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Abstract
An important property within the linear theory of best L1-approximation, the so-called
Property A, is discussed. Indeed, this property characterizes all finite-dimensional L1(µ)-
unicity subspaces of continuous functions with respect to measures µ of a big class. Moreover,
some extensions are considered: Property Ak, characterizing those subspaces where the sets
of best L1(µ)-approximations have at most dimension k, and Property Aper characterizing
L1(µ)-unicity subspaces of continuous periodic functions.

1 Introduction
In this paper we give a survey on relevant results during the period 1975–2012 concerning best L1-approximation from
finite-dimensional subspaces of real-valued continuous functions. The central role plays Property A characterizing all
unicity subspaces. We also discuss some extensions, Property Ak characterizing all subspaces with Chebyshev rank k,
and Property Aper characterizing all unicity subspaces of continuous periodic functions.

To introduce the approximation problem of interest, assume that K is a compact subset of Rd (d ≥ 1) such that
K = intK (the closure of its interior), and let G denote a finite-dimensional subspace of C(K), the linear space of
real-valued continuous functions defined on K. Moreover, let a set W of measures be given by

W = {µ : dµ = wdλ, w ∈ L∞(K), ess inf w > 0 on K}

(λ denotes the Lebesgue measure on Rd). For µ ∈W , let us define the weighted L1(µ)-norm ‖ · ‖µ by

‖f‖µ =
∫
K

|f |dµ (f ∈ C(K)).

Let C1(K,µ) denote the linear space C(K) endowed with norm ‖ · ‖µ. If G is a finite-dimensional subspace of C1(K,µ),
then g0 ∈ G is called a best L1(µ)-approximation of f ∈ C(K) from G if ‖f − g0‖µ ≤ ‖f − g‖µ for every g ∈ G. PµG(f)
denotes the set of all best L1(µ)-approximations of f from G.

It is well-known that, for each f ∈ C(K), PµG(f) is a non-empty, convex and compact subset of G. We say that
PµG(f) has dimension k (0 ≤ k ≤ dimG), denoted by dimPµG(f) = k, if there exist functions g0, . . . , gk in PµG(f) such
that {gi − g0}ki=1 are linearly independent and k is maximal under this property (this corresponds to the dimension of
the smallest affine subspace of G containing PµG(f)). If PµG(f) is a singleton, then dimPµG(f) = 0.

Moreover, we say that G is k-convex (or G has Chebyshev rank k) with respect to µ (0 ≤ k ≤ dimG), denoted
by cr(G,µ) = k, if dimPµG(f) ≤ k for every f ∈ C(K), and there exists an f̂ ∈ C(K) such that dimPµG(f̂) = k. If
cr(G,µ) = 0, then every f ∈ C(K) has a unique best L1(µ)-approximation from G, i.e., G is a unicity subspace for
C1(K,µ). Finally, we say that G has Chebyshev rank k with respect to W or, for brevity, G has Chebyshev rank k, if

cr (G) = max
µ∈W

cr (G,µ) = k.

Many of the results stated in this survey are due to András Kroó. His research was a strong motivation for the author
of this paper to study problems of best L1-approximation during a long period.

2 Property A
Property A plays a central role in the theory of best L1-approximation.
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Definition 2.1. Let G be a finite-dimensional subspace of C(K). Then G is said to satisfy Property A (or G is an
A-space), if for every g0 ∈ G \ {0} and every function ψ such that ψ = 0 on Z(g0), |ψ| = 1 and ψ is continuous on
K \ Z(g0), there exists a g ∈ G(g0) \ {0} satisfying ψg ≥ 0 on K.

Here Z(g0) denotes the set of zeros of g0, and G(g0) is defined by G(g0) = {g ∈ G : g = 0 a.e. on Z(g0)}.
The actual version of Property A was established by Kroó [3]. It is based on a Condition A given by Strauss [29] for

K = [a, b] and µ = λ, the Lebesgue measure. Strauss proved the following statement.
Theorem 2.1. Let G be a finite-dimensional subspace of C[a, b] satisfying Condition A. Moreover assume that each g ∈ G
has only finitely many separated zeros. Then G is a unicity subspace for C1([a, b], λ).

Using this condition Strauss verified that subspaces of polynomial splines with simple knots are unicity subspaces for
C1([a, b], λ). In [18], [19] we showed that subspaces of generalized spline functions, including subspaces of polynomial
and Chebyshevian splines and subspaces of piecing together Haar systems, also satisfy Condition A.

Thm. 2.1 was the key result for extensive studies on existence and characterization of L1-unicity subspaces. The
first relevant statement was an extension given by Kroó [3].
Theorem 2.2. Let G be a finite-dimensional subspace of C[a, b] satisfying Property A. Then G is a unicity subspace for
C1([a, b], µ) for all µ ∈W .

He conjectured that the converse of Thm. 2.2 should also be true, and could verify it for dimG = 1. Based on his
result, in [20] we proved the converse for finite-dimensional subspaces G satisfying certain properties A1 and A2.

Finally, Kroó [4] verified his conjecture.
Theorem 2.3. Let G be a finite-dimensional subspace of C[a, b]. The following statements are equivalent.

(i) G is a unicity space for C1([a, b], µ) for all µ ∈W .
(ii) G satisfies Property A.
Independently, Pinkus [13] also verified the converse for those subspaces of C[a, b] satisfying λ(Z(g)) = λ(intZ(g))

for all g ∈ G, and all measures µ of the form dµ = wdλ where w is strictly positive and continuous.
How is the situation for the case when K = intK ⊂ Rd (d ≥ 1), K compact? Independently, in Kroó [8] and our

paper [21] the converse of Thm. 2.2 was verified for this general case. Since also the statement of Thm. 2.2 remains
true, a characterization of L1(µ)-unicity subspaces of C(K) was then completed.
Theorem 2.4. Let K = intK ⊂ Rd (d ≥ 1), K compact, and assume that G denotes a finite-dimensional subspace of
C(K). The following statements are equivalent.

(i) G is a unicity space for C1(K,µ) for all µ ∈W .
(ii) G satisfies Property A.

Remark 1. Kroó [8] extended this result to L1(µ)-unicity subspaces of C(K,B) where B denotes a real Banach space.
Schmidt [16] gave an analogue to Thm. 2.4 replacing the class W by a smaller subclass of measures in statement (i).

Of course, Thm. 2.4 states that G satisfies Property A if and only if cr(G) = 0 (the Chebyshev rank of G, see
Section 1). In Section 6, a natural extension of Property A, Property Ak, is considered characterizing all the G with
cr(G) = k (0 ≤ k ≤ dimG).

3 Characterization of A-Subspaces of C(K) where K ⊂ R
As we now know is that Property A characterizes the unicity subspaces of C1(K,µ) for all µ ∈W . But what does an
A-space look like, at least in the case when K = [a, b] or, more generally, K is compact and K = intK ⊂ R ?

In the following certain classes of subspaces play an important role. An n-dimensional subspace G of C(K), K ⊂ R,
is said to be a Chebyshev space or a Haar system if every g ∈ G \ {0} has at most n− 1 zeros on K, whereas G is said to
be weak Chebyshev if every g ∈ G has at most n− 1 sign changes on K, i.e., there do not exist points {x0, . . . , xn} ⊂ K
such that x0 < · · · < xn and g(xi)g(xi+1) < 0, 0 ≤ i ≤ n− 1.

We have mentioned above that some classes of subspaces of generalized splines satisfy Condition A (which corresponds
to Property A in the considered cases). All these subspaces of C[a, b] have also the weak Chebyshev property. This
observation is not surprising as we have shown in [20], [21].
Theorem 3.1. Let K = intK ⊂ R, K compact, and let G denote a finite-dimensional A-subspace of C(K). Then G is a
weak Chebyshev space.

To establish a complete characterization of A-subspaces of C(K) let us go back to the general case when K =
intK ⊂ Rd (d ≥ 1), K compact. Moreover, let G be an n-dimensional subspace of C(K). If g ∈ G \ {0}, then K \ Z(g)
is open with respect to K. As such it is an at most countable union of open (w.r.t. K) connected components. Denote
the number of such components by [K \ Z(g)]. This number may be infinite. Let Z(G) =

⋂
{Z(g) : g ∈ G}.

The following statement due to Pinkus and Wajnryb [15] plays a crucial role.
Theorem 3.2. Let K be given as above. Assume that G is an A-space. Then the following is true.

(i) Let g∗ ∈ G \ {0}. Then for every g ∈ G(g∗),

[K \ Z(g)] ≤ dim G(g∗) .
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(ii) If K \Z(G) is not connected, then G decomposes, i.e., K \Z(G) =
⋃k

i=1 Ai, where Ai is open and connected in K,
and if dim G|Ai = mi (mi ≥ 1), 1 ≤ i ≤ k, then

∑k

i=1 mi = n = dimG, and there exist functions {g(i)
1 , . . . , g

(i)
mi}

in G such that
G|Ai = span {g(i)

1 |Ai , . . . , g
(i)
mi
|Ai}

and g(i)
j vanishes identically off Ai, 1 ≤ j ≤ mi, 1 ≤ i ≤ k.

Remark 2. (i) If K ⊂ R, then statement (i) implies that G(g∗) is a weak Chebyshev subspace of C(K).
(ii) Using the notations of statement (ii), set

Gi := span {g(i)
1 , . . . , g(i)

mi
} ,

1 ≤ i ≤ k. Then by statement (ii),
G = G1 ⊕ · · · ⊕Gk .

Moreover, it is easily verified that each Gi is an A-subspace of C(K), 1 ≤ i ≤ k.
(iii) Conversely, let us assume that G̃i is an A-subspace of C(K) such that all functions in G̃i vanish identically off Ai,
1 ≤ i ≤ k. Then the space G̃ defined by

G̃ = G̃1 ⊕ · · · ⊕ G̃k
is also an A-subspace of C(K).

In the case when K ⊂ R, the connected components Ai in K reduce to real bounded closed, open or half-open
intervals. On the basis of Thm. 3.2 and Remark 2, one may therefore assume that K = [a, b] and Z(G) ∩ (a, b) = ∅, G
an n-dimensional subspace of C[a, b]. Moreover define, for any subset M of [a, b],

G(M) = {g ∈ G : g = 0 on M} .

Under these assumptions Pinkus [13], [14] totally classified all A-spaces as follows.
Theorem 3.3. Let G be given as above. Then G is an A-space if and only if the following conditions (i)–(iv) hold.

(i) G is weak Chebyshev;
(ii) There exist points a = c0 < c1 < · · · < cs = b, s ≤ 2n− 1, such that G|(ci−1,ci) is a Chebyshev subspace, 1 ≤ i ≤ s;
(iii) G([ci, cj ]) = G([c0, cj ])⊕G([ci, cs]), 0 ≤ i < j ≤ s;
(iv) G([c0, ci) ∪ (cj , cs]) is weak Chebyshev on [a, b], 0 ≤ i < j ≤ s.
Li [12] showed that (i) implies (iv) in Thm. 3.3, and (i) and (iii) imply (ii). Hence he obtained the following simplified

characterization of A-subspaces G of C[a, b] with Z(G) ∩ (a, b) = ∅.
Theorem 3.4. G is an A-space if and only if G is weak Chebyshev and G([c, d]) = G([a, d])⊕G([c, b]) for any a < c <
d < b.
Remark 3. (i) The Thms. 3.2–3.4 together completely characterize all A-subspaces of C(K) where K = intK ⊂ R, K
compact. Especially, Thm. 3.3 states that an A-space is a space of generalized splines, because it has a "spline-like"
structure. In [19] we already constructed a large class of such spaces with Property A.
(ii) Of course, many important classes of finite-dimensional subspaces of C[a, b] possess Property A, including all
Chebyshev spaces and all spaces of polynomial spline functions of finite degree to a fixed knot partition of [a, b].

Using Thm. 3.3, in [23] we could verify that every A-space is a complete A-space in the following sense.
Theorem 3.5. Let K = intK ⊂ R, K compact, and let G be an n-dimensional A-subspace of C(K). Then G has a basis
{g1, . . . , gn} such that span {g1, . . . , gi} is an A-space, 1 ≤ i ≤ n− 1.

The corresponding analogous property for weak Chebyshev spaces is known for a long time (see [17]). Indeed,
every such subspace G of C(K) is completely weak Chebyshev, i.e., there exists a basis {g1, . . . , gn} of G such that
span {g1, . . . , gi} is weak Chebyshev on K, 1 ≤ i ≤ n− 1. Moreover, as we showed in [23], such a G satisfies the property
that G|

K̃
is also weak Chebyshev for every K̃ ⊂ K.

Does an A-space satisfy corresponding properties? Using Thm. 3.2 we obtained the following result [23].
Theorem 3.6. Let K = intK ⊂ R, K compact, and let G denote an n-dimensional A-subspace of C(K). If I is a real
bounded interval, then G̃ = G|

K̃
is an A-subspace of C(K̃) where K̃ = int (I ∩K) .

Remark 4. (i) We showed by an example that the above statement fails if the interval I is replaced by an arbitrary
compact subset K̃ of K with K̃ = int K̃. Hence in view of the above remarks, the situation is unlike the situation for
weak Chebyshev subspaces.
(ii) Moreover, we showed by an example that there can exist an (n− 1)-dimensional weak Chebyshev subspace G̃ of an
A-space G such that G̃ fails to be an A-space.

Thm. 3.2 implies that the existence of "non-trivial" A-subspaces of C(K) is essentially restricted to the case when K
is connected. In particular, this holds for an important class of subspaces (see e.g. [5]).
Corollary 3.7. Let K be a compact and disconnected subset of R such that K = intK. Then every n-dimensional
Chebyshev subspace of C(K) fails to satisfy Property A.

Dolomites Research Notes on Approximation ISSN 2035-6803



Sommer 32

4 A-Spaces and the Hobby-Rice Theorem
In two papers [10], [11] Kroó, Schmidt and Sommer studied Property A and its connection with the Hobby-Rice theorem.
The first main result [10] is stated as follows .
Theorem 4.1. Let G be an n-dimensional subspace of C[a, b]. Then G is an A-space if and only if the following conditions
(i) and (ii) hold.

(i) G is weak Chebyshev.
(ii) If a = x0 < x1 < · · · < xn < xn+1 = b and {x1, . . . , xn} ⊂ Z(g) for some g ∈ G \ {0}, then there exists a

g̃ ∈ G \ {0} such that (−1)ig̃ ≥ 0 on [xi, xi+1], 0 ≤ i ≤ n.
Remark 5. Condition (ii), stated with n − 1 or fewer points in (a, b), is one of the many characterizations of weak
Chebyshev spaces. As such, this condition is indeed a strengthened version of the weak Chebyshev property.

Of particular interest is that condition (ii) has arisen in connection with the Hobby-Rice theorem. This result plays
a fundamental role in the theory of L1-approximation. That is, if G is an n-dimensional subspace of L1([a, b], ν) (the
space of all real-valued, ν-measurable functions on [a, b] where ν is a positive, non-atomic measure on [a, b]), then there
exist points a = x0 < x1 < · · · < xm < xm+1 = b with 0 ≤ m ≤ n such that

m∑
i=0

(−1)i
∫ xi+1

xi

g dν = 0

for all g ∈ G.
In [10], [11] our studies were concerned with subspaces G of C[a, b] and measures ν of the form dν = wdλ, where w

is in the class C+ of positive, continuous functions on [a, b] (hence ν ∈ W ). Then such a set {x1, . . . , xm} is called a
w-canonical set for G. Kroó [9] showed that for an n-dimensional subspace G of C[a, b], the w-canonical sets contain n
points for all w ∈ C+, if and only if G is a weak Chebyshev space. Moreover, in studying uniqueness of w-canonical sets,
he verified that, for a weak Chebyshev space G, condition (ii) of Thm. 4.1 is equivalent to G having a unique w-canonical
set {x1, . . . , xn} and dimG|{x1,...,xn} = dimG = n for every w ∈W . Let us call the dimension of G|{x1,...,xn} the rank
of the w-canonical set {x1, . . . , xn}.

As an application of Thm. 4.1, in [10] the following corollary connecting Property A and the Hobby-Rice theorem
was verified.
Corollary 4.2. Let G be an n-dimensional subspace of C[a, b]. Then G is an A-space if and only if, for every w ∈ C+,
the w-canonical set is unique, contains n points x1 < · · · < xn, and has rank n.

To state the results given in [11], assume again that G is an n-dimensional subspace of C[a, b]. G is said to satisfy
the splitting property provided that if g ∈ G and g = 0 on [c, d] where a < c < d < b, then gχ[a,c], gχ[d,b] ∈ G
where χJ denotes the characteristic function of J ⊂ [a, b]. Moreover, G is said to satisfy the decomposition property if
z ∈ Z(G)∩ (a, b) implies that G = G([a, z])⊕G([z, b]). Hence the Pinkus-Li characterization (Thms. 3.3 and 3.4) states
that G is an A-space if and only if it satisfies the weak Chebyshev, splitting and decomposition properties.

The following characterization is the first major result in [11].
Theorem 4.3. Let G be an n-dimensional subspace of C[a, b]. Then

(i) the w-canonical sets for G contain n points for all w ∈ C+ if and only if G satisfies the weak Chebyshev property;
(ii) the w-canonical set for G contains n points and is unique for all w ∈ C+ if and only if G satisfies the weak

Chebyshev and splitting properties;
(iii) the w-canonical set for G contains n points, is unique, and has rank n for all w ∈ C+ if and only if G satisfies

the weak Chebyshev, splitting, and decomposition properties (that is, G is an A-space).
Statement (ii) is a new result whereas (iii) corresponds to Cor. 4.2 and (i) was already known (see [11] for references).

For the proof of (ii) and (iii) a result of Kroó [9] was used. He characterized there those weak Chebyshev spaces that
have locally unique w-canonical sets.

The problem of extending spaces with a given property has been widely studied, especially extension of n-dimensional
Chebyshev spaces to (n+ 1)-dimensional Chebyshev spaces. In [11] the extension of A-spaces was verified.
Theorem 4.4. Let G be an n-dimensional A-space in C[a, b]. Then there exists an f ∈ C[a, b] such that G⊕ span {f} is
an (n+ 1)-dimensional A-space.

5 A-Subspaces of C(K) where K ⊂ Rd, d > 1
Up to now only few results on A-spaces have been stated for the case when K is a subset of Rd where d > 1.

The first result in this context is due to Kroó [2].
Theorem 5.1. Let K be a compact convex subset of Rd satisfying K = intK. Set

G = {g(x1, . . . , xd) =
d∑
i=1

aixi + ad+1 : ai ∈ R},

the set of affine linear functions. Then G satisfies Property A.
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The most important non-trivial example of an A-space is related to multivariate linear splines on regular partitions.
To define the spaces of interest, let K be a bounded and connected polygonal domain in Rd (d ≥ 2) such that

K =
N⋃
i=1

Ki (N ∈ N)

where ∆ = {Ki}Ni=1 is a collection of d-dimensional simplices. Moreover, assume that ∆ is a regular partition of K, i.e.,
any pair of simplices in ∆ intersect at most at an l-dimensional simplex where 0 ≤ l < d (for details see [28]).

Let P1 denote the linear space of all d-variate polynomials of total degree one. Set

S0
1(∆) = {s ∈ C(K) : s|Ki ∈ P1, 1 ≤ i ≤ N} ,

the space of d-variate linear splines over ∆.
In [28] we verified the following statement.

Theorem 5.2. Let G = S0
1(∆). Then G satisfies Property A.

Especially, if N = 1, i.e., K = K1, a d-dimensional simplex, then G = P1 is an A-space (see also Thm. 5.1).
Remark 6. In [22] we have already obtained this result for so-called uni-diagonal triangulations in R2. Pinkus [14]
generalized it for the case of bivariate regular triangulations.

The next result, given in [7], [10], shows that tensor product A-spaces can exist only under rather restrictive
assumptions.

Theorem 5.3. Let G and G̃ be finite-dimensional subspaces of C(I) and C(J), respectively, where I and J are real
intervals. The tensor product space G⊗ G̃ is an A-space if and only if G and G̃ are A-spaces and G or G̃ is a direct
sum of one-dimensional A-spaces having pairwise disjoint supports.
Remark 7. In the literature some further examples of A-spaces in Rd, d > 1, are presented (see Pinkus [14]).

Thm. 5.1 states that the space of d-variate polynomials of total degree one satisfies Property A. Unfortunately,
in view of Thm. 5.3, this nice property fails already for the case when G forms the tensor product of univariate
linear polynomials on a rectangular in R2. However, also for such spaces there are interesting results if the question of
L1-uniqueness is studied only for special measures, for instance w ≡ 1.

Assume that K = [0, 1]× [0, 1], and let, for k, m ∈ N, k ≤ m, G̃k and G̃m denote Chebyshev subspaces of C[0, 1] of
dimension k and m, respectively. Moreover, assume that G̃k ⊂ G̃m. Let φ ∈ C[0, 1], an increasing function, and define
the subspace G of C(K) by

G = Gm+k = {g(x, y) = φ(y)gk(x) + gm(x) : gk ∈ G̃k, gm ∈ G̃m} .

Kroó [2] obtained the following result.
Theorem 5.4. G is a unicity subspace for C1(K,µ) for the special measure dµ = dλ, i.e., w ≡ 1.

Following the lines of Kroó’s proof, in [22] we extended the statement for all weight functions with separated variables
as follows.
Theorem 5.5. G is a unicity subspace for C1(K,µ) for all weights µ ∈ W of the type dµ = wdλ satisfying w(x, y) =
w1(x)w2(y), (x, y) ∈ K.
Remark 8. (i) The most important example of G is the space

G = Pm,1 = {g(x, y) =
m∑
i=0

1∑
j=0

aijx
iyj : aij ∈ R} ,

the tensor product of polynomials of degree m in the first variable and degree one in the second one (obviously, φ(y) = y,
y ∈ [0, 1]). Therefore, Pm,1 is a unicity subspace for C1(K,µ) for all weights with separated variables.
(ii) On the other hand, Thm. 5.3 implies that Pm,1 fails to be an A-space. However, as the next section will show, such
spaces of bivariate polynomials satisfy a Property Am, a natural extension of Property A.

6 Chebyshev Rank and Property Ak

Consider again K as a compact subset of Rd (d ≥ 1) such that K = intK. To characterize subspaces G of C(K) having
Chebyshev rank k, 0 ≤ k ≤ dimG, Kroó [5] gave a natural extension of Property A, the so-called Property Ak. It is
also an intrinsic property of the considered linear space. To define it, we first need some notations. For f ∈ C(K) and
g0, . . . , gr ∈ G ⊂ C(K) (r ≥ 0), set

Z(g0, . . . , gr) =
r⋂
i=0

Z(gi) , G(g0, . . . , gr) = {h ∈ G : h = 0 a.e. on Z(g0, . . . , gr)} .

Dolomites Research Notes on Approximation ISSN 2035-6803



Sommer 34

Definition 6.1. Let G be a linear subspace of C(K) with dimG = n. G is said to satisfy Property Ak (or G is an
Ak-space), 0 ≤ k ≤ n− 1, if for every choice of k+ 1 linearly independent functions g0, . . . , gk in G and every function ψ
such that ψ = 0 on Z(g0, . . . , gk), |ψ| = 1 and ψ is continuous on K \Z(g0, . . . , gk), there exists a g ∈ G(g0, . . . , gk) \ {0}
satisfying ψg ≥ 0 on K.

Of course, Property A0 corresponds to Property A.
Kroó [5] proved the following statement generalizing Thm. 2.4.

Theorem 6.1. Let G be an n-dimensional subspace of C(K), and let k ∈ {0, . . . , n− 1}. Then cr (G) ≤ k if and only if
G satisfies Property Ak.

It is obvious that Property Ak implies Property Ak+1. This leads to the following corollary.
Corollary 6.2. Let G be given as above and let k ∈ {1, . . . , n− 1}. Then cr (G) = k if and only if G satisfies Property
Ak and does not satisfy Property Ak−1.

In the same paper [5] Kroó gave some applications and examples of Ak-spaces. The following results (including
Thm. 6.7) are all taken from that paper.
Theorem 6.3. Let G be given as above and assume that G contains an (n − k)-dimensional A-space. Then G is an
Ak-space.

The next statement follows immediately.
Corollary 6.4. If G ⊂ C[a, b] contains an (n−k)-dimensional Chebyshev subspace, then G is an Ak-space (0 ≤ k ≤ n−1).

To give a result for spaces defined on disjoint real intervals, set Km =
⋃m

j=1[αj , βj ], where m ∈ N and α1 < β1 <

α2 < · · · < αm < βm, intKm =
⋃m

j=1(αj , βj).

Theorem 6.5. Let G be an n-dimensional subspace of C(Km) and assume that G is Chebyshev on intKm, where
1 ≤ m ≤ n. Then G is an Am−1-space.

Consider now the special case of lacunary polynomials with k "gaps". Assume that 1 ≤ r1 < · · · < rk ≤ n− 1 be
arbitrary integers (1 ≤ k ≤ n− 1). Set

P(n, k) = span {xj : 0 ≤ j ≤ n, j 6= ri, 1 ≤ i ≤ k} .

Theorem 6.6. Let G = P(n, k) such that 1 ≤ k ≤ [n/2]. Then G is an Ak-space on [−1, 1] and, in general, it does not
satisfy Property Ak−1, i.e., cr (G) = k.

Let us finish this part with the following statement.
Theorem 6.7. Let G be an n-dimensional Chebyshev subspace of C[a, b] and assume that φ ∈ C[a, b] has k distinct zeros
(1 ≤ k ≤ n − 1) in (a, b). Then G̃ = φG = {φg : g ∈ G} is an Ak-space and does not satisfy Property Ak−1, i.e.,
cr (G̃) = k.

Using the statement of Thm. 6.1 we studied the problem of determining the Chebyshev rank of G = Pm, the linear
space of multivariate polynomials of total degree at most m defined on a convex and compact subset K of Rd (d ≥ 2)
such that K = intK. In [27] we verified the following statement.
Theorem 6.8. Let G = Pm. Then

cr(Pm) =
(
m− 2 + d

d

)
= dim Pm−2, m ≥ 2 .

If m = 1, then cr (P1) = 0 (this follows from Thm. 5.2).
We were also interested in determining the Chebyshev rank of bivariate polynomials

G = Pk,m = {g(x, y) =
k∑
i=0

m∑
j=0

aijx
iyj : aij ∈ R} k,m ≥ 1 ,

defined on K = [0, 1]× [0, 1] ⊂ R2. In [24] we obtained the following result.
Theorem 6.9. Let G = Pk,m. Then G satisfies Property Akm and fails to satisfy Property Akm−1, i.e.,

cr (G) = km .

Remark 9. Together with Thm. 5.5 the following is true for G = Pk,1:

cr (G) = k , but cr (G,µ) = 0

for all weights of the type dµ = wdλ satisfying w(x, y) = w1(x)w2(y), (x, y) ∈ K.
Remark 10. (i) In [28] we have given lower and upper bounds for the Chebyshev rank of G = Srm(∆), the linear space of
r times continuously differentiable, d-variate splines of degree m ≥ 1 over regular partitions ∆, for the cases d ≥ 3 and
0 ≤ r ≤ m− 1 (recall that Thm. 5.2 is related to the special case when m = 1 and r = 0 stating Property A for linear
d-variate splines). For d = 3 and simple partitions we determined the Chebyshev rank of the corresponding splines while
for general partitions we were not able to close the gap between the given lower and upper bounds.
(ii) We wish to mention that results on the Chebyshev rank have been also obtained by other authors, for instance by
Babenko et al [1] for best L1-approximation by classes of functions having finitely many points of discontinuity.
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7 Characterization of Periodic Unicity Subspaces in Best L1-Approximation
Let Cb−a denote the subspace of all continuous, (b− a)-periodic functions f : R→ R where a < b, i.e.,

Cb−a = {f ∈ C(R) : f(x) = f(x+ (b− a)), x ∈ R} .

In analogy to the non-periodic case we define the following: If G is a finite-dimensional subspace of Cb−a and µ ∈W (W
defined as in Section 1), then G is said to be a periodic unicity space for C1([a, b], µ), if to each f ∈ Cb−a there exists a
unique best approximation from G on [a, b] in the norm ‖ · ‖µ.

It turns out that for this important class Cb−a the general statements on L1-uniqueness, represented in the above
sections, may not be applied. Even though one can identify continuous periodic functions on R with continuous functions
on the unit sphere S in R2, the set S however - as a subset of R2 - does not satisfy the condition S = int S.

In two papers [25], [26] we have therefore studied the special problem of characterizing unicity subspaces of Cb−a in
best L1-approximation.

As a first result, we observed that the statement of Thm. 2.4 holds analogously.
Theorem 7.1. A finite-dimensional subspace G of Cb−a is a periodic unicity space for C1([a, b], µ) for all µ ∈W if and
only if G (as a subspace of C(S)) satisfies Property A on S.

To illustrate the difference between G satisfying Property A on [a, b] (which corresponds to the non-periodic case),
and Property A on S (G considered as subspace of C(S)), we gave the following definition.
Definition 7.1. We say that the subspace G of Cb−a satisfies Property Aper if for every g ∈ G \ {0} and every g∗ ∈ Cb−a
such that |g∗| = |g| on [a, b], there exists a g̃ ∈ G(g) \ {0} for which g̃g∗ ≥ 0 on [a, b].

Property Aper is actually weaker than Property A on K = [a, b] (see [25]).
Thm. 7.1 can now be reformulated as follows.

Theorem 7.2. A finite-dimensional subspace G of Cb−a is a periodic unicity space for C1([a, b], µ) for all µ ∈W if and
only if G satisfies Property Aper.

Following the lines of the proof of Thm. 3.2 we verified an analogous statement in [25].
Theorem 7.3. Suppose that the subspace G of Cb−a satisfies Property Aper. Then

(i) [S \ Z(g)] ≤ dim G(g) for every g ∈ G;
(ii) G decomposes, if [S \ Z(G)] ≥ 2.

Remark 11. To characterize the subspaces G of Cb−a which satisfy Property Aper, on the basis of Thm. 7.3 one has only
to treat the cases Z(G) = ∅ and Z(G) ∩ [a, b) = {x̃} (see [25]). Since in the latter case G obviously satisfies Property A
on K̃ = [x̃, x̃+ b− a] for any x̃ ∈ Z(G), the general non-periodic case is given. Hence the statements of Section 3 (Thms.
3.3 and 3.4) may be applied for characterizing the subspace G of C(K̃) with Property A. In particular, it follows that
such a G has to have a spline-like structure.

Thus, there still remains the most interesting case of the considered periodic approximation problem when Z(G) = ∅.
In [25] we characterized the corresponding subspaces G of Cb−a which satisfy Property Aper.
Theorem 7.4. Assume that G is an n-dimensional subspace of Cb−a satisfying Z(G) = ∅. The following statements (i)
and (ii) are equivalent.

(i) G satisfies Property Aper.
(ii) (a) [S \ Z(g)] ≤ dimG(g) = d(g) for every g ∈ G.

(b) For every g ∈ G \ {0} and every set {xi}m+1
i=1 of separated zeros of g satisfying

a ≤ x1 < · · · < xm ≤ b ≤ xm+1 = x1 + b− a

and xm − x1 < b− a where 1 ≤ m ≤ d(g), there exists a g̃ ∈ G(g) \ {0} such that

(−1)ig̃(x) ≥ 0, x ∈ [xi, xi+1], 1 ≤ i ≤ m

(the zeros are said to be separated if there exist points yi ∈ (xi, xi+1), 1 ≤ i ≤ m, for which g(yi) 6= 0).
The above stated conditions cannot be easily verified, in general. Therefore, the main objective of our paper [26] was

to establish some simpler characterizations. Recall that in the non-periodic case the dimension of G (odd or even) does
not play any role in characterizing Property A. The situation is completely different in the periodic case. In fact, we
verified that if dimG = 2k+ 1 (k ≥ 0) and G satisfies Property Aper, then G is necessarily a weak Chebyshev space. On
the other hand, it is well-known that every subspace G of Cb−a of even dimension such that Z(G) = ∅ fails to have this
property. To establish simpler intrinsic characterizations of Property Aper, in [26] we therefore considered the cases odd
and even separately and obtained the following results.

Assume in both cases that G is an n-dimensional subspace of Cb−a satisfying Z(G) = ∅.
Theorem 7.5. Assume that dimG = n = 2k + 1. The following conditions (i) and (ii) are equivalent.

(i) G satisfies Property Aper.
(ii) (a) G is a weak Chebyshev space on [a, b].
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(b) If g ∈ G and g has zero intervals Ji = [ci, di], i = 1, 2, such that c1 < d1 < c2 < d2 < c1 + b− a, then

G(J1 ∪ J2) = G([c1, d2])⊕G([c2, d1 + b− a]).

Corollary 7.6. Let G be given as above. Moreover, suppose that every g ∈ G has at most one zero interval on S (of
course, g could have two zero intervals [a, d], [c, b] on [a, b] with d < c which can be identified with one zero interval
[c, d+ b− a]). Then G satisfies Property Aper if and only if G is weak Chebyshev on [a, b].
Theorem 7.7. Assume that dimG = n = 2k. The following conditions (i) and (ii) are equivalent.

(i) G satisfies Property Aper.
(ii) (a) Every g ∈ G has at most n separated zeros on [a, b).

(b) If g ∈ G and g has a zero interval [c, d] with c < d, then

[[c, c+ b− a] \ Z(g)] ≤ dimG([c, d]).

(c) If g ∈ G and g has zero intervals Ji = [ci, di], i = 1, 2, such that c1 < d1 < c2 < d2 < c1 + b− a, then

G(J1 ∪ J2) = G([c1, d2])⊕G([c2, d1 + b− a]).

(d) For every g ∈ G \ {0} and every set {xi}m+1
i=1 of separated zeros of g satisfying

a ≤ x1 < · · · < xm ≤ b ≤ xm+1 = x1 + b− a

and xm − x1 < b− a where 1 ≤ m ≤ n, there exists a g̃ ∈ G \ {0} such that

(−1)ig̃(x) ≥ 0, x ∈ [xi, xi+1], 1 ≤ i ≤ m.

Remark 12. In [26] we showed by examples that the conditions (ii) (b) of Thm. 7.5 and Thm. 7.7 and condition (ii) (d)
of Thm. 7.7 may not be omitted.

Moreover, in [25] we verified Property Aper for some important subspaces of periodic functions.
Example 7.1. (Trigonometric polynomials) Let K = [0, 2π] and assume that G denotes the (2n+ 1)-dimensional subspace
of all trigonometric polynomials g of order n, i.e.,

g(x) = a0 +
n∑
j=1

(aj cos jx+ bj sin jx), x ∈ [0, 2π].

Then G satisfies Property Aper.
Example 7.2. (Piecing together Haar systems) Let a = e0 < e1 < · · · < ek+1 = b. On each interval Ii = [ei−1, ei], let
Gi be a Haar system of real-valued continuous functions with dimension ni ≥ 1, 1 ≤ i ≤ k + 1. For convenience, we
especially assume that n1 ≥ 2 and nk+1 ≥ 2. Define the subspace G of piecing together Haar systems C[a, b] by

G = {g ∈ C[a, b] : g|Ii ∈ Gi, 1 ≤ i ≤ k + 1}.

It is well-known (see [14]) that dimG =
∑k+1

i=1 ni − k and G satisfies Property A on [a, b].
To investigate its periodic analogue we consider the subspace G̃ of Cb−a defined by

G̃ = {g ∈ Cb−a : g|Ii ∈ Gi, 1 ≤ i ≤ k + 1}.

Thus, G̃ is the space of all periodic extensions of functions g ∈ G such that g(a) = g(b). It follows that dim G̃ = dimG−1.
Moreover, we verified that G̃ satisfies Property Aper.
Example 7.3. (Periodic splines) Given k ≥ 0 and l ≥ 1, let a = e0 < e1 < · · · < ek+1 = b. Extend this knot vector to a
knot sequence on R by

ei+j(k+1) = ei + j(b− a), 0 ≤ i ≤ k + 1, j ∈ Z \ {0}.
Set ∆ = {ei}i∈Z and Ii = [ei−1, ei], i ∈ Z. Let Pl denote the linear space of all polynomials of degree at most l. For any
q ∈ {1, . . . , l} consider the linear space Sl−ql (∆) defined by

Sl−ql (∆) = {s ∈ Cl−q(R) : s|Ii ∈ Pl, i ∈ Z},

the subspace of polynomial spline functions of degree l with the fixed knots {ei}i∈Z of multiplicity q. It is well-known
(see [17]) that dimSl−ql (∆)|[a,b] = l + 1 + qk. Moreover, this space satisfies Property A (see [14]).
We are now interested in the subspace

G = Sl−ql (∆) ∩ Cb−a,
the subspace of periodic splines of degree l with the fixed knots {ei}i∈Z of multiplicity q. It is easily verified that

dimG = l + 1 + qk − (l − q + 1) = q(k + 1).

Moreover, we could show that G satisfies Property Aper.
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