On Optimal Points for Interpolation by Univariate Exponential Functions

Len Bos
Department of Computer Science, University of Verona, Verona, Italy
e-mail : leonardpeter.bos@univr.it
Stefano De Marchi
Department of Mathematics, University of Padova, Padova, Italy
e-mail : demarchi@math.unipd.it

web : http://drna.di.univr.it/
email : drna@drna.di.univr.it

Abstract

We discuss the aysmptotics of the points that maximize the determinant of the interpolation matrix for interpolants of the form $I_{1}(x)=\sum_{i=1}^{n} a_{i} e^{\alpha x t_{i}}$ and $I_{2}(x)=\sum_{i=1}^{n} a_{i} e^{-\beta\left(x-t_{i}\right)^{2}}$.

Suppose that we are given a set of nodes $t_{1}<t_{2}<\cdots<t_{n} \in[a, b]$ and a set of interpolation sites $s_{1}<s_{2}<\cdots<s_{n} \in[a, b]$ and a kernel

$$
K:[a, b]^{2} \rightarrow \mathbb{R}
$$

For values $y_{1}, y_{2}, \cdots, y_{n} \in \mathbb{R}$ we may attempt to interpolate these values y at the sites s using the basis function

$$
K_{j}(x):=K\left(x, t_{j}\right), 1 \leq j \leq n
$$

i.e., find

$$
\begin{equation*}
I_{K}(x):=\sum_{j=1}^{n} a_{j} K_{j}(x) \tag{1}
\end{equation*}
$$

with the property that

$$
\begin{equation*}
I_{K}\left(s_{i}\right)=y_{i}, 1 \leq i \leq n \tag{2}
\end{equation*}
$$

In this note we will consider the two kernels

$$
\begin{equation*}
K_{1}(x, y):=e^{\alpha x y}, \alpha>0 \tag{3}
\end{equation*}
$$

which results in an interpolation by exponential ridge functions and

$$
\begin{equation*}
K_{2}(x, y):=e^{-\beta(x-y)^{2}}, \beta>0 \tag{4}
\end{equation*}
$$

which gives an interpolation by a gaussian radial basis function.
Of course the interpolants (1) and (2) will exist and be unique if and only if the interpolation matrix

$$
\begin{equation*}
M_{K}(s, t):=\left[K\left(s_{i}, t_{j}\right)\right] \in \mathbb{R}^{n \times n} \tag{5}
\end{equation*}
$$

is non-singular. Of particular interest, from the computational point of view, would be to know for which nodes and sites the matrix $M_{K}(s, t)$ is as well-conditioned as possible. However, this is likely a forbiddingly difficult problem and hence it is reasonable to ask for which sites and nodes

$$
\operatorname{det}\left(M_{K}(s, t)\right)
$$

is as large as possible, giving an analogue of the classical Fekete points for polynomial interpolation. Note that the choice of $K(x, y)=(x-y)^{n-1}$ results in classical polynomial interpolation, in which case $M_{K}(s, t)$ is equivalent to the classical Vandermonde matrix and

$$
\begin{equation*}
\operatorname{det}\left(M_{K}(s, t)\right)=a_{n} V(s) V(t) \tag{6}
\end{equation*}
$$

where

$$
a_{n}=\prod_{j=0}^{n-1}\binom{n-1}{j}
$$

and

$$
\begin{equation*}
V(x):=\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right) \tag{7}
\end{equation*}
$$

is the classical Vandermonde determinant. To see this, just note that by the binomial theorem we may write the matrix

$$
\left[\left(s_{i}-t_{j}\right)^{n-1}\right]=S_{n} \times T_{n}
$$

where

$$
S_{n}=\left[\begin{array}{cccccc}
1 & s_{1} & s_{1}^{2} & \cdot & \cdot & s_{1}^{n-1} \\
1 & s_{2} & s_{2}^{2} & \cdot & \cdot & s_{2}^{n-1} \\
\cdot & & & & & \cdot \\
\cdot & & & & & \cdot \\
\cdot & & & & & \cdot \\
1 & s_{n} & s_{n}^{2} & \cdot & \cdot & s_{n}^{n-1}
\end{array}\right]
$$

and
S_{n} is the classical Vandermonde matrix and hence $\operatorname{det}\left(S_{n}\right)=V(s)$. Further, factoring the common factors from each of the rows, we have

$$
\begin{aligned}
\operatorname{det}\left(T_{n}\right) & =(-1)^{1+2+\cdots+(n-1)} \prod_{j=0}^{n-1}\binom{n-1}{j}\left|\begin{array}{cccccc}
t_{1}^{n-1} & t_{2}^{n-1} & \cdot & \cdot & \cdot & t_{n}^{n-1} \\
t_{1}^{n-2} & t_{2}^{n-2} & \cdot & \cdot & \cdot & t_{n}^{n-2} \\
\cdot & & & & \\
\cdot & & & & \cdot \\
t_{1}^{1} & t_{2}^{1} & \cdot & \cdot & \cdot & t_{n}^{1} \\
1 & 1 & & & 1
\end{array}\right| \\
& =(-1)^{n(n-1)}\left\{\prod_{j=0}^{n-1}\binom{n-1}{j}\right\} V(t)
\end{aligned}
$$

after suitably reordering the columns. The formula (6) follows by noting that $n(n-1)$ is always even.
The classical Fekete points for polynomial interpolation are those points $f_{1} \leq f_{2} \leq \cdots \leq f_{n} \in[a, b]$ which maximize $V(x), x \in[a, b]^{n}$. As is well known (see e.g. [1]), they tend weak-* to the arcsine measure for the interval $[a, b]$, i.e., the discrete measures

$$
\begin{equation*}
\mu_{f}^{(n)}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{f_{i}} \tag{8}
\end{equation*}
$$

have the property that, for every $g \in C[a, b]$,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} g(x) d \mu_{f}^{(n)}=\int_{a}^{b} g(x) d \mu^{*}
$$

where

$$
\begin{equation*}
d \mu^{*}=\frac{1}{\pi} \frac{1}{\sqrt{(b-x)(x-a)}} d x \tag{9}
\end{equation*}
$$

is the arcsine measure for the interval $[a, b]$.
In this note we will prove the following theorem.
Theorem 1. Suppose that the kernels $K_{1}(s, t)$ and $K_{2}(s, t)$ are given by (3) and (4), respectively. Suppose further that $\widehat{s}_{1}<\widehat{s}_{2}<\cdots<\widehat{s}_{n} \in[a, b]$ are points which maximize either
(a) $\operatorname{det}\left(M_{K_{1}}(s, t)\right), s \in[a, b]^{n}$, where $t \in[a, b]^{n}$ are fixed but distinct
(b) $\operatorname{det}\left(M_{K_{1}}(s, s)\right), s \in[a, b]^{n}$
(c) $\operatorname{det}\left(M_{K_{2}}(s, t)\right), s \in[a, b]^{n}$, where $t \in[a, b]^{n}$ are fixed but distinct
(d) $\operatorname{det}\left(M_{K_{2}}(s, s)\right), s \in[a, b]^{n}$.

Then the discrete measures $\mu_{\widehat{s}}^{(n)}\left(c f .(8)\right.$ tend weak-* to the arcsine measure μ^{*} given by (9).
We remark that, in contrast, for radial basis interpolation by basis functions of the form $g(|x|)$ with $g^{\prime}(0) \neq 0$, the optimal points are asymptotically uniformly distributed; see [3] or [2].

Proof. We first consider the exponential ridge kernel $K_{1}(x, y)=e^{\alpha x y}$ with $\alpha>0$. Note that we write

$$
K_{1}(x, y)=e^{x^{y^{\prime}} y^{\prime}}
$$

where $x^{\prime}:=\sqrt{\alpha} x$ and $y^{\prime}=\sqrt{\alpha} y$.
Then, by the remarkable formula (3.15) of Gross and Richards [5], we have

$$
\begin{aligned}
\operatorname{det}\left(M_{K_{1}}(s, t)\right) & =\operatorname{det}\left(\left[e^{s_{i}^{\prime} t_{j}^{\prime}}\right]\right) \\
& =\beta_{n}^{-1} V\left(s^{\prime}\right) V\left(t^{\prime}\right) \int_{U(n)} e^{\operatorname{tr}\left(s^{\prime} u t^{\prime} u^{*}\right)} d u
\end{aligned}
$$

where

$$
\beta_{n}:=\prod_{j=1}^{n}(j-1)!
$$

and the integral is over $U(n)$ the group of complex unitary matrices with Haar measure normalized to have volume 1 . Here u^{*} denotes the conjugate transpose of the matrix $u \in U(n)$. By an abuse of notation, in the integrand, s^{\prime} and t^{\prime} are the $n \times n$ diagonal matrices with the elements s_{i}^{\prime} and t_{j}^{\prime} on the diagonal, respectively.

Now, note that

$$
\begin{aligned}
V\left(s^{\prime}\right) & =\prod_{1 \leq i<j \leq n}\left(s_{j}^{\prime}-s_{i}^{\prime}\right) \\
& =\prod_{1 \leq i<j \leq n} \sqrt{\alpha}\left(s_{j}-s_{i}\right) \\
& =(\sqrt{\alpha})^{n(n-1) / 2} \prod_{1 \leq i<j \leq n}\left(s_{j}-s_{i}\right) \\
& =(\sqrt{\alpha})^{n(n-1) / 2} V(s) .
\end{aligned}
$$

Similarly,

$$
V\left(t^{\prime}\right)=(\sqrt{\alpha})^{n(n-1) / 2} V(t)
$$

Further,

$$
\operatorname{tr}\left(s^{\prime} u t^{\prime} u^{*}\right)=\alpha \operatorname{tr}\left(s u t u^{*}\right)
$$

and thus we have

$$
\begin{equation*}
\operatorname{det}\left(M_{K_{1}}(s, t)\right)=\beta_{n}^{-1} \alpha^{n(n-1) / 2} V(s) V(t) \int_{U(n)} e^{\alpha \operatorname{tr}\left(s u t u^{*}\right)} d u \tag{10}
\end{equation*}
$$

Now, as in condition (a), let $t_{1}<t_{2}<\cdots<t_{n} \in[a, b]$ be fixed, and $\widehat{s}_{1}<\widehat{s}_{2}<\cdots<\widehat{s}_{n} \in[a, b]$ be a set of points which maximizes $\operatorname{det}\left(K_{1}(s, t)\right)$ for $s \in[a, b]^{n}$ (we do not claim that they are unique). We will use the Gross-Richards formula (10) to show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V(\widehat{s})^{1 /\binom{n}{2}}=\boldsymbol{\delta}([a, b]) \tag{11}
\end{equation*}
$$

the transfinite diameter of the interval $[a, b]$. It is known (see e.g. [1]) that this is sufficient for the claim of the theorem.

First consider the integral term of (10). Coope and Rinaud ([4, Thm. 4.1]) have shown that

$$
\begin{equation*}
\operatorname{tr}\left(s u t u^{*}\right) \leq \sum_{i=1}^{n} s_{i} t_{i} \tag{12}
\end{equation*}
$$

for $u \in U(n)$. It follows that $\operatorname{tr}\left(s u t u^{*}\right) \leq n \max \left\{a^{2}, b^{2}\right\}$. From their Cor. 4.2 it follows that $\operatorname{tr}\left(\operatorname{sutu}^{*}\right) \geq$ $n \min \left\{a^{2}, b^{2}, a b\right\}$, i.e.,

$$
\begin{equation*}
n \min \left\{a^{2}, b^{2}, a b\right\} \leq \operatorname{tr}\left(s u t u^{*}\right) \leq n \max \left\{a^{2}, b^{2}\right\} \tag{13}
\end{equation*}
$$

Setting $F_{n}(s):=\int_{U(n)} e^{\alpha \operatorname{tr}\left(s u t u^{*}\right)} d u$, it follows that

$$
e^{\alpha n \min \left\{a^{2}, b^{2}, a b\right\}} \leq F_{n}(s) \leq e^{\alpha n \max \left\{a^{2}, b^{2}\right\}}
$$

In particular

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{n}(s)^{1 /\binom{n}{2}}=1 \tag{14}
\end{equation*}
$$

for any set of points $s \in[a, b]^{n}$.
Now, rewrite (10) as

$$
V(s)=\frac{c_{n}}{F_{n}(s)} \operatorname{det}\left(M_{K_{1}}(s, t)\right),
$$

where $c_{n}:=\beta_{n} \alpha^{-n(n-1) / 2} / V(t)$, and let $f_{1}<f_{2}<\cdots<f_{n} \in[a, b]$ be the classical Fekete points for the interval $[a, b]$, i.e., those such that $V(s) \leq V(f), \forall s \in[a, b]^{n}$. Then,

$$
\begin{aligned}
V\left(s^{*}\right) & \leq V(f) \\
& =\frac{c_{n}}{F_{n}(f)} \operatorname{det}\left(M_{K_{1}}(f, t)\right) \\
& \leq \frac{c_{n}}{F_{n}(f)} \operatorname{det}\left(M_{K_{1}}\left(s^{*}, t\right)\right) \\
& =\frac{F_{n}\left(s^{*}\right)}{F_{n}(f)} \frac{c_{n}}{F_{n}\left(s^{*}\right)} \operatorname{det}\left(M_{K_{1}}\left(s^{*}, t\right)\right) \\
& =\frac{F_{n}\left(s^{*}\right)}{F_{n}(f)} V\left(s^{*}\right) .
\end{aligned}
$$

In other words,

$$
\begin{equation*}
\frac{F_{n}(f)}{F_{n}\left(s^{*}\right)} V(f) \leq V\left(s^{*}\right) \leq V(f) \tag{15}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow \infty} V(f)^{1 /\binom{n}{2}}=\delta([a, b])
$$

it follows from (14) that we have (11) and the result follows for case (a).
The proof of (b) is very similar. In this case we re-write (10)

$$
V^{2}(s)=\frac{\beta_{n}}{\alpha^{n(n-1) / 2} F_{n}(s)} \operatorname{det}\left(M_{K_{1}}(s, s)\right)
$$

and by the same manipulations as above, we obtain

$$
\begin{equation*}
\frac{F_{n}(f)}{F_{n}\left(s^{*}\right)} V^{2}(f) \leq V^{2}\left(s^{*}\right) \leq V^{2}(f) \tag{16}
\end{equation*}
$$

Taking $1 /\left(2\binom{n}{2}\right)$ th roots gives the result.
To see (c) and (d), notice that

$$
e^{-\beta(x-y)^{2}}=e^{-\beta x^{2}} e^{2 \alpha x y} e^{-\beta y^{2}}
$$

so that

$$
M_{K_{2}}(s, t)=\operatorname{diag}\left(e^{-\beta s_{i}^{2}}\right) M_{K_{1}}(s, t) \operatorname{diag}\left(e^{-\beta t_{j}^{2}}\right)
$$

where the kernel $K_{1}(x, y)=e^{\alpha x y}$ with $\alpha:=2 \beta$. It follows that

$$
a_{n} \operatorname{det}\left(M_{K_{1}}(s, t)\right) \leq \operatorname{det}\left(M_{K_{2}}(s, t)\right) \leq b_{n} \operatorname{det}\left(M_{K_{1}}(s, t)\right)
$$

where

$$
a_{n}=\operatorname{det}\left(\operatorname{diag}\left(e^{-\beta s_{i}^{2}}\right)\right) \geq e^{-n \beta \max \left\{a^{2}, b^{2}\right\}}
$$

and

$$
b_{n}=\operatorname{det}\left(\operatorname{diag}\left(e^{-\beta t_{j}^{2}}\right)\right) \leq e^{-n \beta \min \left\{a^{2}, b^{2}\right\}}
$$

Consequently, the inequalities (15) and (16) allow us to reduce the cases of (c) and (d) to (a) and (b) respectively, and we are done.

References

[1] T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in \mathbb{C} and \mathbb{C}^{n}, Rocky Mountain J. Math., 22 (1992), no. 2, 441-470.
[2] L. Bos and S. De Marchi, Univariate radial basis functions with com- pact support cardinal functions, East J. Approx., Vol. 14 (1) (2008), 69 - 80.
[3] L. Bos and U. Maier, On the asymptotics of Fekete-type points for univariate radial basis functions, J. of Approx. Theory, Vol. 119, No. 2 (2002), 252-270.
[4] I.D. Coope and P.F. Renaud, Trace inequalities with applications to orthogonal regression and matrix nearness problems, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 92, 7 pp .
[5] K. Gross and D. St. P. Richards, Total Positivity, Spherical Series, and Hypergeometric Functions of Matrix Argument, J. Approx. Theory, 59 (2) (1989), 224-246.

