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Abstract

We discuss the aysmptotics of the points that maximize the determinant of the interpolation

matrix for interpolants of the form I1(x) =
n

∑
i=1

aieαxti and I2(x) =
n

∑
i=1

aie−β (x−ti)2
.

Suppose that we are given a set of nodes t1 < t2 < · · · < tn ∈ [a,b] and a set of interpolation sites
s1 < s2 < · · ·< sn ∈ [a,b] and a kernel

K : [a,b]2→ R.

For values y1,y2, · · · ,yn ∈ R we may attempt to interpolate these values y at the sites s using the basis
function

K j(x) := K(x, t j), 1≤ j ≤ n,

i.e., find

IK(x) :=
n

∑
j=1

a jK j(x) (1)

with the property that
IK(si) = yi, 1≤ i≤ n. (2)

In this note we will consider the two kernels

K1(x,y) := eαxy, α > 0, (3)

which results in an interpolation by exponential ridge functions and

K2(x,y) := e−β (x−y)2
, β > 0, (4)

which gives an interpolation by a gaussian radial basis function.
Of course the interpolants (1) and (2) will exist and be unique if and only if the interpolation matrix

MK(s, t) := [K(si, t j)] ∈ Rn×n (5)

is non-singular. Of particular interest, from the computational point of view, would be to know for
which nodes and sites the matrix MK(s, t) is as well-conditioned as possible. However, this is likely a
forbiddingly difficult problem and hence it is reasonable to ask for which sites and nodes

det(MK(s, t))

is as large as possible, giving an analogue of the classical Fekete points for polynomial interpolation.
Note that the choice of K(x,y) = (x− y)n−1 results in classical polynomial interpolation, in which case
MK(s, t) is equivalent to the classical Vandermonde matrix and

det(MK(s, t)) = anV (s)V (t) (6)

where

an =
n−1

∏
j=0

(
n−1

j

)
and

V (x) := ∏
1≤i< j≤n

(x j− xi) (7)
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is the classical Vandermonde determinant. To see this, just note that by the binomial theorem we may
write the matrix

[(si− t j)
n−1] = Sn×Tn

where

Sn =



1 s1 s2
1 · · sn−1

1
1 s2 s2

2 · · sn−1
2

· ·
· ·
· ·
1 sn s2

n · · sn−1
n


and

Tn =



(n−1
n−1

)
(−t1)n−1

(n−1
n−1

)
(−t2)n−1 · · ·

(n−1
n−1

)
(−tn)n−1(n−1

n−2

)
(−t1)n−2

(n−1
n−2

)
(−t2)n−2 · · ·

(n−1
n−2

)
(−tn)n−2

· ·
· ·(n−1

1

)
(−t1)1

(n−1
1

)
(−t2)1 · · ·

(n−1
1

)
(−tn)1

1 1 1


.

Sn is the classical Vandermonde matrix and hence det(Sn)=V (s). Further, factoring the common factors
from each of the rows, we have

det(Tn) = (−1)1+2+···+(n−1)
n−1

∏
j=0

(
n−1

j

)
∣∣∣∣∣∣∣∣∣∣∣∣

tn−1
1 tn−1

2 · · · tn−1
n

tn−2
1 tn−2

2 · · · tn−2
n

· ·
· ·

t1
1 t1

2 · · · t1
n

1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n(n−1)

{
n−1

∏
j=0

(
n−1

j

)}
V (t),

after suitably reordering the columns. The formula (6) follows by noting that n(n−1) is always even.
The classical Fekete points for polynomial interpolation are those points f1 ≤ f2 ≤ ·· · ≤ fn ∈ [a,b]

which maximize V (x), x ∈ [a,b]n. As is well known (see e.g. [1]), they tend weak-* to the arcsine
measure for the interval [a,b], i.e., the discrete measures

µ
(n)
f :=

1
n

n

∑
i=1

δ fi (8)

have the property that, for every g ∈C[a,b],

lim
n→∞

∫ b

a
g(x)dµ

(n)
f =

∫ b

a
g(x)dµ

∗

where
dµ
∗ =

1
π

1√
(b− x)(x−a)

dx (9)

is the arcsine measure for the interval [a,b].
In this note we will prove the following theorem.

Theorem 1. Suppose that the kernels K1(s, t) and K2(s, t) are given by (3) and (4), respectively. Suppose
further that ŝ1 < ŝ2 < · · ·< ŝn ∈ [a,b] are points which maximize either
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(a) det(MK1(s, t)), s ∈ [a,b]n, where t ∈ [a,b]n are fixed but distinct

(b) det(MK1(s,s)), s ∈ [a,b]n

(c) det(MK2(s, t)), s ∈ [a,b]n, where t ∈ [a,b]n are fixed but distinct

(d) det(MK2(s,s)), s ∈ [a,b]n.

Then the discrete measures µ
(n)
ŝ (cf. (8)) tend weak-* to the arcsine measure µ∗ given by (9).

We remark that, in contrast, for radial basis interpolation by basis functions of the form g(|x|) with
g′(0) 6= 0, the optimal points are asymptotically uniformly distributed; see [3] or [2].

Proof. We first consider the exponential ridge kernel K1(x,y) = eαxy with α > 0. Note that we write

K1(x,y) = ex′y′

where x′ :=
√

αx and y′ =
√

αy.
Then, by the remarkable formula (3.15) of Gross and Richards [5], we have

det(MK1(s, t)) = det([es′it
′
j ])

= β
−1
n V (s′)V (t ′)

∫
U(n)

etr(s′ut ′u∗)du

where

βn :=
n

∏
j=1

( j−1)!

and the integral is over U(n) the group of complex unitary matrices with Haar measure normalized
to have volume 1. Here u∗ denotes the conjugate transpose of the matrix u ∈ U(n). By an abuse of
notation, in the integrand, s′ and t ′ are the n× n diagonal matrices with the elements s′i and t ′j on the
diagonal, respectively.

Now, note that

V (s′) = ∏
1≤i< j≤n

(s′j− s′i)

= ∏
1≤i< j≤n

√
α(s j− si)

= (
√

α)n(n−1)/2
∏

1≤i< j≤n
(s j− si)

= (
√

α)n(n−1)/2V (s).

Similarly,
V (t ′) = (

√
α)n(n−1)/2V (t).

Further,
tr(s′ut ′u∗) = αtr(sutu∗)

and thus we have
det(MK1(s, t)) = β

−1
n α

n(n−1)/2V (s)V (t)
∫

U(n)
eαtr(sutu∗)du. (10)

Now, as in condition (a), let t1 < t2 < · · ·< tn ∈ [a,b] be fixed, and ŝ1 < ŝ2 < · · ·< ŝn ∈ [a,b] be a set of
points which maximizes det(K1(s, t)) for s ∈ [a,b]n (we do not claim that they are unique). We will use
the Gross-Richards formula (10) to show that

lim
n→∞

V (ŝ)1/(n
2) = δ ([a,b]), (11)
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the transfinite diameter of the interval [a,b]. It is known (see e.g. [1]) that this is sufficient for the claim
of the theorem.

First consider the integral term of (10). Coope and Rinaud ([4, Thm. 4.1]) have shown that

tr(sutu∗)≤
n

∑
i=1

siti (12)

for u ∈U(n). It follows that tr(sutu∗) ≤ nmax{a2,b2}. From their Cor. 4.2 it follows that tr(sutu∗) ≥
nmin{a2,b2,ab}, i.e.,

nmin{a2,b2,ab} ≤ tr(sutu∗)≤ nmax{a2,b2}. (13)

Setting Fn(s) :=
∫

U(n) eαtr(sutu∗)du, it follows that

eαnmin{a2,b2,ab} ≤ Fn(s)≤ eαnmax{a2,b2}.

In particular
lim
n→∞

Fn(s)1/(n
2) = 1 (14)

for any set of points s ∈ [a,b]n.
Now, rewrite (10) as

V (s) =
cn

Fn(s)
det(MK1(s, t)),

where cn := βnα−n(n−1)/2/V (t), and let f1 < f2 < · · ·< fn ∈ [a,b] be the classical Fekete points for the
interval [a,b], i.e., those such that V (s)≤V ( f ), ∀s ∈ [a,b]n. Then,

V (s∗)≤V ( f )

=
cn

Fn( f )
det(MK1( f , t))

≤ cn

Fn( f )
det(MK1(s

∗, t))

=
Fn(s∗)
Fn( f )

cn

Fn(s∗)
det(MK1(s

∗, t))

=
Fn(s∗)
Fn( f )

V (s∗).

In other words,
Fn( f )
Fn(s∗)

V ( f )≤V (s∗)≤V ( f ). (15)

Since
lim
n→∞

V ( f )1/(n
2) = δ ([a,b]),

it follows from (14) that we have (11) and the result follows for case (a).
The proof of (b) is very similar. In this case we re-write (10)

V 2(s) =
βn

αn(n−1)/2Fn(s)
det(MK1(s,s))

and by the same manipulations as above, we obtain

Fn( f )
Fn(s∗)

V 2( f )≤V 2(s∗)≤V 2( f ). (16)
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Taking 1/(2

(n
2

)
)th roots gives the result.

To see (c) and (d), notice that

e−β (x−y)2
= e−βx2

e2αxye−βy2

so that
MK2(s, t) = diag(e−β s2

i )MK1(s, t)diag(e−β t2
j )

where the kernel K1(x,y) = eαxy with α := 2β . It follows that

andet(MK1(s, t))≤ det(MK2(s, t))≤ bndet(MK1(s, t))

where
an = det(diag(e−β s2

i ))≥ e−nβ max{a2,b2}

and
bn = det(diag(e−β t2

j ))≤ e−nβ min{a2,b2}.

Consequently, the inequalities (15) and (16) allow us to reduce the cases of (c) and (d) to (a) and (b)
respectively, and we are done.

References

[1] T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic
functions in C and Cn, Rocky Mountain J. Math., 22 (1992), no. 2, 441-470.

[2] L. Bos and S. De Marchi, Univariate radial basis functions with com- pact support cardinal
functions, East J. Approx., Vol. 14 (1) (2008), 69 – 80.

[3] L. Bos and U. Maier, On the asymptotics of Fekete-type points for univariate radial basis
functions, J. of Approx. Theory, Vol. 119, No. 2 (2002), 252–270.

[4] I.D. Coope and P.F. Renaud, Trace inequalities with applications to orthogonal regression and
matrix nearness problems, JIPAM. J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 92,
7 pp.

[5] K. Gross and D. St. P. Richards, Total Positivity, Spherical Series, and Hypergeometric Func-
tions of Matrix Argument, J. Approx. Theory , 59 (2) (1989), 224–246.

page 12


