity analysis

The computational efficiency of the anisotropic filtering approach is a critical factor in its practical applicability to large-scale
data assimilation systems. While the anisotropic Gaussian convolution is naturally expressed in the principal (u, v) eigenframe,
where the diffusion tensor is diagonal and the directional correlation scales are explicitly defined, implementing the filter in this
coordinate system would require two oblique (sheared) filtering passes one along each principal axis both incurring interpolation
costs at every grid point. To reduce computational overhead while preserving anisotropic structure, we adopt the non-orthogonal
(x, t) factorization introduced in Section 3, which requires only one oblique pass (along t) combined with a single grid-aligned
pass (along x). This section quantifies the computational cost of this strategy and compares it against both the isotropic Gaussian
filter (the standard baseline in operational 3D-VAR systems) and the alternative (u, v) implementation.

From a computational standpoint, we consider an anisotropic third-order recursive Gaussian filter whose per-sample update has
constant cost ¢; =~ 14 flops (including both causal and anti-causal passes). The filtering along the x-axis is applied over the entire
grid of size N, x N, without truncation. In contrast, the filtering along the oblique t-axis is performed locally at each grid point
(i,j) and truncated to an interval of approximately 6| o, (i, j)| samples centered at that point, since the t-direction varies spatially
according to the local anisotropy. Within this +30,(i, j) range, the Gaussian kernel contains over 99% of its probability mass,
while outside this interval the filtering effects are negligible. When a filtering pass is aligned with the grid (e.g., along x) no
interpolation is required; when a pass is oblique (sheared along t) we include a linear gather+scatter overhead c;,, per sample
per oblique pass (in our implementation c;,, =~ 6 flops).

To assess computational efficiency, we compare three possible filtering configurations: (i) isotropic filtering with two grid-aligned
passes along x and y, (ii) anisotropic filtering in the non-orthogonal (x, t) frame with one grid-aligned and one oblique pass, and
(iii) anisotropic filtering in the principal (u,v) frame with two oblique passes. Denoting by N = N, N, the number of horizontal
grid points and by &,, 5,, &, the spatial means of the effective standard deviations along the oblique axis t and along the
principal axes (u, v), the three configurations behave as follows.

(i) Isotropic (two grid-aligned passes). Both passes are aligned with the grid, so the cost is simply the sum of two updates and
scales as
Ciso ™ 2c; N (about 28N flops).

(ii) Anisotropic in the non-orthogonal (x, t) frame (one grid-aligned + one oblique pass). The pass along x is grid-aligned and
costs ¢;N. The oblique pass along t touches, on average, 65, samples per node, so its filtering part contributes 65, ¢, N; the
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linear gather+scatter overhead for this single oblique pass adds 65, ¢, N. In compact form, the total cost is
Canisoe0) ® [(1+65,) ¢ + 66, cin | N,

which is O(N) with a multiplicative constant proportional to the effective oblique support 65,.

(iii) Anisotropic in the principal (u, v) frame (two oblique passes). Here both passes are oblique. The filtering parts contribute
66, ¢; N and 65, c; N, and the linear gather+scatter overhead is paid twice (once per oblique pass), adding 6G, ¢y, N + 65, iy N.
The resulting cost is

Caniso,(uv) [6(6,+05,) (cs + Cin) [N
which is O(N) with a multiplicative constant proportional to the effective sum of the oblique supports 65, and 65, .
As general remark, all three costs are linear in N and proportional to the effective stencil lengths. We now compare the alternatives.

Comparison: anisotropic (x, t) vs isotropic. A convenient indicator is

C

aniso,(x,t)

C

_ (1+66,)c; +65, iy

2Cf

iso
With c¢;=14 and c;,,=6 this gives

Caniso(r) _ 14+845,+366, _ 14+1206, _ 1,30,
Co 28 28 2 7"

showing that the extra cost scales with the effective oblique support 65 ,: one oblique pass (plus one grid-aligned) is more
expensive than two grid-aligned passes by a factor that grows approximately as % 0, ~ 4.3, relative to Ci,.
Comparison: anisotropic (u,v) vs anisotropic (x, t). For comparable scales 5, ~ &, ~ &, the ratio

Caniso,(u,v) _ 6(5u + O-V) (Cf + Cint) _ 6(0-'14 + &v) (Cf + Cint)

Caniso,(x,0) (1+66.)c; + 60, Cipe Cp+606, (cf + Cine) '

With ¢;=14, ¢;,,=6, and assuming &, = &, = &, = 7, this simplifies to

Caniso,(u,v) _ 126-20 2400 5>1
Caniso,(x,t) 14+ 66 - 20 14+ 1200

Intuitively, the (u, v) formulation requires two oblique passes (and thus pays two interpolation overheads), whereas the (x, t)
formulation uses only one oblique pass plus a cheap grid-aligned pass, yielding approximately half the cost for large &.

5 Comparative Analysis of Isotropic and Anisotropic Horizontal Covariances in 3D-VAR

This section evaluates the performance of isotropic versus anisotropic horizontal covariance modeling in the 3D-VAR framework
through numerical experiments on a synthetic Black Sea application. Subsection 5.1 describes the experimental setup, including
the construction of the synthetic dataset, the mathematical formulation of the reduced variational problem, and the numerical
implementation of both isotropic and anisotropic Gaussian filtering schemes. Subsection 5.2 presents the comparative results in
terms of conjugate-gradient convergence and relative accuracy metrics, demonstrating the benefits of flow-aligned anisotropic
covariance modeling.

5.1 Experimental Setup and Numerical Implementation

In this subsection, we analyze the optimal estimate s, + s, where §s is the correction to the background state obtained as the
solution to the linear system in Equation 2, comparing the performance of isotropic and anisotropic convolutions in modeling
horizontal covariances.

The tests are performed on a synthetic application over the Black Sea domain, designed to provide a controlled yet realistic
environment for assessing the behavior of the convolution filters. The geographical grid and the surface velocity fields are
extracted from CMEMS (Copernicus Marine Environment Monitoring Service) for 11 July 2015 (surface layer). The temperature
fields used in the test refer to synthetic sea-surface temperature (SST) values generated on this grid.

We consider three sea-surface temperature (SST) fields. The true state s, at time t, (Figure 4a) is constructed as a smooth
field with mean 27 °C—matching the basin-wide average SST over the Black Sea on 11 July 2015—superimposed on a weak
meridional (north-south) gradient and small-amplitude, zero-mean random perturbations with standard deviation 1 °C. To imprint
dynamically consistent structure, we superimpose flow-aligned mesoscale anomalies oriented along the CMEMS surface-velocity
directions (cf. Figure 4d). These anomalies are generated via anisotropic Gaussian smoothing of white noise, elongated along the
local current and scaled by its magnitude, and we add a small high-frequency component (~ 10% of the anomaly amplitude) to
introduce fine-scale variability.
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The background field s, (Figure 4b) represents the model state at t,. It is obtained from s, by removing the flow-aligned
mesoscale anomalies (and the fine-scale component), yielding a field that retains only the large-scale mean and weak meridional
gradient. This construction mimics a typical background lacking mesoscale variability.

The observation field y (Figure 4c) is generated by s,,,., adding independent zero-mean Gaussian noise with variance o? G.e.,
R= oil), consistent with the error model adopted in the assimilation experiments.

In Figure 4c, we display the pointwise CMEMS surface velocity field v over the Black Sea using a thinned quiver plot to avoid
visual clutter from small-scale variability. Arrows indicate the local flow direction, sampled on a regular subgrid in index space,
with land points masked. This representation preserves the native pointwise information while remaining legible at figure scale.
The resulting dataset background, noisy observations and velocity field, provides the initial inputs for the variational assimilation
test.

True Temperature Background Temperature
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45 45
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42 24 42 21
i 23 M ‘ . . : 23
28 30 32 34 36 38 40 28 30 32 34 36 38 40
Longitude [°E] Longitude [°E]
(@ (b)
Observed Temperature Velocity Field Ses
29
46 -
28
45+
z 27 z
P o
L4 3
2 26 2
® ®
| 43+ —
25
42+
24
a1, L L L L 23 L L L ] Land
28 30 32 34 36 38 40 28 30 32 34 36 38 40
Longitude [°E] Longitude [°E]
(c) (d)

Figure 4: Synthetic dataset over the Black Sea (N, x N, =395 x 295): (a) true temperature field s ye, (b) background temperature s; obtained
by removing flow-aligned mesoscale anomalies from s, (c) observed temperature y = s, + € with independent and identically distributed
noise (o, = 1.25°C), and (d) CMEMS surface velocity field with arrows showing flow direction. Land points are set to NaN in (a—c) and masked
in (d); all temperature maps use identical color scales.

In this subsection the goal is to resolve the linear system in Equation 2 under the following assumptions: the background-error
covariance, modelling horizontal correlations only, is written B = VZIVH, where V;; is a (isotropic or anisotropic) Gaussian
convolution operator and V7, its adjoint and s, and y are defined on the same grid and represent the same physical variable, so
the observation operator # (Section 2) and its Jacobian H reduce to the identity. Under these assumptions, Equation 2 reduces to

(I+BR1)6s = BR1d, d=y-s,, (20)

and, since Band R™! = (1/ ag)l are symmetric and semi-definite and definite positive respectively, the matrix I+BR™ is symmetric
positive definite (SPD). Consequently, an approximation of &s is computed by the Conjugate Gradient (CG) method [20] in the
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Algorithm 1 Conjugate Gradient for (I+BR™')5s=BR'd with B=V]V,

Input: Background state s,; observations y (same grid); diffusion tensor T (isotropic or anisotropic case). scalar observation
precision R™! = G%I; tolerance tol; maximum iterations kmax.
o

1: Misfit: d < y—s,.

2: Right-hand side: b « V!V, (R™'d) > Gaussian convolutions with tensor T

3: Initialization: 6s, < 0, r,< b, p, < r,.

4: fork=0,1,2,..., until kmax do

50 Q< P + Vi Vu(R7'py) > Gaussian convolution with tensor T
rl 1

6: A < —
pk [¢13

7t OSpqq < OSp + . Pre

8 Tryr < T — A G
9: if ||rp4]l, < tol then

10: break
11:  end if .
12: ﬂk — %lr&
T, Ty
130 Preq < Tegr + B P
14: end for

Output: correction §s; final estimate s, + 5.

Krylov subspace:
K(I+BR™), BR'd) = span{BR'd, (I+BR")BR'd, (I+BR')’BR'd, ..., (I+BR")*'BR'd}, K<N.

In practice, matrix—vector products with BR™ are evaluated as VPTIVH(R’L). Isotropic Vy is efficiently realized by high-order
recursive Gaussian filters (RF) [10, 6, 11]; the anisotropic construction follows the non-orthogonal factorization and the filtering
strategy developed in Sections 3—4.

Algorithm 1 presents the conjugate-gradient (CG) solver specialized for Equation 20. Inputs: background state s;, observations
y, scalar observation precision R™! = 0;21, and a diffusion tensor T that parameterizes the Gaussian preconditioner used to
approximate the background-error covariance action B at each iteration. The solver also takes the tolerance tol and the
maximum iteration count kmax. Outputs: the analysis increment ds and the final estimate s, + 6s. The CG iteration stops when
[|r]l, < tol or when kmax is reached.

From a numerical standpoint, the isotropic reference adopts a grid-aligned metric. Let v(i,j) = (vx(i, 7, v, 0, j ))T denote the
pointwise horizontal velocity (see Figure 4d) ; we set

Tiso(i’j):[crx(i,j) 0 ] ax(i,j)=0(1+Y|VX(i’j)|), Uy(i,j)zo(l-i-y'vy(i’j)l),

0 02 [ 1y T

with ||V |lmax = max ;) [vi (i, )| and ||V, [|max = maxg ) [v,, (i, j)I, i.e., the maximum absolute values over the grid under examination.
Here, o € R* is the base correlation length scale, and y € R is a dimensionless parameter that modulates the velocity-dependent
scaling of the horizontal covariances. This yields an isotropic-in-orientation yet scale-varying Gaussian diffusion aligned with the
grid directions (x, y). As in [10, 6], the horizontal covariance operator B is realized by a third-order causal/anti-causal recursive
Gaussian filter and its adjoint (transpose), a standard practice in oceanographic 3D-VAR [11, 12]. With a positive-definite
observation-error precision R™! = (1/ ai)l, the normal operator A =1+ BR™! is SPD, enabling CG convergence.

The anisotropic reference orients diffusion along the local flow. Let 6;; = atan (vy(i, 7). (i, ] )) be the flow direction. In the
natural eigenframe (u, v) (see Figure 1b), we set

T,; =R(0,))D,,(i,))R(6,)",  D,(,j)=diag(c(, ), o(i,)),

with ..
o =o(1+7BS2) o =0,
[Vl max
where o € R is the base correlation length and y > 0 is a dimensionless parameter that modulates the along/across—flow
correlation-length ratio: for y = O the model tends to a rotated isotropic filter, while for y > 0 it elongates covariances
proportionally to the local speed. As detailed in Sections 3-4, the associated Gaussian convolution operator V;; and its transposed
VFTI are implemented in a local, non-orthogonal (x, t) system (fixed x; oblique t with inclination ¢ (i, j)) by a pair of stable
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1D recursive filters (and adjoints) along x and t, which preserve the spatial variability of the metric while keeping the matrix
A=I+BR™! SPD.

In this paper, all experiments use o = 15 pixels and y € {3,4,5} on the Black Sea domain; o = 15 was chosen so that the
background horizontal correlation radius is a small fraction (about %) of the shortest grid dimension—a pragmatic tuning in
variational oceanography that spreads increments at mesoscale while avoiding domain-scale correlations [3, 11].

5.2 Results and Discussion

Having established the experimental setup and numerical framework, we now evaluate the comparative performance of isotropic
and anisotropic covariance modeling through convergence analysis and accuracy metrics.

The comparative behaviour of the isotropic and anisotropic variants of the Gaussian recursive preconditioner was investigated
through a series of experiments performed over the CMEMS Black Sea domain. Both configurations were embedded in the
Conjugate-Gradient (CG) solver for Equation 20, with the same convergence tolerance (tol = 107°) and maximum iteration
count (kmax = 100). All experiments started from the same background temperature field ((Figure 4b) and used identical
observational perturbations (Figure. 4c). The isotropic baseline adopts a velocity-informed but grid-aligned covariance metric,
with correlation scales that vary spatially along the computational (x, y) axes according to the local velocity components, allowing
the filter to respond to flow intensity while preserving axis alignment. For the anisotropic configurations, the horizontal-covariance
metric was flow-informed, with local orientation and stretching derived from the surface-velocity field shown in Figure 4d.

We contrast a velocity-informed isotropic baseline, in which grid-aligned scales (o,,0,) vary pointwise with the velocity
components (v,,v,) on the (x, y) frame, with a flow-aligned anisotropic filter, where principal scales (o, c,) depend on ||v|| in
the (u, v) eigenframe and are mapped to the local (x, t) coordinates. Convergence is evaluated from the CG residual histories
(see Figure 5), while skill is quantified by relative L2 errors (see Figure 6) of the optimal estimate s, + &s (see Figure 7) against
the true field on sea points (see Figure 4a).

The anisotropic preconditioner attains the tolerance 107° in ~ 14-17 iterations for y = 3-5, whereas the isotropic variable-scale
baseline typically requires ~ 23-29 iterations; for y = 5 the isotropic run exhibits a mild late-iteration stagnation (Figure 5).

In terms of accuracy, we report in Figure 6 relative L2 errors over sea points, computed with respect to the true temperature field
Serue, fOr the background (s, ), the observations (y), and the isotropic/anisotropic analyses, We obtain that the best anisotropic
analysis (y = 5) (see Figure 7f) improves upon the best isotropic baseline (y = 3) (see Figure 7a) by ~ 4.8%, and remains robust
across y.

Figure 7 compares qualitatively optimal estimates at fixed o = 15 for y € {3,4,5}. The isotropic panels (7a, 7c, 7e)—with
grid-aligned, variable scales—exhibit excessive cross-stream diffusion and overly smoothed frontal gradients. In contrast, the
anisotropic solutions (7b, 7d, 7f), oriented along the surface-flow, preserve sharper fronts and coherent, flow-parallel filaments
while limiting cross-stream spreading. Increasing y strengthens along-flow coherence and further suppresses spurious diffusion,
yielding analyses that qualitatively align better with s..

Aligning the diffusion tensor with the local velocity field yields faster CG convergence and uniformly better analyses than
the velocity-informed isotropic baseline, while remaining fully SPD and inexpensive thanks to recursive 1D factorizations. In
summary, replacing isotropic with flow-aligned anisotropic covariance modelling acts as an effective preconditioner for the CG
solve—reducing iteration counts via improved conditioning of A = I+ BR™! while simultaneously lowering the relative error L>
with respect to s,,,.. The anisotropic scheme further exhibits greater robustness as the anisotropy parameter y increases (i.e.,
stronger along-flow elongation), sustaining stable convergence where the velocity-informed isotropic baseline tends to stagnate.

6 Conclusion

This study introduces a fast anisotropic Gaussian convolution for 3D-VAR data assimilation, leveraging recursive filtering to
efficiently approximate horizontal covariances. The proposed method improves covariance modeling by incorporating an adaptive
anisotropic diffusion tensor, aligning correlation structures with dynamically relevant directions while maintaining computational
efficiency. Numerical experiments confirm that this approach enhances information propagation and captures spatial anisotropy
effectively. Moreover, the analysis of CG residuals demonstrates that the flow-aligned anisotropic covariance operator significantly
improves the conditioning of the background error covariance matrix, leading to faster convergence of iterative solvers compared
to conventional isotropic approaches. This improved conditioning translates into substantial computational benefits for operational
data assimilation systems, while simultaneously delivering superior accuracy in the analysis increment.

Future research will extend this framework by integrating the Gabor filter to selectively extract relevant velocity structures and
spatial scales, enhancing data assimilation through targeted spectral filtering and improved covariance representation.

Dolomites Research Notes on Approximation ISSN 2035-6803



/C>V<\,\ Cuomo - Farina 45

Comparison of CG Method Residuals (o0=15)
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Figure 5: CG convergence (residual, log scale). Anisotropic runs reach 107° in ~ 1417 iterations; isotropic runs require ~ 23-29 iterations,
with mild stagnation for y = 5.
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Figure 6: Relative L2 errors with respect to true state for background, observations, and 3D-VAR analyses at o = 15, y € {3,4,5}, and o, = 1.0°C.
Errors computed over sea points only. Anisotropic solutions uniformly outperform isotropic across all y.
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Figure 7: Pairwise comparison of optimal estimates at fixed o = 15 and y € {3,4,5}: (a) isotropic variable-scale baseline with y = 3.0,
(b) flow-aligned anisotropic filter with y = 3.0, (c) isotropic baseline with y = 4.0, (d) flow-aligned anisotropic filter with y = 4.0, (e) isotropic
baseline with y = 5.0, and (f) flow-aligned anisotropic filter with y = 5.0. The anisotropic analyses preserve frontal sharpness and limit
cross-stream diffusion.
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