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Abstract

It has been recently shown that Bell’s polynomials can be used to compute the Laplace Transform of
nested analytic functions. In this article we extend said methodology to the case of sine and cosine
Fourier transforms of composed functions. Graphical verifications of the proposed technique are shown
in the last section.

1 Introduction
The Bell’s polynomials [1, 5, 6, 9, 13] have been introduced to represent the subsequent derivatives of composed functions, but
they turned out to be useful in several fields of Analysis and applied Mathematics.
They are exploited in very different frameworks, which range from number theory [10, 15, 16] to operators theory [14], and
from differential equations [9] to integral transforms [3, 11]. It is almost useless to recall how important is the Fourier Transform
(FT) in the theory of ordinary and partial differential equations.
The Fourier transform (FT) is a linear operator which maps a function of a real variable t, typically representing the time (with
real or complex values), into a function of a complex variableω (representing the complex frequency). It has many applications
in Physics and Engineering [2], especially in signal theory and imagine processing, as it allows decomposing a signal in terms
of its frequencies. We use the classical definition

F( f ) :=

∫ +∞
−∞

f (t) e−iω t d t = F(ω) .

The FT can be applied to L1(−∞,+∞) functions. Extensions to more general function spaces (distributions) are also con-
sidered.
A large number of FTs, together with the relevant anti-transforms, are reported in the literature (see e.g. [8]).
Similarly to what was recently shown in the case of the Laplace Transform, Bell’s polynomials can be used for the evaluation of
sine and cosine FTs of nested functions. To this end one can make use of the Maclaurin expansion of the given nested function.
Since the coefficients of this expansion are represented in terms of Bell’s polynomials, the computation of the relevant sine or
cosine FT it is straightforwardly reduced to a series of classical FTs. Obviously, since the considered integral is convergent, the
obtained series is convergent too.
This methodology is applied in this paper to the case of sine or cosine FT of nested functions, starting from the simpler case of
the nested exponential functions.
All the numerical tests were obtained by using the computer algebra program Mathematica c⃝.

2 Recalling the Bell polynomials
The Bell’s polynomials express the nth derivative of a composed function Φ(t) := f (g(t)) in terms of the successive derivatives
of the (sufficiently smooth) component functions x = g(t) and y = f (x). More precisely, if

Φm := Dm
t Φ(t), fh := Dh

x f (x)|x=g(t), gk := Dk
t g(t) ,

then the nth derivative of Φ(t) is represented by

Φn = Yn( f1, g1; f2, g2; . . . ; fn, gn),
where Yn denotes the nth Bell polynomial.
The first few Bell polynomials are:

Y1( f1, g1) = f1 g1
Y2( f1, g1; f2, g2) = f1 g2 + f2 g2

1
Y3( f1, g1; f2, g2; f3, g3) = f1 g3 + f2(3g2 g1) + f3 g3

1
. . .

(1)
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More general results can be found in [13], p. 49.
The Bell polynomials [5] are given by:

Yn( f1, g1; f2, g2; . . . ; fn, gn) =
n∑

k=1

Bn,k(g1, g2, . . . , gn−k+1) fk . (2)

where Bn,k satisfy the recursion [5]:

Bn,k(g1, g2, . . . , gn−k+1) =
n−k∑
h=0

�
n− 1

h

�
Bn−h−1,k−1(g1, g2, . . . , gn−h−k+1) gh+1 . (3)

The Bn,k functions for any k = 1,2, . . . , n are homogeneous polynomials of degree k in the g1, g2, . . . , gn variables. They are
isobaric of weight n (i.e. they are linear combinations of monomials gk1

1 gk2
2 · · · gkn

n whose weight is constantly given by k1+2k2+
. . .+ nkn = n). Therefore we have the equations

Bn,k(αβ g1,αβ2 g2, . . . ,αβ n−k+1 gn−k+1) = α
kβ nBn,k(g1, g2, . . . , gn−k+1) , (4)

and

Yn( f1,β g1; f2,β2 g2; . . . ; fn,β n gn) = β
n Yn( f1, g1; f2, g2; . . . ; fn, gn) . (5)

3 A set of sine and cosine Fourier transforms
Let f (g(t)) be a composed function that is analytic in a neighborhood of the origin, so that it can be expressed by the Taylor’s
expansion

f (g(t)) =
∞∑
n=0

an
tn

n!
, an = Dn

t [ f (g(t))]t=0 . (6)

According to the preceding section, it results

a0 = f (
◦
g0) ,

an = Dn
t [ f (g(t))]t=0 =

n∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k , (n≥ 1) ,

(7)

where
◦
f k:= Dk

x f (x)|x=g(0),
◦
gh:= Dh

t g(t)|t=0. (8)

We consider Fourier transforms of the type∫ +∞
−∞

H(t) f (g(t)) e−at e−iωt d t =

∫ +∞
0

f (g(t)) e−at e−iωt d t ,

where H(t) is the Heaviside distribution.
Therefore we have the sine and cosine FT in the form∫ +∞

0

f (g(t)) e−at sin(ωt) d t (9)

and ∫ +∞
0

f (g(t)) e−at cos(ωt) d t . (10)

We have the following result.
Theorem 1. The sine Fourier transform of the function

H(t) f (g(t)) e−at ,

where a is a given constant, is given by ∫ +∞
0

f (g(t)) e−at sin(ωt) d t =

=
f (
◦
g0)ω

ω2 + a2
+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

�
sin[(n+ 1)arctan(ωa )]

(ω2 + a2)
n+1

2

,

(11)
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and the cosine Fourier transform writes ∫ +∞
0

f (g(t)) e−at cos(ωt) d t =

=
f (
◦
g0) a

ω2 + a2
+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

�
cos[(n+ 1)arctan(ωa )]

(ω2 + a2)
n+1

2

.

(12)

Proof. Representing the coefficients of the Taylor expansion in (6) in terms of Bell polynomials, and using the uniform conver-
gence of series, we find for the sin FT,∫ +∞

0

f (g(t)) e−at sin(ωt) d t =

∫ +∞
0

f (
◦
g0) e

−at sin(ωt) d t+

+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

� ∫ +∞
0

tn

n!
e−at sin(ωt) ,

and for the cosine FT, ∫ +∞
0

f (g(t)) e−at cos(ωt) d t =

∫ +∞
0

f (
◦
g0) e

−at cos(ωt) d t+

+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k

� ∫ +∞
0

tn

n!
e−at cos(ωt) ,

so that the result follow from the basic rules of the sine or cosine FT.

3.1 The particular case of the exponential function

In the particular case where f (x) = ex , and therefore we are considering the composed function eg(t), and upon assuming that
g(0) = 0, we have the simplified form

n∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

◦
f k=

n∑
k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1) = Bn(

◦
g1,
◦
g2, . . . ,

◦
gn) , (13)

where the Bn are the complete Bell’s polynomials. It results B0(g0) := f (g0), and the first few values of Bn, for n= 1,2, . . . , 5, are
given by

B1(g1) = g1,
B2(g1, g2) = g2

1 + g2,
B3(g1, g2, g3) = g3

1 + 3g1 g2 + g3,
B4(g1, g2, g3, g4) = g4

1 + 6g2
1 g2 + 4g1 g3 + 3g2

2 + g4,
B5(g1, g2, g3, g4, g5) = g5

1 + 10g3
1 g2 + 15g1 g2

2 + 10g2
1 g3 + 10g2 g3 + 5g1 g4 + g5 .

(14)

Further values are reported in [12], Appendix I.
The values of the complete Bell polynomials for particular parameter choices can be found in [10].
The complete Bell polynomials satisfy the identity (see e.g. [9])

Bn+1(g1, . . . , gn+1) =
n∑

k=0

�
n
k

�
Bn−k(g1, . . . , gn−k) gk+1. (15)

In this case, using (13), we arrive at the following result
Corollary 1. The sine FT of the composed exponential function exp [g(t)], with g(0) = 0, is given by∫ +∞

0

eg(t) e−at sin(ωt) d t =

=
ω

ω2 + a2
+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

�
sin[(n+ 1)arctan(ωa )]

(ω2 + a2)
n+1

2

,

(16)

and the cosine FT by ∫ +∞
0

eg(t) e−at cos(ωt) d t =

=
a

ω2 + a2
+
∞∑
n=1

�
n∑

k=1

Bn,k(
◦
g1,
◦
g2, . . . ,

◦
gn−k+1)

�
cos[(n+ 1)arctan(ωa )]

(ω2 + a2)
n+1

2

.

(17)
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In what follows we illustrate the approximation of sine and cosine FT of nested functions. These were obtained by the first
author using the computer algebra program Mathematica c⃝.

3.1.1 The sine Fourier case

Let f (x) = ex and g(t) = J0(t), the Bessel function of the first kind and order 0. Upon assuming a = 4, we find∫ +∞
0

eJ0(t) e−4t sin(ωt) d t =
e

128ω (16+ω2)9/2

�
512(16+ω2)9/2−

64(16+ω2)4 sin[3arctan(ω/4)] + 144(16+ω2)3 sin[5arctan(ω/4)]−

640(16+ω2)2 sin[7arctan(ω/4)] + 4585(16+ω2) sin[9arctan(ω/4)]−

47124sin[11 arctan(ω/4)]
�
+O
�

1
ω11

�
.

(18)

Graphical results are depicted in Figures 1 and 2.

Figure 1: Function exp(J0(t))) (a) and its sine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

Figure 2: Magnitude (a) and argument (b) of the sine Fourier transform of the function exp(J0(t))) as evaluated through our approximant and
its rigorous analytical expression.
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3.1.2 The cosine Fourier case

Let f (x) = ex and g(t) = J0(t). Upon assuming a = 4, we find∫ +∞
0

eJ0(t) e−4t cos(ωt) d t =
e

128(16+ω2)9/2

�
512(16+ω2)9/2−

64(16+ω2)4 cos[3arctan(ω/4)] + 144(16+ω2)3 cos[5arctan(ω/4)]−

640(16+ω2)2 cos[7arctan(ω/4)] + 4585(16+ω2) cos[9arctan(ω/4)]−

47124cos[11 arctan(ω/4)]
�
+O
�

1
ω10

�
.

(19)

Graphical results are depicted in Figures 3 and 4.

Figure 3: Function exp(J0(t))) (a) and its cosine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

Figure 4: Magnitude (a) and argument (b) of the cosine Fourier transform of the function exp(J0(t))) as evaluated through our approximant
and its rigorous analytical expression.
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3.2 The general sine Fourier case

3.2.1 Example 1

Let f (x) = log x and g(t) = cosh(t). Upon assuming a = 2π, we find∫ +∞
0

log cosh(t) e−2πt sin(ωt) d t =
1

(4π2 +ω2)11/2

�
(4π2 +ω2)4 sin[3arccot(2π/ω)]−

2(4π2 +ω2)3 sin[5arccot(2π/ω)] + 16
�
(4π2 +ω2)2 sin[7arccot(2π/ω)]−

17(4π2 +ω2) sin[9arccot(2π/ω)] + 496 sin[11 arccot(ω/4)]
� �
+O
�

1
ω12

�
.

(20)

Graphical results are depicted in Figures 5 and 6.

Figure 5: Function log(cosh(t) (a) and its cosine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

Figure 6: Magnitude (a) and argument (b) of the cosine Fourier transform of the function log(cosh(t) as evaluated through our approximant
and its rigorous analytical expression.

3.2.2 Example 2

Let f (x) = arcsinh x and g(t) = t2. Upon assuming a = 7, we find∫ +∞
0

arcsinh(t2) e−7t sin(ωt) d t =
2

(49+ω2)11/2

�
(49+ω2)4 sin[3 arctan(ω/7)]−

60(49+ω2)2 sin[7 arctan(ω/7)] + 136080sin[11 arctan(ω/7)]
�
+O
�

1
ω12

�
.

(21)

Graphical results are depicted in Figures 7 and 8.
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Figure 7: Function arcsinh(t2) (a) and its sine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

Figure 8: Magnitude (a) and argment (b) of the sine Fourier transform of the function arcsinh(t2) as evaluated through our approximant and
its rigorous analytical expression.

3.3 The general cosine Fourier case

3.3.1 Example 3

Let f (x) = log x and g(t) = cosh(t). Upon assuming a = 2π, we find∫ +∞
0

log cosh(t) e−2πt cos(ωt) d t =
1

(4π2 +ω2)11/2

�
(4π2 +ω2)4 cos[3arccot(2π/ω)]−

2(4π2 +ω2)3 cos[5arccot(2π/ω)] + 16
�
(4π2 +ω2)2 cos[7arccot(2π/ω)]−

17(4π2 +ω2) cos[9arccot(2π/ω)] + 496 cos[11 arccot(ω/4)]
� �
+O
�

1
ω12

�
.

(22)

Graphical results are depicted in Figures 9 and 10.

3.3.2 Example 4

Let f (x) = arcsinh x and g(t) = t2. Upon assuming a = 7, we find∫ +∞
0

arcsinh(t2) e−7t cos(ωt) d t =
2

(49+ω2)11/2

�
(49+ω2)4 cos[3 arctan(ω/7)]−

60(49+ω2)2 cos[7 arctan(ω/7)] + 136080 cos[11 arctan(ω/7)]
�
+O
�

1
ω12

�
. .

(23)

Graphical results are depicted in Figures 11 and 12.

4 Conclusion
We have shown how to compute the sine and cosine FT of nested analytic functions by using Bell’s polynomials. We started
considering the Maclaurin expansion of the given function in a neighborhood of the origin, while representing the relevant
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Figure 9: Function log(cosh(t) (a) and its cosine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

Figure 10: Magnitude (a) and argment (b) of the cosine Fourier transform of the function log(cosh(t) as evaluated through our approximant
and its rigorous analytical expression.

Figure 11: Function arcsinh(t2) (a) and its cosine Fourier transform (b) as evaluated through the approximant F̃(s) and the rigorous analytical
expression F(s).

coefficients in terms of Bell’s polynomials. As a consequence, the sine and cosine FT can be reduced to the computation of an
approximating series, which obviously converges if the integral converges.
This methodology can be applied to a great variety of functions starting from the simpler case of analytic nested exponential
functions.
The same technique can be applied to higher-order nested analytic functions by exploiting higher-order Bell polynomials already
introduced in [7]. We want to stress that the basic subject examined in this article has never been considered in the literature,
a gap that in our opinion is worthy of being filled.
In the last section, a graphical verification of the proposed technique has been performed by making use of the computer algebra
program Mathematica c⃝.
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Figure 12: Magnitude (a) and argment (b) of the cosine Fourier transform of the function arcsinh(t2) as evaluated through our approximant
and its rigorous analytical expression.
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