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Determining the first radii of meromorphy via orthogonal
polynomials on the unit circle
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Abstract

Applying a result concerning a convergence of modified orthogonal Padé approximants constructed from
orthogonal polynomials on the unit circle, we prove an analogue of Hadamard’s theorem for determining
the radius of 1-meromorphy of a function holomorphic on the closed unit disk. Furthermore, we apply
our result to study analytic properties of the reciprocal of Szegő functions when their corresponding
sequence of Verblunsky coefficients has exponential decay.

1 Introduction

Let µ be a finite positive Borel measure with infinite support supp(µ) contained in the unit circle T := {z ∈ C : |z| = 1}. We write
µ ∈M and define the associated inner product,

〈g, h〉 :=

∫

g(ζ)h(ζ)dµ(ζ), g, h ∈ L2(µ).

Let
ϕn(z) := κnzn + · · · , κn > 0, n= 0,1, 2, . . .

be the orthonormal polynomial of degree n with respect to µ having positive leading coefficient; that is, 〈ϕn,ϕm〉= δn,m. Let

BR := {z ∈ C : |z|< R} and B := B1 = {z ∈ C : |z|< 1}.

Denote by H(B) the space of all functions holomorphic on some neighborhood of B and by Rm(F) the radius of the largest disk
centered at the origin to which F ∈H(B) can be extended meromorphically with at most m poles counting their multiplicity. The
constant Rm(F) is commonly known as the radius of m-meromorphy of F. We write Rm when it is clear to which function the
notation refers.

Now, let us define subclasses of M. We say that µ ∈ S if and only if µ satisfies the Szegő condition, namely
∫

T
logµ′(ζ)|dζ|> −∞,

where µ′ denotes the Radon-Nikodym derivative of µ with respect to the arc length on T. We denote by Ŝ the class of all µ ∈M
such that

ρ(µ) :=
�

lim sup
n→∞

|ϕn(0)|1/n
�−1

> 1. (1)

It is well-known that Ŝ is the class of all measures meeting the Szegő condition such that the corresponding constant ρ(µ) =
R0(D−1)> 1, where D is the interior Szegő function given by

D(z) := exp

�

1
4π

∫

T

ζ+ z
ζ− z

logµ′(ζ)|dζ|
�

, |z|< 1

(see (2.1), (2.5), and Theorems 6.2 and 7.4 in [8] for more details).
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For a given function F ∈H(B), we define

∆n,m :=

�

�

�

�

�

�

�

�

�

〈zm−1F,ϕn〉 〈zm−2F,ϕn〉 · · · 〈F,ϕn〉
〈zmF,ϕn〉 〈zm−1F,ϕn〉 · · · 〈zF,ϕn〉

...
...

...
...

〈z2m−2F,ϕn〉 〈z2m−3F,ϕn〉 · · · 〈zm−1F,ϕn〉

�

�

�

�

�

�

�

�

�

. (2)

Set
l0 := 1 and lm := limsup

n→∞
|∆n,m|1/n, for all m≥ 1.

Our main result is

Theorem 1.1. Let µ ∈ Ŝ and F ∈H(B). Then, we have

R1 =
l1
l2

, (3)

where by convention 0/0=∞.

Definitely, a natural conjecture can be posed as the following:

Conjecture 1.2. Let µ ∈ Ŝ and F ∈H(B). Then, for all m ∈ N0, we have

Rm =
lm

lm+1
, (4)

where by convention 0/0=∞.

Although we are only able to prove Conjecture 1 when m = 1, Theorem 1.1 itself has an application in localizing the first pole
of the reciprocal of the interior Szegő function corresponding µ ∈ Ŝ using its Verblunsky coefficients (see Corollary 1.5 below).

Conjecture 1 is an analogue of the classical Hadamard theorem for determining the radius of m-meromorphy of an analytic
function from its Taylor coefficients stated as the following:

Theorem 1.3 (Hadamard [9]). Let F =
∑∞

k=0 fkzk be an analytic function on some neighborhood of z = 0. Then, for each m≥ 0,
we have

Rm =
l̂m

l̂m+1

, (5)

where l̂0 := 1 and l̂m := lim supn→∞ |Hn,m|1/n,

Hn,m :=

�

�

�

�

�

�

�

�

�

fn−m+1 fn−m+2 · · · fn

fn−m+2 fn−m+3 · · · fn+1
...

...
...

...
fn fn+1 · · · fn+m−1

�

�

�

�

�

�

�

�

�

, m ∈ N, n≥ m− 1,

(here, as in (4), by convention 0/0=∞).

The reader can also find the proof of Theorem 1.2 in English in [7].
To support that Conjecture 1 should be true, we consider a function F =

∑∞
k=0 fkzk ∈H(B) and the normalized arc length

measure dµ= dθ/2π on the unit circle. In this case, ϕn(z) = zn for all n ∈ N0, the determinant in (2) is

∆n,m =

�

�

�

�

�

�

�

�

�

fn−m+1 fn−m+2 · · · fn

fn−m fn−m+1 · · · fn−1
...

...
...

...
fn−2m+2 fn−2m+3 · · · fn−m+1

�

�

�

�

�

�

�

�

�

,

(this determinant is the same as (−1)m(m−1)/2Hn−m+1,m), and the formulas (4) and (5) coincide. Therefore, Theorem 1.2 is a
special case of Conjecture 1.

The validity of Theorem 1.1 is dependent on the convergence of modified orthogonal Padé approximants defined as follows.

Definition 1.1. Let F ∈ H(B) and µ ∈M. Fix (n, m) ∈ N0 ×N. Then, there exists a polynomial Qµn,m such that deg(Qµn,m) ≤
m,Qµn,m 6≡ 0, and

〈zkQµn,mF, ϕn+1〉= 0, k = 0, 1, . . . , m− 1. (6)

Define the corresponding polynomial

Pµn,m(z) :=
n
∑

j=0

〈Qµn,mF, ϕ j〉ϕ j(z).
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The rational function

Rµn,m :=
Pµn,m

Qµn,m

is called an (n, m) (modified) orthogonal Padé approximant of F with respect to µ.

Finding Qµn,m in (6) is equivalent to solving a homogeneous system of m linear equations on m+ 1 unknowns. Therefore, for
any pair (n, m) ∈ N0×N, a polynomial Qµn,m always exists but it may not be unique. Since Qµn,m 6≡ 0, we normalize it to be a monic
polynomial. By a proof similar to a proof of [6, Lemma 3.4], the condition ∆n+1,m 6= 0 and the condition that every solution of (6)
has degQµn,m = m are equivalent. In turn, they imply the uniqueness of Qµn,m. Note that the concept of Definition 1.1 was first
introduced in [3] in the vector format.

We would like to point out that Barrios Rolanía, López Lagomasino, and Saff [1] used another related construction of
orthogonal Padé approximants [12] (which were introduced long before the development of Definition 1.1 and later called
standard orthogonal Padé approixmants in [4, Definition 5]) to show a formula similar to (4). To be precise, they proved that
under the condition that µ ∈ Ŝ and F ∈H(B),

Rm =
l̃m

l̃m+1

,

where l̃0 := 1 and l̃m := lim supn→∞ |∆̃n,m|1/n, and

∆̃n,m :=

�

�

�

�

�

�

�

�

�

〈zm−1F,ϕn〉 〈zm−2F,ϕn〉 · · · 〈F,ϕn〉
〈zm−1F,ϕn+1〉 〈zm−2F,ϕn+1〉 · · · 〈F,ϕn+1〉

...
...

...
...

〈zm−1F,ϕn+m−1〉 〈zm−2F,ϕn+m−1〉 · · · 〈F,ϕn+m−1〉

�

�

�

�

�

�

�

�

�

, m ∈ N.

Our method used to prove Theorem 1.1 is strongly influenced by the method in [1] (see also [5] a result similar to (3) but
the measure µ is supported on the interval [−1, 1]). Therefore, we need a result concerning the convergence of {Qµn,m}n∈N0

with
m being fixed in Theorem 1.3 below (see [3, Theorem 1.2] for its proof). To state such convergence result, we need to define
another class of measures which is a subclass of M. We say that µ ∈ Reg when supp(µ) = T and

lim
n→∞

|ϕn(z)|1/n = |z|, (7)

uniformly on compact subsets of C \ B. When supp(µ) = T, it was shown in [11, Theorem 3.1.1] that the condition (7) is
equivalent to the condition

lim
n→∞

κ1/n
n = 1. (8)

Moreover, since B is convex, if µ ∈ Reg, then
lim

n→∞
|sn(z)|1/n = |z|−1,

uniformly on compact subsets of C \B, where

sn(z) :=

∫

ϕn(ζ)
z − ζ

dµ(ζ), z ∈ C \ supp(µ)

is the second kind function corresponding to the polynomial ϕn (see the discussion about this result on pages 20-21 in [3]). It is
well-known that Ŝ ⊂ Reg.

Theorem 1.4. Let F ∈ H(B), m ∈ N be fixed, and µ ∈ Reg. Denote by Pm(F) the set of all poles of F in BRm
and QF

m the monic
polynomial whose zeros are these poles counting multiplicities. Then, the following assertions are equivalent:

(a) F has exactly m poles in BRm
.

(b) The polynomials Qµn,m for F are uniquely determined for all sufficiently large n and there exists a polynomial Qm of degree m
such that

limsup
n→∞

‖Qµn,m −Qm‖1/n = θ < 1, (9)

where the norm ‖ · ‖ denotes the norm induced in the space of polynomials of degree at most m by the maximum of the absolute value
of the coefficients. Moreover, if one of the assertions (a) or (b) takes place, then Qm =QF

m and

θ =
maxλ∈Pm(F) |λ|

Rm
. (10)

Theorem 1.1 can be used to study analytic properties of interior Szegő functions when certain asymptotic properties of
Verblunsky coefficients αn := −ϕn+1(0)/κn+1 are known. In [2, Corollary 2.4], it was proved that
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Theorem 1.5. Assume that µ satisfies the Szegő condition and D−1 ∈H(B). If

lim
n→∞

αn+1

αn
= b,

for some b ∈ C, then b−1 is a singularity of D−1 and D−1 is holomorphic in B|b|−1 .

The natural question is “What can we say concerning the analytic properties of D−1 if αn+1/αn converges to b at a geometrical
rate?" We can make use of Theorem 1.1 to give a proof of the following result:

Corollary 1.6. Let b ∈ B. If
αn+1

αn
= b+O(δn), (11)

for some δ < 1, then for some δ′ > 0, D−1(z) is meromorphic in B|b|−1+δ′ with a single pole in that disk and the pole is at z = b−1.
Additionally, if we assume further that δ < |b|2, then

R1(D
−1) =

1
|b|3

. (12)

Note that Corollary 1.5 is a known result (see [10, Corollary 7.2.2] and [1, Corollary 2]). However, the formula (12) appeared
in [1, Corollary 2] is under the condition that δ < |b|4. Our result is an refinement of Corollary 2 in [1]. The validity of Conjecture
1 would potentially be of great importance in understanding locations of poles of D−1 further in BRm

when the asymptotic
properties of αn are given.

The paper is organized as follows. In Section 2, we state and prove some lemmas and auxiliary results. Finally, the proofs of
Theorem 1.1 and Corollary 1.5 are in Section 3.

2 Lemmas and auxiliary results

The following lemma is equivalent to Conjecture 1 when m= 0. This serves as an analogue of the Cauchy-Hadamard formula.
The reader can find the proof of this result in [8, Theorems 6.2 and 7.4] or [11, Theorem 6.6.1].

Lemma 2.1. Let F ∈H(B) and µ ∈ Reg. Then,

l1 = limsup
n→∞

|〈F,ϕn〉|1/n =
1
R0

. (13)

Moroever, the series
∑∞

n=0〈F,ϕn〉ϕn(z) converges to F(z) uniformly on compact subsets of BR0
and diverges pointwise for all z ∈ C\BR0

.

It can also be proved that the partial sum of the series in Lemma 2.1 converges to F in the L2(µ) space with the following
rate of convergence (see Theorem 6.6.1 in [11]).

Lemma 2.2. Let F ∈H(B) and µ ∈ Reg. Then,

limsup
n→∞

‖F − Sn‖
1/n
2 ≤

1
R0

, (14)

where ‖ · ‖2 denotes the L2(µ) norm and

Sn(z) :=
n
∑

k=0

〈F,ϕk〉ϕk(z)

denotes the n-th partial sum of the Fourier expansion of F.

Using Lemma 2.1, we obtain the following estimate of lm.

Lemma 2.3. Let F ∈H(B) and µ ∈ Reg. Then,

lm ≤
1

R0 · · ·Rm−1
< 1, m ∈ N.

Proof of Lemma 2.3. For each j ∈ N0, we denote by j0 the number of poles of F in BR j
(counting their order). Let Q j be the monic

polynomial of degree j which has a zero at each pole of F in BR j
and zeros at 0 of order j − j0. Notice that

R j(F) = R0(z
kQ j F), for all k, j ∈ N0.

Then, by Lemma 2.1, we have

limsup
n→∞

|〈zkQ j F,ϕn〉|1/n =
1

R0(zkQ j F)
=

1
R j(F)

. (15)
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Fix m ∈ N. Since Qm−1 ∈ span{1, z, . . . , zm−1}, by the properties of the determinants, we obtain

∆n,m =

�

�

�

�

�

�

�

�

�

〈Qm−1F,ϕn〉 〈zm−2F,ϕn〉 · · · 〈F,ϕn〉
〈zQm−1F,ϕn〉 〈zm−1F,ϕn〉 · · · 〈zF,ϕn〉

...
...

...
...

〈zm−1Qm−1F,ϕn〉 〈z2m−3F,ϕn〉 · · · 〈zm−1F,ϕn〉

�

�

�

�

�

�

�

�

�

. (16)

Analogously, applying the fact that Q j ∈ span{1, z, . . . , z j} for all 1≤ j ≤ m− 2 and the properties of the determinants, we obtain

∆n,m =

�

�

�

�

�

�

�

�

�

〈Qm−1F,ϕn〉 〈Qm−2F,ϕn〉 · · · 〈Q1F,ϕn〉 〈F,ϕn〉
〈zQm−1F,ϕn〉 〈zQm−2F,ϕn〉 · · · 〈zQ1F,ϕn〉 〈zF,ϕn〉

...
...

...
...

...
〈zm−1Qm−1F,ϕn〉 〈zm−1Qm−2F,ϕn〉 · · · 〈zm−1Q1F,ϕn〉 〈zm−1F,ϕn〉

�

�

�

�

�

�

�

�

�

.

Expanding this determinant, we obtain a sum of m! terms each one of which has exactly one factor representing each column.
According to (15), it follows that the n-th root of each one of these terms has lim sup not greater than (R0(F)R1(F) . . . Rm−1(F))−1.
Since the number of terms in the expansion of the determinants remains fixed with n, the statement of the lemma follows.

Define the monic orthogonal polynomial of degree n,

Φn(z) :=
ϕn(z)
κn

.

It is well-known that the polynomials Φn satisfy the following three term recurrence formula:

Φn+1(z) = zΦn(z) +Φn+1(0)Φ
∗
n(z), (17)

where Φ∗n(z) = znΦn(1/z) is the so-called n-th reversed polynomial, and the following relation

1−
�

κn

κn+1

�2

= |Φn+1(0)|2. (18)

Using (8) and (18), it is not difficult to check that if µ ∈ Ŝ, then

lim
n→∞

κn+1

κn
= 1. (19)

For most parts of the proof of the main theorem, it is required that µ ∈ Reg. However, at some points, we need the following
relations which are true when µ ∈ Ŝ.

Lemma 2.4. Let µ ∈ Ŝ and F ∈H(B). Then, we have

〈zQ1F,ϕn+1〉= 〈Q1F,ϕn〉+δn,1 and 〈zF,ϕn+1〉= 〈F,ϕn〉+δn,2,

where the polynomial Q1 is defined as in the proof of Lemma 2.3, and

limsup
n→∞

|δn,1|1/n <
1
R1

and limsup
n→∞

|δn,2|1/n <
1
R0

.

Proof of Lemma 2.4. It follows from the recurrence formula (17) that

1
κn+1

〈zQ1F,ϕn+1〉= 〈zQ1F, zΦn +Φn+1(0)Φ
∗
n〉= 〈zQ1F, zΦn〉+ 〈zQ1F,Φn+1(0)Φ

∗
n〉

=
1
κn
〈Q1F,ϕn〉+ 〈zQ1F,Φn+1(0)Φ

∗
n〉.

Then, from the above equality,
|〈zQ1F,ϕn+1〉 − 〈Q1F,ϕn〉|

≤
�

�

�

�

〈zQ1F,ϕn+1〉 −
κn

κn+1
〈zQ1F,ϕn+1〉

�

�

�

�

+

�

�

�

�

κn

κn+1
〈zQ1F,ϕn+1〉 − 〈Q1F,ϕn〉

�

�

�

�

≤
�

�

�

�

1−
κn

κn+1

�

�

�

�

|〈zQ1F,ϕn+1〉|+ |κn〈zQ1F,Φn+1(0)Φ
∗
n〉|. (20)

By (1), (8), (13), (18), and (19), we have

lim sup
n→∞

��

�

�

�

1−
κn

κn+1

�

�

�

�

|〈zQ1F,ϕn+1〉|
�1/n
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≤ lim sup
n→∞

�

|Φn+1(0)|2

1+κnκ
−1
n+1

�1/n

limsup
n→∞

|〈zQ1F,ϕn+1〉|1/n <
1

R0(zQ1F)
=

1
R1(F)

. (21)

The second term of (20) can be rewritten as

|κnΦn+1(0)〈zQ1F,Φ∗n〉|= |κnΦn+1(0)〈z(Q1F − Sn−1),Φ
∗
n〉|, (22)

where Sn−1 denotes the (n− 1)-th Fourier sum of Q1F . Notice that

〈zSn−1,Φ∗n〉= 0

because zSn−1 is a polynomial of degree at most n≥ 1 with a zero of multiplicity ≥ 1 at z = 0 and Φ∗n is orthogonal to all such
polynomials. Therefore, using (1), (8), (14), and the Holder inequality, it follows from (22) that

limsup
n→∞

|κnΦn+1(0)〈zQ1F,Φ∗n〉|
1/n < lim sup

n→∞
‖Q1F − Sn−1‖

1/n
2 ≤

1
R0(Q1F)

=
1

R1(F)
. (23)

By (21) and (23), it follows from (20) that

limsup
n→∞

|〈zQ1F,ϕn+1〉 − 〈Q1F,ϕn〉|1/n <
1

R1(F)
,

which proves the first part of the lemma.
Similarly, the second part of Lemma 2.4 can be proved by considering

1
κn+1

〈zF,ϕn+1〉=
1
κn
〈F,ϕn〉+ 〈zF,Φn+1(0)Φ

∗
n〉.

We leave the details for the reader.

In order to prove Corollary 1.5, we will need the following three lemmas.

Lemma 2.5. Let µ ∈ Ŝ. Then,

〈zk D−1,ϕn〉=
1
k!

k
∑

s=0

�

k
s

�

ϕ
(s)
n (0)D(k−s)(0),

where f (s)(z) denotes the s-th derivative of f (z).

Lemma 2.6. Let n0 ∈ N. Assume that Φn(0) 6= 0 for all n≥ n0. Then,

Φ
(1)
n+1(0)
Φn+1(0)

−
Φ(1)n (0)

Φn(0)
=
�

Φn(0)
Φn+1(0)

−
Φn−1(0)
Φn(0)

�

+
Φn−1(0)
Φn(0)

|Φn(0)|2.

The reader can find the proofs of Lemmas 2.5 and 2.6 in [1, page 275] and [1, page 276], respectively.

Lemma 2.7. Let b ∈ B. If
αn+1

αn
= b+O(δn), (24)

for some δ < 1, then
Φ
(1)
n+1(0)
Φn+1(0)

−
Φ(1)n (0)

Φn(0)
=
|c|2|b|2n

b
+O(δn).

Proof of Lemma 2.7. Recall that αn := −Φn+1(0). It is easy to check that (24) implies that

Φn(0)
Φn+1(0)

=
1

b
+O(δn). (25)

Since αn = α0

∏n−1
j=0(α j+1/α j), (24), and

∏∞
j=n(1+O(δ j)) = 1+O(δn), we obtain

αn = abn +O(|b|nδn),

for some a 6= 0. This implies that
Φn(0) = cb

n
+O(|b|nδn),

where c = −(a/b). Since
|Φn(0)|2 = Φn(0)Φn(0) = |c|2|b|2n +O(|b|2nδn),

by Lemma 2.6 and (25),
Φ
(1)
n+1(0)
Φn+1(0)

−
Φ(1)n (0)

Φn(0)
=
�

Φn(0)
Φn+1(0)

−
Φn−1(0)
Φn(0)

�

+
Φn−1(0)
Φn(0)

|Φn(0)|2

= O(δn) +
�

1

b
+O(δn)

�

�

|c|2|b|2n +O(|b|2nδn)
�

=
|c|2|b|2n

b
+O(δn).
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3 Proofs of Main Results

Proof of Theorem 1.1. By definition and Lemma 2.1, we recall that

l0 = 1, l1 = (R0)
−1. (26)

From Lemma 2.3, we have that

l2 ≤
1

R0R1
≤ 1. (27)

If R1 =∞, then we have that l2 = 0. Hence, R1 = l1/l2 as needed (recall that by convention 0/0 =∞). Therefore, we can
assume that R1 <∞ which implies that R0 <∞. Using (26) and (27), we get

l1
l2
≥

R0R1

R0
= R1. (28)

Now, it rests to show that R1 ≥ l1/l2.
Notice that from (26) and (28),

l0
l1
= R0 ≤ R1 ≤

l1
l2

.

If l0/l1 = l1/l2, we would have equality throughout and, in particular, R1 = l1/l2 as needed. Hence, it is sufficient to consider the
case when R1 <∞ and l0/l1 < l1/l2, or what is the same

l0 l2/l
2
1 < 1. (29)

Our next objective is to show that given these conditions, the polynomials Qµn,1 for F are uniquely determined for all sufficiently
large n and there exists a polynomial Q1 of degree 1 such that

lim sup
n→∞

‖Qµn,1 −Q1‖1/n ≤
l0 l2
l2
1

< 1. (30)

Suppose that this has been proved. Then, according to (9) and (10), we have that F has exactly one pole in BR1
at λ, where λ is

the zero of Q1, and
|λ|
R1
≤

l0 l2
l2
1

.

This further implies that R0 = |λ|. As a result, we obtain

R0

R1
≤

l0 l2
l2
1

=
R0 l2
l1

.

Cancelling out R0 on both sides of this inequality, we get

R1 ≥
l1
l2

,

and we are done. Hence, in order to establish the validity of Theorem 1.1, it is necessary to show that the claim holds when (29)
and R1 <∞ take place.

First, let us prove that Qµn,1 are unique and have degree 1 for all sufficiently large n. Recall from (13) that

limsup
n→∞

|∆n,1|1/n = lim sup
n→∞

|〈F,ϕn〉|1/n =
1
R0
= l1. (31)

By Lemma 2.4,

∆n+1,2 =

�

�

�

�

〈zF,ϕn+1〉 〈F,ϕn+1〉
〈z2F,ϕn+1〉 〈zF,ϕn+1〉

�

�

�

�

=

�

�

�

�

〈F,ϕn〉+δn,2 〈F,ϕn+1〉
〈F,ϕn−1〉+δn,3 〈F,ϕn〉+δn,2

�

�

�

�

= 〈F,ϕn〉〈F,ϕn〉 − 〈F,ϕn−1〉〈F,ϕn+1〉+ 2δn,2〈F,ϕn〉+δ2
n,2 −δn,3〈F,ϕn+1〉, (32)

where

limsup
n→∞

|δn,2|1/n <
1
R0
= l1 and lim sup

n→∞
|δn,3|1/n <

1
R0
= l1. (33)

Applying
lim sup

n→∞
|∆n+1,2|1/n = l2 l0 < l2

1 ,

(31), and (33), it follows from (32) that
limsup

n→∞
|∆2

n,1 −∆n+1,1∆n−1,1|1/n
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≤max{limsup
n→∞

|∆n+1,2|1/n, lim sup
n→∞

|2δn,2〈F,ϕn〉|1/n, limsup
n→∞

|δn,3〈F,ϕn+1〉|1/n, limsup
n→∞

|δn,2|2/n}

< l2
1 . (34)

According to a result of Hadamard [9], namely any sequence of complex numbers {dn} such that

lim sup
n→∞

|dn|1/n = 1, limsup
n→∞

|dn+1dn−1 − d2
n |

1/n < 1

has the regular limit
lim

n→∞
|dn|1/n = 1,

we set dn :=∆n,1/l
n
1 and it follows from (31) and (34) that

lim
n→∞

|∆n,1|1/n = l1 =
1
R0
6= 0. (35)

This implies that there exists n0 ∈ N such that 〈F,ϕn+1〉=∆n+1,1 6= 0 for all n≥ n0. Set

Qµn,1(z) := cn,0z − cn,1.

By definition, 〈Qµn,1F,ϕn+1〉= 0, equivalently

0= cn,0〈zF,ϕn+1〉 − cn,1〈F,ϕn+1〉.

It is clear that for all n ≥ n0, if cn,0 = 0, then cn,1 = 0. Because Qµn,1 6≡ 0, degQn,1 = 1 for all n ≥ n0. From this, since Qn,1 are
monic (cn,0 = 1), for all n≥ n0,

cn,1 =
〈zF,ϕn+1〉
〈F,ϕn+1〉

and Qµn,1 are unique.
Next, let us show (30). From Lemma 2.4 and a similar argument used in (16), we obtain

∆n+2,2 =

�

�

�

�

〈zF,ϕn+2〉 〈F,ϕn+2〉
〈z2F,ϕn+2〉 〈zF,ϕn+2〉

�

�

�

�

=

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
〈zQ1F,ϕn+2〉 〈zF,ϕn+2〉

�

�

�

�

=

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
〈Q1F,ϕn+1〉+δn+1,1 〈F,ϕn+1〉+δn+1,2

�

�

�

�

=

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
〈Q1F,ϕn+1〉 〈F,ϕn+1〉

�

�

�

�

+

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
δn+1,1 δn+1,2

�

�

�

�

=

�

�

�

�

〈zF,ϕn+2〉 〈F,ϕn+2〉
〈zF,ϕn+1〉 〈F,ϕn+1〉

�

�

�

�

+

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
δn+1,1 δn+1,2

�

�

�

�

, (36)

where the polynomial Q1 is defined as in the proof of Lemma 2.3, and

lim sup
n→∞

|δn+1,1|1/n <
1
R1

and lim sup
n→∞

|δn+1,2|1/n <
1
R0

.

Then, from (36),

|cn+1,1 − cn,1|=

�

�

�

�

�

�

�

�

�

�

�

�

�

〈zF,ϕn+2〉 〈F,ϕn+2〉
〈zF,ϕn+1〉 〈F,ϕn+1〉

�

�

�

�

〈F,ϕn+1〉〈F,ϕn+2〉

�

�

�

�

�

�

�

�

�

≤
�

�

�

�

∆n+2,2

〈F,ϕn+1〉〈F,ϕn+2〉

�

�

�

�

+

�

�

�

�

�

�

�

�

�

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
δn+1,1 δn+1,2

�

�

�

�

〈F,ϕn+1〉〈F,ϕn+2〉

�

�

�

�

�

�

�

�

�

. (37)

By (35),

limsup
n→∞

�

�

�

�

∆n+2,2

〈F,ϕn+1〉〈F,ϕn+2〉

�

�

�

�

1/n

=
l2 l0
l2
1

< 1

and

b := lim sup
n→∞

�

�

�

�

�

�

�

�

�

�

�

�

�

〈Q1F,ϕn+2〉 〈F,ϕn+2〉
δn+1,1 δn+1,2

�

�

�

�

〈F,ϕn+1〉〈F,ϕn+2〉

�

�

�

�

�

�

�

�

�

1/n

<
R0

R1
. (38)

Combining these and (37), we obtain

limsup
n→∞

|cn+1,1 − cn,1|1/n ≤max

�

l2 l0
l2
1

, b

�

< 1
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Therefore,
∑

n |cn+1,1 − cn,1| is convergent. Let λ := limn→∞ cn,1 and

Q1(z) := (z −λ).

Consequently,

limsup
n→∞

‖Qµn,1 −Q1‖1/n = limsup
n→∞

|cn,1 −λ|1/n ≤max

�

l2 l0
l2
1

, b

�

. (39)

However, if

max

�

l2 l0
l2
1

, b

�

= b,

then by (9), (10), (38), and (39),
R0

R1
= limsup

n→∞
‖Qµn,1 −Q1‖1/n ≤ b <

R0

R1

which is impossible. Therefore,

max

�

l2 l0
l2
1

, b

�

=
l2 l0
l2
1

,

which means that (39) implies (30). This completes the proof.

Proof of Corollary 1.5. From the proof of Lemma 2.7, we recall that the equation (11) implies

Φn(0) = cb
n
+O(|b|nδn), n≥ n0,

where c 6= 0. By the Nevai-Totik Theorem (see, e.g., [10, Theorem 7.1.3]),

1
R0
= l1 = lim sup

n→∞
|αn|1/n = lim sup

n→∞
|Φn(0)|1/n = |b|< 1. (40)

This means that the corresponding µ belongs to Ŝ.
From (36) replacing F by D−1 and n+ 1 by n, we obtain

∆n+1,2 =

�

�

�

�

〈zD−1,ϕn+1〉 〈D−1,ϕn+1〉
〈zD−1,ϕn〉 〈D−1,ϕn〉

�

�

�

�

+O(ηn), (41)

where η < 1/(R0R1). From Lemmas 2.5 and 2.7,

�

�

�

�

〈zD−1,ϕn+1〉 〈D−1,ϕn+1〉
〈zD−1,ϕn〉 〈D−1,ϕn〉

�

�

�

�

=

�

�

�

�

ϕ
(1)
n+1(0)D(0) +ϕn+1(0)D(1)(0) ϕn+1(0)D(0)
ϕ(1)n (0)D(0) +ϕn(0)D(1)(0) ϕn(0)D(0)

�

�

�

�

= (D(0))2κnκn+1(Φn+1(0)Φn(0))

�

Φ
(1)
n+1(0)
Φn+1(0)

−
Φ(1)n (0)

Φn(0)

�

= (D(0))2κnκn+1(Φn+1(0)Φn(0))
�

|c|2|b|2n

b
+O(δn)

�

. (42)

Using the equations (8), (40), and (42), the equation (41) implies that

l2 ≤max{|b|4, |b|2δ,η}.

If max{|b|4, |b|2δ,η}= η, then by Theorem 1.1,

R1 =
l1
l2
≥

l1
η
> l1R0R1 = R1,

which is impossible. Hence,

R1 =
l1
l2
≥

|b|
max{|b|4, |b|2δ}

>
1
|b|

. (43)

On the other side, (11) implies that limn→∞ αn+1/αn = b. From Theorem 1.4, b−1 is a singularity of D−1 and D−1 is holomorphic
in B|b|−1 . By (43), b−1 is the only single pole of D−1 in a neighborhood of B|b|−1 . This proves the first part of the corollary.

Now, let us prove the second part of our corollary. Assume further that δ < |b|2. Because max{|b|4, |b|2δ,η} = |b|4 (from
above, the maximum cannot be η), by (41) and (42),

∆n+1,2 =
�

(D(0))2κnκn+1(Φn+1(0)Φn(0))
�

|c|2|b|2n

b

��

+O(εn), (44)
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where ε < |b|4. From (11),

lim
n→∞

�

�

�

�

αn+1

αn

�

�

�

�

= lim
n→∞

�

�

�

�

Φn+2(0)
Φn+1(0)

�

�

�

�

= |b|,

which further implies that
lim

n→∞
|Φn(0)|1/n = |b|. (45)

Therefore, from (8) and (45),

lim
n→∞

�

�

�

�

(D(0))2κnκn+1(Φn+1(0)Φn(0))
�

|c|2|b|2n

b

�

�

�

�

�

1/n

= |b|4.

It is not difficult to show that this and (44) imply that

l2 = lim
n→∞

|∆n+1,2|1/n = |b|4.

Again, from this, and the equations (3) and (40), we obtain

R1 =
l1
l2
=
|b|
|b|4

=
1
|b|3

.

This completes the proof.
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