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Abstract

In many applications, the definition of fitting models that mimic the behaviour of experimental data is a
challenging issue. In this paper a data-driven approach to represent (multi)exponential decay data is
presented. We propose a fitting model based on smoothing splines defined by means of a differential
operator. To solve the linear system involved in the smoothing exponential-polynomial spline definition,
the main idea is to define B-spline like functions for the spline space, that are locally represented by
Bernstein-like bases through Hermite interpolation conditions.

1 Introduction
Several engineering and life science applications require the use of fitting/interpolating models to represent experimental data.
A functional description of such information gives the possibility of adopting powerful mathematical tools for data analysis
such as the Fourier/Laplace transforms or the integro-differential approaches. An extensive literature indicates splines as very
interesting functional models to analyse and represent data in several research fields. For example, in EEG functions (see [1]), a
Laplacian estimator based on a tensorial formulation of the surface based on thin plate spline functions to describe a realistic
scalp surface has been presented. In [2], a medical application based on biomarkers is presented; a longitudinal and survival
fitting model based on cubic polynomial B-splines sets is presented for modeling the longitudinal markers. A spatial interpolation
functional approach to represent large climate data set, based on bivariate thin plate smoothing splines, has been presented in
[3]. Moreover, the paper [4] describes the analysis of fluorescence depolarization data in membrane vesicles using exponential
spline interpolating functions.
In this work, we are interested in the modelling of data with exponential decay. A well-known example of this context is the NMR
data analysis where the magnetization decays as a function of time and, generally, the NMR relaxation signal, s, is the sum of
exponentially decaying components, depending on relaxation times, T j:

s(t) =
M
∑

j=1

p j e
−t/T j ,

where t is the experimental time, M is the number of micro-domains having the same spin density p j and the same relaxation time
T j . >From a mathematical point of view, sometimes it is very useful to represent the relationship between the NMR relaxation
signal s and the corresponding distribution function G of the relaxation times by means of an integral function, e.g. due to the
extreme complexity of heterogeneous systems [5]:

s(t) =

∫ +∞

0

G(T )e−t/T dT.

The Laplace transform (LT) inversion methods are usually adopted for computing the inversion recovery. Unfortunately they
require information on the LT function that are often unknown [6], [7], [8]. To overcome this issue, general-purpose software
packages (e.g. [9]) are used for the LT inversion (see [10], [11] and the web page [12]).

Behaviors in NMR, modelled by LT, can give exponential decay samples. The main contribution of this paper is to define and
construct a spline model on suitable function spaces that are able to reproduce this kind of data. In a previous paper [13] there
was defined a smoothing spline on [x1,+∞) piecewise defined like a polynomial complete smoothing spline of 4th order between
the knots [x1, xn] and an exponential-polynomial model in the span{xθ1 eθ2 x}, with θ1,θ2 ∈ R, outside the knots, in [xn,+∞);
moreover, the model enjoys second order regularity, C2(x1, xn) and it is continuous up to only the first derivative at xn.
Here we propose a natural smoothing exponential-polynomial spline, defined through local bases enjoying several properties of
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polynomial B-splines, called B-spline like or generalized B-splines (GB-splines), with higher regularity between the knots, at least
C2 in a wider interval, [a, b], including the knots. Firstly, we define the differential operator and the corresponding null space
characterizing the natural smoothing spline. Using classical results form the theory of L-smoothing splines (see [14] and [15]) we
know that the smoothing spline coefficients are given by the solution of a linear system whose conditioning depends on the bases
used to express the spline. Hence, our idea is to follow [16] and [17] (see also [18] in the cardinal situation) and define suitable
GB-bases with pieces expressed in terms of proper Bernstein(-like) local bases; regularity conditions are also imposed in order to
make the GB-splines globally C2. A Bernstein basis is more handy than the canonical one (standard exponential-polynomials) in
particular when imposing Hermite conditions at internal nodes. The natural smoothing exponential-polynomial spline we derive
this way fits the data as expected.

In Section 2 we firstly define some mathematical preliminaries on the L-spline definition model. Section 3 gives the definition
of the GB-splines, based on results about the Bernstein(-like) bases recalled in the Appendix A, and a constructive algorithm for
the smoothing spline. Numerical results are discussed in Section 4. The last section deals with conclusions and future work.

2 Mathematical preliminaries and model definition
We recall the main notations and definitions starting from [15] even though many other papers or books can be used to start with
such as, e.g. [19].

Firstly we set a space on which we define the fitting model as a natural L-spline.

Definition 2.1. For a given partition of the interval [a, b], ∆ := {a < x1 < . . . xN < b}, set the space:

Hn[a, b] := {u ∈ Cn−1[a, b], u(n−1) abs. cont. in [a, b], and u(n) ∈ L2[a, b]}.

The natural L-spline related to a differential operator Ln, of order n, defined on ∆, is a function s ∈ Hn[a, b] such that:

• s ∈ H2n−1[a, b];

• L∗n Ln s = 0 in every interval (x i , x i+1), i = 1, · · · , N − 1;

• Ln s = 0 in (a, x1)∪ (xN , b) (natural end conditions).

Particularly, the smoothing natural L−spline can be defined by solving a minimization problem as in the following.

Definition 2.2. Given a partition of the interval [a, b], ∆ := {a < x1 < . . . xN < b}, a vector (y1, · · · , yN ) ∈ RN , and the natural
L-spline in Definition 2.1, a natural smoothing L−spline, related to a fixed differential operator Ln of order n, on the partition ∆
of [a, b], is the solution of the problem

min

¨

N
∑

i=1

(wi[u(x i)− yi]
2 + λ

∫ b

a

(Lnu(x))2 d x

«

, u ∈ Hn[a, b]. (1)

with (w1, . . . , wN ) non zero weights and λ is a regularization parameter.

The existence and uniqueness of this fitting model has been proved in [15] where the notion of Chebyshev system is defined
and used:

Theorem 2.1. If the null space of Ln is a Chebyshev system, then the natural L-smoothing spline is the unique solution of (1) in the
form:

s(x) =
N
∑

i=1

c jϕ j(x), (2)

where ϕ1, · · ·ϕN are basis functions and the coefficient vector c = (c1, · · · , cN ) is the solution of the linear system:

(Φ+ (−1)nλW D) c = y, (3)

where the N × N matrices Φ and D are

Φ= (ϕ j(x i))
N
i, j=1, D = (ϕ(2n−1)

j (x+i )−ϕ
(2n−1)
j (x−i ))

N
i, j=1.

and W := diag(1/w1, · · · , 1/wN ) is a nonsingular diagonal matrix.

It is obvious that the conditioning of the linear system (3) depends on the basis used to define the spline and the construction
of a local basis will play an important role.

We start by defining a differential operator L2, then the related L−spline functions space and, finally, the basis (ϕ j) j=1,...,N .
Let n= 2, so that our 2nd order differential operator is

L2u := u
′′
+ 2αu

′
+α2 u, u ∈ H2[a, b], α ∈ R+, (4)
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its adjoint has the form
L∗2v = v

′′
− 2α v

′
+α2 v, v ∈ H2[a, b], α ∈ R+ (5)

and the 4th order differential operator is:

L∗2 L2v = v(iv) − 2α2 v
′′
+α4 v, v ∈ H4[a, b], α ∈ R+. (6)

The corresponding null spaces of L2 and L∗2 L2 are, respectively, the following two and four dimensional spaces:

E2 := span{e−αx , x e−αx}, α ∈ R+,

and
E4 := span{eαx , x eαx , e−αx , x e−αx}, α ∈ R+.

We highlight that the two spaces E2, E4 are Chebyshev on the real line spanned by linear independent functions.

We search for a model spline space defined in the following:

Definition 2.3. The spline space SL2 ,∆ contains the natural L−splines, related to L2 on ∆, such that:

(a) s ∈ H3[a, b];
(b) L∗2 L2 s = 0 in every interval (x i , x i+1), i = 1, · · · , N − 1 ;

(c) L2 s = 0 in (a, x1)∪ (xN , b).

SL2 ,∆ is a N dimensional vector space. Indeed, any s ∈ SL2 ,∆ presents 4(N − 1) + 2 · 2 degrees of freedom (d.o.f.), due to (N − 1)
pieces belonging to a 4-dimensional space, and 2 pieces in a 2-dimensional space; moreover 3N conditions derive from the
C2-continuity at x i , i = 1, . . . , N .

For simplicity of notation, from now on we omit the subscript related to the differential order in the space name.

3 Computation of the GB-spline basis functions
The construction of a local basis for SL,∆ is the main goal of this section. More in detail, following the formulation of the
polynomial B-splines, our problem consists in setting the basis functions ϕ j ∈ SL,∆ for j = 1, · · · , N , satisfying

(a*) the support of each ϕ j is compact;

(b*) ϕ j ∈ C2[a, b];
(c*) ϕ j ∈ E4 for x ∈ (x i , x i+1), i = 1 · · · , N − 1;

(d*) ϕ j ∈ E2 for x ∈ (a, x1) or x ∈ (xN , b);
(e*) ϕ j , j = 1, . . . , N , are positive and bell shaped functions.

Note that condition (a∗) grants a banded linear system (3); conditions (c∗) and (d∗) characterize boundary and regular, or
internal, GB-splines respectively. The former are 4 functions, denoted by N 4

`
, ` = 1,2, N − 1, N , C2-continuous in (a, b), are

piecewise defined with segments in E2 in the part of their support outside of the knots interval I = [x1, xN ] and segments in
E4 in the part of their support inside I . Their support is assumed to be [x`−2, x`+2], `= 1,2, N − 1, N where x−1 < a = x0 and
xN+2 > xN+1 = b > xN . The regular basis functions, denoted by N 4

`
, ` = 3, · · · , N − 2, are C2-continuous piecewise defined

functions with all segments in E4 and with the support assumed to be [x`−2, x`+2], `= 3, . . . , N − 2.

Regarding the boundary functions, we point out that we extend the approach in [17] where only Chebyshev spaces with the
same dimension are discussed. Moreover, we highlight that for their construction, some additional knots have to be considered
on each side outside of I , more in detail two on the left of x1 (labelled as x−1, x0) and two on the right of xN (labelled as
xN+1, xN+2).

3.1 Construction of the regular bases

A constructive strategy to define the N 4
`

, ` = 3, · · · , N − 2 is to write them in each interval [x j , x j+1], j = `− 2, · · · ,`+ 1, in
terms of the Bernstein-like basis functions of E4 (see Appendix), to impose interpolating conditions (zero interpolation up to order
2) at the boundary points x`−2 and x`+2 and finally to impose C0, C1, C2 regularity between each piece at the internal points
x`−1, x`, x`+1. In other words, each function will be written as

N 4
`
(x)|[x j ,x j+1] =

3
∑

i=0

γ`, j,i B̃i(x − x j), j = `− 2, · · · ,`+ 1,

where B̃i(x − x j), i = 0, · · · , 3 are the four Bernstein like functions related to [x j , x j+1]. It means that N 4
`

will be identified by 16
coefficients γ`, j,i , i = 0, · · · , 3, j = `− 2, · · · ,`+ 1. The advantage of using a Bernstein type representation of the pieces is that,
regularity and boundary interpolation translates into 15 relatively simple conditions. The main drawback in this approach is that
these 15 relatively simple conditions do not uniquely identify N 4

`
and no positivity is guaranteed.

As an alternative, to uniquely identify N 4
`

, following [17] we introduce the Bernstein-like bases for the bigger space E5 :=
span{1, eαx , x eαx , e−αx , x e−αx}, based on which we construct the piecewise defined function M` with breakpoints x`−2, · · · , x`+2.
A crucial point here is that E

′

5 := E4 so E5 is actually an extended Chebyshev space [21].
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Proposition 3.1. The regular GB-splines N 4
`
(x), `= 3, . . . , N − 2 are uniquely defined as

N 4
`
= (M`)

′
, `= 3, . . . , N − 2

with M` the piecewise defined function satisfying

(i) M`(x)|[x j ,x j+1] =
∑4

i=0 β`, j,i B
5
i (x − x j), j = `− 2, · · · ,`+ 1 with B5

i , i = 0, . . . , 4 Bernstein-like basis functions of E5 related
to [x j , x j+1];

(ii) M` and 1−M` vanish, together with their derivatives, up to order three, at x`−2 and x`+2, respectively;

(iii) the M` are C3-regular at the internal points x`−1, x`, x`+1.

Proof. >From (i), each M` has 20 d.o.f.; moreover (ii) and (iii) translate in 8 and 12 conditions respectively, so the functions M`

are uniquely given by a non-singular square linear system and, as a consequence, also the GB-splines N 4
`

. Such linear system is
certainly non-singular since it is proven in [21] that the piecewise Chebyshevian spline space with segments in E5 is good for
design, meaning that they possess a B-spline basis. Therefore, non-singularity is guaranted. We continue by explaining the linear
system to be solved to get the functions M` denoting, for simplicity, M j

`
= M`(x)|[x j ,x j+1] and

(M j
`
)(k)(x) =

4
∑

i=0

β`, j,i(B
5
i (x − x j))

(k), k = 0, . . . , 3. (7)

From (ii):
(M `−2

`
)(k)(x`−2) = 0, k = 0, · · · , 3 ⇔ β`,`−2,k = 0, k = 0, · · · , 3, (8)

and
(1−M `+1

`
)(k)(x`+2) = 0, k = 0, · · · , 3 ⇔ β`,`+1,4−k = 1, k = 0, · · · , 3. (9)

Concerning (iii) let us start by considering the point x`−1 and write the condition for C k-regularity for k = 0, · · · , 3 that is

(M `−2
`
)(k)(x`−1) = (M

`−1
`
)(k)(x`−1), k = 0, · · · , 3.

The previous conditions translate into 4 linear equations. Analogously, imposing regularity at x`,

(M `−1
`
)(k)(x`) = (M

`
`
)(k)(x`), k = 0, · · · , 3.

Finally, imposing regularity at x`+1, that is

(M `
`
)(k)(x`+1) = (M

`+1
`
)(k)(x`+1), k = 0, · · · , 3,

we get the last 4 equations. Taking into account equations (8) and (9), the 20 equations can be reduced to 12, that uniquely
identify the coefficients vector

(β`,`−2,4,β`,`−1,0, · · · ,β`,`−1,4,β`,`,0, · · · ,β`,`,4,β`,`+1,0)
T ∈ R12×1 (10)

and so the function M` piecewise defined as in (i).

In Fig. 1 is described the behaviour of a generic M` and the corresponding regular N`, for a particular choice of α= 1/2.

Figure 1: Function M` (left) and corresponding N` (right) for α= 1
2 and knots denoted by ′∗′.
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3.2 Construction of the left boundary bases

Similarly to the previous section, we construct N 4
1 supported on [x−1, x3], with x−1 < a, x0 = a. Then, we construct N 4

2 , supported
on [x0, x4]. They are defined by using the extended Chebyshev space E3 := span{1, e−αx , x e−αx}, such that E

′

3 ≡ E2.

Proposition 3.2. The boundary function N 4
1 is uniquely identified as N 4

1 = (M1)
′

with M1 the piecewise defined function satisfying

(i) M1(x)|[x j ,x j+1] =
∑2

i=0 β1, j,i B
3
i (x − x j), j = −1, 0 while M1(x)|[x j ,x j+1] =

∑4
i=0 β1, j,i B

5
i (x − x j), j = 1,2;

(ii) M1 and 1 − M1 vanish together with their first derivatives at x−1 and with their derivatives up to the third order at x3,
respectively;

(iii) is C1-regular at x0 and C3-regular at the internal knots x1, x2.

Proof. Once again, since the number of d.o.f. coincides with the number of conditions, the function M1 is uniquely determined
by a square linear system, and so is N 4

1 . To obtain the explicit expression of M1 we need to solve a linear system whose equations
are coming next with the shorthand notation M j

1 = M1(x)|[x j ,x j+1], j = −1, · · · , 2. Indeed, (ii) translates into:

(M−1
1 )

(k)(x−1) = 0, k = 0,1 ⇔ β1,−1,k = 0, k = 0,1, (11)

and
(1−M2

1 )
(k)(x3) = 0, k = 0, · · · , 3 ⇔ β1,2,4−k = 1, k = 0, · · · , 3. (12)

Concerning (iii), at the point x0 we get
(M−1

1 )
(k)(x0) = (M

0
1 )
(k)(x0), k = 0,1,

that in terms of Bernstein functions is:
2
∑

i=0

β1,−1,i(B
3
i )
(k)(h) =

2
∑

i=0

β1,0,i(B
3
i )
(k)(0). (13)

Regularity at x1 and x2 reads as

(M `
1)
(k)(x`+1) = (M

`+1
1 )(k)(x`+1), k = 0, · · · , 3, `= 0,1,

translating into the linear equations (`= 0):

2
∑

i=0

β1,0,i(B
3
i )
(k)(h) =

4
∑

i=0

β1,1,i(B
5
i )
(k)(0), (14)

and similarly (`= 1):
4
∑

i=0

β1,1,i(B
5
i )
(k)(h) =

4
∑

i=0

β1,2,i(B
5
i )
(k)(0). (15)

Taking into account equations (11) and (12), the 16 equations can be reduced to 10, that, according with the arguments of
Proposition 3.1, uniquely identify the coefficients vector

(β1,−1,2,β1,0,0, · · · ,β1,0,2,β1,1,0, · · · ,β1,1,4,β1,2,0)
T ∈ R10×1

and so is the M1 function, piecewise defined as in (i). We remark that also in this case we work with function spaces that are
piecewise Chebyshev spaces but with different segments. Though, more complicated than in the case of internal bases, the non
singularity of the corresponding linear system can still be proven as in [22] and generalizing the ideas in [23].

Proposition 3.3. The boundary function N 4
2 is uniquely identified as N 4

2 = (M2)
′

with M2 the piecewise defined function satisfying

(i) M2(x)|[x0 ,x1] =
∑2

i=0 β2,0,i B
3
i (x − x0) while M2(x)|[x j ,x j+1] =

∑4
i=0 β2, j,i B

5
i (x − x j), j = 1,2, 3;

(ii) M2 and 1−M2 vanish together with their first derivatives at x0 and with their derivatives up to the third order at x4, respectively;

(iii) is C3-regular at the internal knots x1, x2, x3.

Proof. The conditions (i)− (iii) translate into 18 equations equal to the number of the d.o.f. , so that the function M2, according
with the arguments of Proposition 3.1, is uniquely identified. The explicit expression of M2 requires the solution of the linear
system whose equations are coming next with the shorthand notation M j

2 = M2(x)|[x j ,x j+1], j = 0, · · · , 3. Firstly, we consider the
requirement in (ii):

(M0
2 )
(k)(x0) = 0, k = 0, 1 ⇔ β2,0,k = 0, k = 0, 1, (16)

and
(1−M3

2 )
(k)(x4) = 0, k = 0, · · · , 3 ⇔ β2,3,4−k = 1, k = 0, · · · , 3. (17)

Concerning (iii), at the points x1, x2, x3 we get

(M `
2)
(k)(x`+1) = (M

`+1
2 )(k)(x`+1), k = 0, 1,2, 3 `= 0,1, 2,
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translating into the linear equations (`= 0):

2
∑

i=0

β2,0,i(B
3
i )
(k)(h) =

4
∑

i=0

β2,1,i(B
5
i )
(k)(0), k = 0, 1,2, 3. (18)

Similarly when `= 1,2 (i.e. when dealing with x2 and x3 respectively) we compute:

4
∑

i=0

β2,`,i(B
5
i )
(k)(h) =

4
∑

i=0

β2,`+1,i(B
5
i )
(k)(0), k = 0, 1,2, 3 (19)

Taking into account equations (16) and (17), the 18 equations can be reduced to 12, that uniquely identify the coefficients vector

(β2,0,2,β2,1,0, · · · ,β2,1,4,β2,2,0, · · · ,β2,2,4,β2,3,0)
T ∈ R12×1

and so is the function M2 piecewise defined as in (i). As for the case of M1, we can prove the non singularity of the linear system
following [22].

In Fig. 2 is described the behaviour of the Mi , i = 1, 2, and the corresponding boundary functions Ni , i = 1, 2, for the particular
choice of α= 1/2.

Figure 2: Function M1 and corresponding N1 (left), function M2 and corresponding N2 (right), for α= 1
2 and knots denoted by ′∗′.

3.3 Construction of the right boundary bases

The constructive strategy for the right boundary bases N 4
N−1 and N 4

N reflects the construction of the left boundary bases. Firstly,
we construct N 4

N−1. We require that it has support [xN−3, xN+1] where b = xN+1 < xN+2. As to the regularity we require it to
be C2(a, b). Then, we construct N 4

N requiring that it is supported on [xN−2, xN+2] and C2(a, b). We recall that E
′

3 ≡ E2 while
B3

i , i = 0, . . . , 2 and B5
i , i = 0, . . . , 4 are the Bernstein-like basis for E3 and E5 related to [x j , x j+1], respectively.

Proposition 3.4. The boundary function N 4
N−1 is uniquely identified as N 4

N−1 = (MN−1)
′

with MN−1 the piecewise defined function
satisfying

(i) MN−1(x)|[x j ,x j+1] =
∑4

i=0 βN−1, j,i B
5
i (x − x j), j = N − 3, N − 2, N − 1 while MN−1(x)|[xN ,xN+1] =

∑2
i=0 βN−1,N ,i B

3
i (x − xN );

(ii) MN−1 and 1 − MN−1 vanish with their first derivatives at xN+1 and with their derivatives up to the third order at xN−3,
respectively;

(iii) is C3-regular at the internal knots xN−2, xN−1, xN .

Proof. The proof follows the same line of reasoning as for N2.

For the case of N1 we prove

Proposition 3.5. The boundary function N 4
N is uniquely identified as N 4

N = (MN )
′

with MN the piecewise defined function satisfying

(i) MN (x)|[x j ,x j+1] =
∑4

i=0 βN , j,i B
5
i (x − x j), j = N − 2, N − 1, while MN (x)|[x j ,x j+1] =

∑2
i=0 βN , j,i B

3
i (x − x j), j = N , N + 1;

(ii) MN and 1−MN vanish with their first derivatives at xN+2 and with their derivatives up to the third order at xN−2, respectively;

(iii) is C3-regular at the internal knots xN−1, xN and C1-regular at xN+1.

In Figure 3 (from left to right) we report the graphs of the Bernstein-like bases for the spaces E4 and E5 respectively, in the
case of α= 1

2 .

With the above specified basis function N 4
`

, ` = 1, · · · , N , we use Theorem 2.1 to construct the corresponding natural
smoothing exponential-polynomial spline. The following algorithm synthesizes the definition of the described model, that
minimizes the functional in (1), shortly referred to as SGBBS, for Smoothing Generalized B-spline on Bernestein basis. When λ = 0
the procedure provides the interpolating natural L−spline of order 4. The model is globally C2[a, b]. Starting from a set of nodes
x := (x i)Ni=1 and corresponding values y := (yi)Ni=1, the algorithm provides the coefficients c := (ci)Ni=1 of the representation of
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Figure 3: Bernstein-like bases for the space E4 (left) and E5 (right) for α= 1
2

SGBBS defined on {x i}Ni=1 ∈ [a, b], and fitting the data (x i , yi)Ni=1, in terms of B-splines based on Bernstein bases, N j , j = 1, . . . , N ,
just defined in the previous section:

s(x) =
N
∑

i=1

c j N j(x),

Algorithm 1 SGBBS

1: procedure SGBBS(input: x, y, N, λ, W; output: c)
2: Definition of matrix Φ: Φi, j = N j(x i), i, j = 1, . . . , N
3: i f λ 6= 0
4: Definition of matrix D: Di, j = N (3)j (x

+
i )− N (3)j (x

−
i ), i, j = 1, . . . , N .

5: end i f
6: A= (Φ+λW D)
7: solve Ac = y
8: end

4 Numerical experiments
In this section, we describe some numerical results to test the behaviour of the smoothing spline to approximate exponential
decay data. The tests were carried out with MATLAB R2018a software on a Intel(R) Core(TM) i5, 1.8 GHz processor.
We fix a set of data, with exponential decay. e.g.:

(x i , ỹi)
N
i=1, ỹi = F(x i)(1+ εi), x i ∈ [a, b], i = 1, ..., N

with a, b ∈ R, F an exponential decaying function and εi the i th noise component, normally distributed with zero mean and
variance σ2, and we construct the smoothing spline on the nodes ∆= {x i}Ni=1. The model definition requires some settings:

• the parameter α in (4), defining the bases; when unknown, its value has been computed by a (non-linear) least-squares
regression of the data.

• the regularizing parameter λ in (1); the tests have been made for different λ values; where it is not specified, λ is set in a
dynamic way, depending on N and σ as λ= σ2/N .

The results highlight the behaviour of the presented smoothing exponential-polynomial spline in [a, b] with respect to the number
and the distribution of the nodes, to the noise level and to the regularizing parameter. In our tests we consider both uniformly
distributed nodes and Halton nodes, that are pseudo-random points but with low discrepancy. An example of the approximation
of multi-exponential decay data is also presented. Moreover, some tests compare the approximation furnished on [a, b] with
respect to the classical polynomial cubic (smoothing) spline provided by Matlab. The type of data, the error distribution and the
function F are reported case by case.

Test 1: fitting of exponential data
Here we test the smoothing properties of our model defined on uniformly distributed nodes, and corresponding values generated
by an exponential function F(x) = e−2x ; we set N = 36 and the following parameter values:

α= 2; a = 0; b = 10; x1 = 1 xN = 8;

moreover we introduce random Gaussian noise with standard deviation σ = 10−2 and σ = 10−4, respectively, and present results
for λ ∈ {1, 10−1, 10−2, . . . , 10−6}. The absolute approximation error on the whole interval [x1, xN ] is estimated on 141 evaluation
points (uniformly distributed). Figure 4 gives the data smoothing and corresponding absolute error at the nodes, when the
smoothing parameter increases, so regularizing the model fitting the data. The table gives the 2−norm of the absolute error at
the node locations, E = ‖s̃− ỹ‖2, with s̃ = (s(x i))Ni=1 and ỹ = ( ỹi)Ni=1:
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E = ‖s̃− ỹ‖2

λ σ = 10−2 σ = 10−4

1.0 4.516930581844061e− 02 3.832681277491880e− 02
1.0e− 01 4.027549905107795e− 02 2.467561663031034e− 02
1.0e− 02 4.614069240955995e− 02 1.041857490342722e− 02
1.0e− 03 5.983259079782639e− 02 3.378769693977035e− 03
1.0e− 04 7.658946947711796e− 02 1.083192199742291e− 03
1.0e− 05 8.412049742009961e− 02 8.616015971733528e− 04
1.0e− 06 8.519368399925661e− 02 8.537732205069357e− 04

The results confirm the smoothing behaviour of the model, depending on λ; particularly, the fidelity to the data converges to the
order of magnitude of the error assumed on them, when λ decreases.

(a) λ= 0.001 (b) λ= 0.01

(c) λ= 0.1 (d) λ= 1

Figure 4: Smoothing splines for uniform distributed nodes (upper graphs) and corresponding absolute errors at the nodes (lower graphs), when
the smoothing parameter λ increases, for F(x) = e−2x and σ = 10−2.

Fig. 5 shows the same results for data generated by the exponential function F(x) = e−x/10 less quickly decreasing towards zero.
In this case the numerical experiments reveal an edge effect, i.e. most of the error is localized near the first and last few knots
where an oscillating behaviour of the spline model is observed. Though expected, probably due to the construction of "boundary"
bases, further investigation of this issue is planned in near future work.
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(a) λ= 0.001 (b) λ= 0.01

(c) λ= 0.1 (d) λ= 1

Figure 5: Smoothing splines for uniform distributed nodes (upper graphs) and corresponding absolute errors at the nodes (lower graphs), when
the smoothing parameter λ increases, for F(x) = e−x/10 and σ = 10−2.
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Test 2: fitting of multi-exponential decay data
Here we test the model on a dataset of non uniformly distributed data, generated by a sum of exponential functions, F(x) =
4e−2x +2e−4x . Specifically we assume N = 20 Halton points in (0, 1) and shifted in (a, b), with a = 1.5 and b = 20. The parameter
α is set as α = 2; it has been defined by a (non linear) regression of the data, using the MATLAB function nlinfit that, given an
initial guess, a generic function, e.g.

g(x) = a1 x e−αx + a2 e−αx ∈ E2

and given a dataset, furnishes the best parameters in order to fit the data. The relative error at the nodes is of order σ = 10−2

and λ is dynamically assigned by λ = σ2/N . Fig. 6a show the nodes distribution. Figure 6b shows the smoothing spline and the
corresponding absolute error at the nodes, when σ = 10−2.
Furthermore, in this test we compare our model with the cubic smoothing spline s3, implemented in MATLAB by the function
csaps, minimizing the functional

p
∑

j

Wj | ỹ j − s3(x j)|2 + (1− p)

∫ xN

x1

|D2s3|2.

Figure 7 shows a comparison between the two models, for fixed λ = 0.01 and p = 1/(λ+ 1) respectively, and corresponding
absolute errors at the nodes. In figure 8 we report a comparison between the two interpolating models (i.e. fixed λ = 0 and p = 1
respectively) and the absolute error estimated on a fine grid of evaluation points in [x1, xN ]. In both cases we observe a best
fitting of the exponential decay furnished by our model with respect to the polynomial one.

(a) Halton points generated in (0,1) and shifted in [a, b], with
N = 20, a = 1.5 and b = 20.

(b) Smoothing spline for N = 20 Halton points (upper graph)
and corresponding absolute error at the nodes (lower graph),
σ = 10−2, F(x) = 4e−2x + 2e−4x , α= 2 .

(a) s vs s3 (b) s vs s3: absolute error at the nodes

Figure 7: Smoothing sgbbs vs cubic spline at N = 20 Halton points, σ = 10−2, F(x) = 4e−2x + 2e−4x , α= 2, λ= 0.01.

Test 3: asymptotic model behaviour
In this test we compare the asymptotic behaviour of our model with the one of the cubic spline, referring to the behaviour outside
the nodes. To this end we consider the interpolating models, by setting σ = 0 and λ = 0; moreover we assume 50 nodes uniformly
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(a) s vs s3 (b) s vs s3: absolute error at 141 evaluation points in [x1, xN ]

Figure 8: Smoothing sgbbs vs cubic spline at N = 20 Halton points, σ = 10−2, F(x) = 4e−2x + 2e−4x , α= 2, λ= 0.

distributed in [a, b] = [0,30], with x1 = 0.5, xN = 25; finally we set yi = F(x i), i = 1, . . . , N with F(x) = e−x x2 and α = 1.
Fig. 9 displays the exponential-polynomial spline behaviour and a comparison with the polynomial behaviour in (xN , b]. The
comparison confirms the better fitting of our model in describing the (multi)exponential decay of the data.

(a) Smoothing spline vs polynomial cubic spline (b) s vs s3 and corresponding absolute errors in (xN , b].

Figure 9: Smoothing exponential-polynomial spline vs polynomial cubic spline on 50 nodes uniformly distributed in [a, b] = [0,30], with
x1 = 0.5, xN = 25, yi = F(x i), i = 1, . . . , N , F(x) = e−x x2 and α = 1 (left). Comparison with the polynomial cubic spline outside the nodes
interval (right).

Similar results have been obtained by setting F(x) = e−x/4cos(x) and α = 0.25, on a dataset of 30 nodes uniformly distributed in
[a, b] = [0,20], with x1 = 0.5, xN = 15 (fig. 10).

5 Conclusions and future work
In this work, we propose a natural smoothing exponential-polynomial spline to model data that exponentially decay toward
zero. This is a scenario found in many applications. The definition is made through local bases enjoying several properties of
polynomial B-splines locally expressed in terms of Bernstein(-like) local bases, granting well conditioning of the linear system for
the spline representation. Some insights about the boundary behaviour and a detailed analysis of the sensitivity of the model are
under investigation and will be object of future studies.
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(a) Smoothing spline vs polynomial cubic spline (b) s vs s3 and corresponding absolute errors in (xN , b].

Figure 10: Smoothing exponential-polynomial spline vs polynomial cubic spline on 30 nodes uniformly distributed in [a, b] = [0,20], with
x1 = 0.5, xN = 15, yi = F(x i), i = 1, . . . , N , F(x) = e−x/4cos(x) and α= 0.25 (left). Comparison with the polynomial cubic spline outside the
nodes interval (right).

A Construction of Bernstein-like bases
Following [17], the Bernstein-like bases are defined as follows:

Definition A1. Given B0, . . . , Bn ∈ En+1, (n+ 1)−dimensional space En+1 ⊂ Cn(I), we say that (B0, . . . , Bn) is a Bernstein-like
basis of En+1 relative to (c, d) when the following two properties are satisfied:

(1) for k = 0, ..., n, Bk vanishes exactly k times at c, and exactly (n− k) times at d;

(2) for k = 0, ..., n, Bk is positive on ]c, d[.

In the following, we refer to a generic interval [0, h] from which the corresponding bases on a subinterval [x j , x j+1] will be
obtained by the linear transformation

x ∈ [x j , x j+1]→ z ∈ [0, h], z = x − x j .

This allow to omit the subscript j referring to [x j , x j+1] in the names of the Bernstein(-like) functions.

A.1 Bernstein basis for the space E2

In this section we build the Bernstein-like two dimensional basis to represent the border GB-splines outside the nodes. For
simplicity of notation, in this one and the next subsection we set B̃i := B2

i, j , i = 0,1 and Bi := B3
i, j , i = 0, 1,2.

Following [16] (see also [24]), we consider the BVP






u′′ + 2αu′ +α2 u= 0, u ∈ H2[a, b],
u(0) = 0,
u
′
(0) = 1.

The unique solution of the above boundary value problem is

s(x) = x e−α x (20)

and the two Bernstein basis related to [0, h] for the 2-dimensional space E2 := span{e−αx , x e−αx}, are:

B̃1(x) :=
s(x)
s(h)

, B̃0(x) := B̃1(h− x), (21)

that assume the values in the following:

Proposition A.1. With the shorthand notation

dh
0 =

1
s(h)

, dh
1 =

s′(h)
s(h)

, dh
2 =

s′′(h)
s(h)

it is simple to check that
�

B̃0(0) = 1
B̃0(h) = 0

�

B̃
′

0(0) = −dh
1

B̃
′

0(h) = −dh
0

�

B̃
′′

0 (0) = dh
2

B̃
′′

0 (h) = −2αdh
0

�

B̃1(0) = 0
B̃1(h) = 1

�

B̃
′

1(0) = dh
0

B̃
′

1(h) = dh
1

�

B̃
′′

1 (0) = −2αdh
0

B̃
′′

1 (h) = dh
2
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A.2 Bernstein basis for the space E3

As announced we need an auxiliary Bernstein-basis for the space E3 := span{1, e−αx , x e−αx}. According to [16] this basis
{Bi(x)}i=0,··· ,2, related to (0, h) can be constructed from the B̃i(x), i = 0,1 of E2 defined in (21) as follows:

B2(x) =
∫ x

0 B̃1(t)d t
∫ h

0 B̃1(t)d t
=

∫ x
0 s(t)d t
∫ h

0 s(t)d t

B1(x) =
∫ x

0 B̃0(t)d t
∫ h

0 B̃0(t)d t
−

∫ x
0 B̃1(t)d t
∫ h

0 B̃1(t)d t
=

∫ h
h−x s(t)d t
∫ h

0 s(t)d t
− B2(x)

B0(x) = 1−
∫ x

0 B̃0(t)d t
∫ h

0 B̃0(t)d t
= 1− (B1(x) + B2(x)).

(22)

satisfying the following:

Proposition A.2. The basis functions Bi(x), i = 0, · · · , 2 satisfy

2
∑

i=0

Bi(x) = 1 for all x ∈ [0, h].

As to the function and derivative values we have:
�

B0(0) = 1
B0(h) = 0

�

B
′

0(0) = −1/K0,h
2

B
′

0(h) = 0

�

B
′′

0 (0) = dh
1/K

0,h
2

B
′′

0 (h) = dh
0/K

0,h
2

�

B
′′′

0 (0) = −dh
2/K

0,h
2

B
′′′

0 (h) = 2αdh
0/K

0,h
2

�

B1(0) = 0
B1(h) = 0

�

B
′

1(0) = 1/K0,h
2

B
′

1(h) = −1/K1,h
2

�

B
′′

1 (0) = −dh
1/K

0,h
2 − dh

0/K
1,h
2

B
′′

1 (h) = −dh
0/K

0,h
2 − dh

1/K
1,h
2

�

B
′′′

1 (0) = dh
2/K

0,h
2 + 2αdh

0/K
1,h
2

B
′′′

1 (h) = −2αdh
0/K

0,h
2 − dh

2/K
1,h
2

�

B2(0) = 0
B2(h) = 1

�

B
′

2(0) = 0
B
′

2(h) = 1/K1,h
2

�

B
′′

2 (0) = dh
0/K

1,h
2

B
′′

2 (h) = dh
1/K

1,h
2

�

B
′′′

2 (0) = −2αdh
0/K

1,h
2

B
′′′

2 (h) = dh
2/K

1,h
2

with K i,h
2 =

∫ h

0
B̃i(t)d t where the subscript 2 refers to E2.

A.3 Bernstein basis for the space E4

In a similar way to what has just been described, we define a Bernstein-like basis on the interval [0, h] for the space E4 =
span{eαx , x eαx , e−αx , x e−αx}. Set B̃i := B4

i, j , i = 0, . . . , 3 and Bi := B5
i, j , i = 0, . . . , 4, we consider the BVP:







v(iv) − 2α2 v
′′
+α4 v = 0

v( j)(0) = 0, j = 0,1, 2,
v
′′′
(0) = 1.

whose only solution is the following:

s(x) =
1

4α2

�

(x −
1
α
)eα x + (x +

1
α
)e−α x

�

, (23)

Setting H := ss
′′ − (s′)2 the determinant of the Wronskian matrix W (s, s

′
, s
′′
) :=

�

s s
′

s
′

s
′′

�

, the four Bernstein-like functions in

[0, h] for the symmetry property are

B̃3(x) :=
s(x)
s(h)

, B̃0(x) := B̃3(h− x), (24)

and

B̃2(x) :=
s
′
(h)s(x)− s(h)s

′
(x)

H(h)
, B̃1(x) := B̃2(h− x). (25)

enjoying the following properties:

Proposition A.3. With the shorthand notation

dh
0 =

s(h)
H(h)

, dh
1 =

s′(h)
s(h)

, dh
2 =

s′′(h)
s(h)

,

and

wh
1 =
(s′(h))2 − s(h)s′′(h)

H(h)
, wh

2 =
s′(h)s′′(h)− s(h)s′′′(h)

H(h)
,

it is simple to check that
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�

B̃0(0) = 1,
B̃0(h) = 0

�

B̃
′

0(0) = −dh
1 ,

B̃
′

0(h) = 0

�

B̃
′′

0 (0) = dh
2 ,

B̃
′′

0 (h) = 0

�

B̃1(0) = 0,
B̃1(h) = 0

�

B̃
′

1(0) = −wh
1,

B̃
′

1(h) = 0

�

B̃
′′

1 (0) = wh
2,

B̃
′′

1 (h) = −dh
0

�

B̃2(0) = 0,
B̃2(h) = 0

�

B̃
′

2(0) = 0,
B̃
′

2(h) = wh
1

�

B̃
′′

2 (0) = −dh
0 ,

B̃
′′

2 (h) = wh
2

�

B̃3(0) = 0,
B̃3(h) = 1

�

B̃
′

3(0) = 0,
B̃
′

3(h) = dh
1

�

B̃
′′

3 (0) = 0,
B̃
′′

3 (h) = dh
2

Hence, every function of type

s(x) =
3
∑

i=0

γ̃i B̃i(x), x ∈ [0, h] (26)

satisfies
�

s(0) = γ̃0

s(h) = γ̃3

�

s
′
(0) = −dh

1 γ̃0 −wh
1γ̃1

s
′
(h) = wh

1γ̃2 + dh
1 γ̃3

�

s
′′
(0) = dh

2 γ̃0 +w2
hγ̃1 − dh

0 γ̃2

s
′′
(h) = −dh

0 γ̃1 +wh
2γ̃2 + dh

2 γ̃3
(27)

A.4 Bernstein basis for the space E5

We continue by consider the problem of constructing a Bernstein-like basis on the interval [0, h] for the space E5 based on the
Bernstein-like basis on the interval [0, h] for the space E4. According to [16] the Bernstein basis Bi(x), i = 0, · · · , 4 of E5 related
to (0, h) can be constructed from the B̃i(x), i = 0, · · · , 3 of E4 defined in (24) and (25) as follows

B0(x) = 1−
∫ x

0 B̃0(t)d t
∫ h

0 B̃0(t)d t
, B4(x) =

∫ x
0 B̃3(t)d t
∫ h

0 B̃3(t)d t
,

Bi(x) =
∫ x

0 B̃i−1(t)d t
∫ h

0 B̃i−1(t)d t
−

∫ x
0 B̃i (t)d t
∫ h

0 B̃i (t)d t
, i = 1, 2,3,

(28)

The next Proposition investigates the corresponding properties. The proof is just a computation.

Proposition A.4. The basis functions Bi(x), i = 0, · · · , 4 satisfy

4
∑

i=0

Bi(x) = 1 for all x ∈ [0, h].

As to the function and derivative values we have:
�

B0(0) = 1,
B0(h) = 0

�

B
′

0(0) = −1/K0,h
4 ,

B
′

0(h) = 0

�

B
′′

0 (0) = dh
1/K

0,h
4 ,

B
′′

0 (h) = 0

�

B
′′′

0 (0) = −dh
2/K

0,h
4 ,

B
′′′

0 (h) = 0

�

B1(0) = 0,
B1(h) = 0

�

B
′

1(0) = 1/K0,h
4 ,

B
′

1(h) = 0

�

B
′′

1 (0) = −dh
1/K

0,h
4 +wh

1/K
1,h
4 ,

B
′′

1 (h) = 0

�

B
′′′

1 (0) = dh
2/K

0,h
4 −wh

2/K
1,h
4 ,

B
′′′

1 (h) = dh
0/K

1,h
4

�

B2(0) = 0,
B2(h) = 0

�

B
′

2(0) = 0,
B
′

2(h) = 0

�

B
′′

2 (0) = −wh
1/K

1,h
4 ,

B
′′

2 (h) = −wh
1/K

2,h
4

�

B
′′′

2 (0) = wh
2/K

1,h
4 + dh

0/K
2,h
4 ,

B
′′′

2 (h) = −dh
0/K

1,h
4 −wh

2/K
2,h
4

�

B3(0) = 0,
B3(h) = 0

�

B
′

3(0) = 0,
B
′

3(h) = −1/K3,h
4

�

B
′′

3 (0) = 0,
B
′′

3 (h) = wh
1/K

2,h
4 − dh

1/K
3,h
4

�

B
′′′

3 (0) = −dh
0/K

2,h
4 ,

B
′′′

3 (h) = wh
2/K

2,h
4 − dh

2/K
3,h
4

�

B4(0) = 0,
B4(h) = 1

�

B
′

4(0) = 0,
B
′

4(h) = 1/K3,h
4

�

B
′′

4 (0) = 0,
B
′′

4 (h) = dh
1/K

3,h
4

�

B
′′′

4 (0) = 0,
B
′′′

4 (h) = dh
2/K

3,h
4

with K i,h
4 =

∫ h

0
B̃i(t)d t, i = 0,1, 2,3.
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