Special issue dedicated to Andràs Kroó on the occasion of his 65th birthday, Volume $12 \cdot 2019 \cdot$ Pages 10-15

A Note on Orthogonal Dirichlet Polynomials with Rational Weight ${ }^{1}$

S. Doron Lubinsky ${ }^{a}$

Communicated by S. De Marchi

Abstract

Let $\left\{\lambda_{j}\right\}_{j=1}^{\infty}$ be a strictly increasing sequence of positive numbers with $\lambda_{1}>0$. We find an explicit formula for the orthogonal Dirichlet polynomials $\left\{\phi_{n}\right\}$ formed from linear combinations of $\left\{\lambda_{j}^{-i t}\right\}_{j=1}^{n}$, associated with rational weights

$$
w(t)=\sum_{j=1}^{L} \frac{c_{j}}{\pi\left(1+\left(b_{j} t\right)^{2}\right)}
$$

where $0<b_{1}<b_{2}<\ldots$, and the $\left\{c_{j}\right\}$ are appropriately chosen. Only $\left\{\lambda_{j}^{-i t}\right\}_{j=n-L}^{n}$ appear in the formula. In the case $L=2$, we show that the weight can always be taken positive in \mathbb{R}.

Keywords: Dirichlet polynomials, orthogonal polynomials.
AMS Subject Class 2010: 42C05

1 Introduction

Throughout, let

$$
\begin{equation*}
0<\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots \tag{1}
\end{equation*}
$$

Let \mathcal{L}_{n} denote the set of Dirichlet polynomials

$$
\sum_{j=1}^{n} c_{j} \lambda_{j}^{-i t}
$$

with complex coefficients $\left\{c_{j}\right\}$.
In a 2014 paper [5], we showed that

$$
\phi_{n}(t)=\frac{\lambda_{n}^{1-i t}-\lambda_{n-1}^{1-i t}}{\sqrt{\lambda_{n}^{2}-\lambda_{n-1}^{2}}}=\frac{-1}{\sqrt{\lambda_{n-1}^{-2}-\lambda_{n}^{-2}}} \operatorname{det}\left[\begin{array}{cc}
\lambda_{n}^{-i t} & \lambda_{n}^{-i t} \\
\lambda_{n-1}^{-1} & \lambda_{n}^{-1}
\end{array}\right]
$$

is the nth orthogonal Dirichlet polynomial for the arctan density, that is

$$
\begin{equation*}
\int_{-\infty}^{\infty} \phi_{n}(t) \overline{\phi_{m}(t)} \frac{d t}{\pi\left(1+t^{2}\right)}=\delta_{m n}, m, n \geq 1 \tag{2}
\end{equation*}
$$

We also estimated the Christoffel functions, convergence of associated orthonormal expansions, and universality limits. These orthonormal polynomials have been applied and provided in a variety of questions by Weber and Dimitrov as well as the author [4], [6], [8], [10], [11], [12]. In a follow up paper [7], the author considered orthogonal Dirichlet polynomials for the Laguerre weight, though it turned out that much of the material there was already subsumed by Műntz orthogonal polynomials [3].

In this note, we consider rational densities

$$
\begin{equation*}
w(t)=\sum_{m=1}^{L} \frac{c_{m}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} \tag{3}
\end{equation*}
$$

with appropriately chosen $\left\{c_{j}\right\}$. Here $L \geq 1$, and

$$
\begin{equation*}
1=b_{1}<b_{2}<\ldots<b_{L} \tag{4}
\end{equation*}
$$

[^0]Define, for $n \geq L$,

$$
\psi_{n}(t)=\operatorname{det}\left[\begin{array}{ccccc}
\lambda_{n-L}^{-i t} & \lambda_{n-1 t}^{-i t} & \cdots & \lambda_{n-1}^{-i t} & \lambda_{n}^{-i t} \tag{5}\\
\lambda_{n-L}^{-1 / b_{1}} & \lambda_{n-L+1}^{-1 / b_{1}} & \cdots & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda_{n-L}^{-1 / b_{L-1}} & \lambda_{n-b_{L-1}}^{-1+1} & \cdots & \lambda_{n-b_{L-1}}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{L-1}} \\
\lambda_{n-L}^{-1 / b_{L}} & \lambda_{n-L+1}^{-1 / b_{L}} & \cdots & \lambda_{n-1}^{-1 / b_{L}} & \lambda_{n}^{-1 / b_{L}}
\end{array}\right]
$$

Observe that $\psi_{n}(t)$ is a linear combination of only $\left\{\lambda_{j}^{-i t}\right\}_{n-L \leq j \leq n}$. Also define for a given fixed n, and $j \geq 1,1 \leq m \leq L$,

$$
\begin{equation*}
d_{j m}=\int_{-\infty}^{\infty} \psi_{n}(t) \frac{\lambda_{j}^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t \tag{6}
\end{equation*}
$$

and let B be the $(L-1) \times L$ matrix

$$
B=\left[\begin{array}{cccc}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1, L} \tag{7}\\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2, L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1, L}
\end{array}\right]
$$

and

$$
D=\operatorname{det}\left[\begin{array}{cccc}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1, L} \tag{8}\\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2, L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1, L} \\
d_{n, 1} & d_{n, 2} & \cdots & d_{n, L}
\end{array}\right]
$$

Theorem 1

Let $n \geq L \geq 1$. Let $0<\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$ and ψ_{n} be given by (5).
(a) Let $\mathbf{c}=\left[\begin{array}{cc}c_{1} & c_{2} \ldots c_{L}\end{array}\right]^{T}$ be taken as any non-trivial solution of $B \mathbf{c}=\mathbf{0}$. Let

$$
\begin{equation*}
w(t)=\sum_{m=1}^{L} \frac{c_{m}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} \tag{9}
\end{equation*}
$$

Then for $1 \leq j \leq n-1$,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{j}^{i t} w(t) d t=0 \tag{10}
\end{equation*}
$$

(b) If D defined by (8) is non-0, then we can take

$$
w(t)=A \operatorname{det}\left[\begin{array}{cccc}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1, L} \tag{11}\\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2, L} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{d_{n-1,1}}{1} & \frac{d_{n-1,2}}{\pi\left(1+\left(b_{1} t\right)^{2}\right)} & \frac{1}{\pi\left(1+\left(b_{2} t\right)^{2}\right)} & \cdots
\end{array} \frac{d_{n-1, L}}{\pi\left(1+\left(b_{L} t\right)^{2}\right)}\right]
$$

for any $A \neq 0$, while

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{n}^{i t} w(t) d t=A D \tag{12}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\psi_{n}(t)=\sum_{j=n-L}^{n} \alpha_{j} \lambda_{j}^{-i t} \tag{13}
\end{equation*}
$$

where for $n-L \leq j \leq n$,

$$
\begin{equation*}
\alpha_{j}(-1)^{j-n+L}>0 \tag{14}
\end{equation*}
$$

Remarks

(a) Note that as $\left\{\frac{1}{\pi\left(1+\left(b_{m} t\right)^{2}\right)}\right\}_{m=1}^{L}$ are linearly independent, w above is not identically 0 . As an even rational function with numerator degree at most $2 L-2$ and denominator degree $2 L$, w has at most $L-1$ sign changes in ($0, \infty$). It seems to be an interesting problem to investigate the positivity of w.
(b) In addition to the orthogonality relation above, we note that for any $1 \leq m \leq L$, and $0<\lambda \leq \lambda_{n-L}$,

$$
\int_{-\infty}^{\infty} \psi_{n}(t) \frac{\lambda^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t=0
$$

This does not require anything of the $\left\{c_{j}\right\}$ above.
In the case $L=2$, we can prove positivity of the weight:
Theorem 2
Assume the notation of Theorem 1 with $L=2$. Then we can choose $c_{1}<0<c_{2}$ such that if

$$
w(t)=\sum_{k=1}^{2} \frac{c_{k}}{\pi\left(1+\left(b_{k} t\right)^{2}\right)}
$$

then

$$
w(t)>0, t \in \mathbb{R},
$$

and w is given by the determinant (11), with

$$
A=\frac{c_{2}}{d_{n-1,1}}<0 .
$$

Remark

In the proof of Theorem 2, we show that one can take

$$
c_{1}=-c_{2} \frac{g\left(\frac{1}{b_{2}}\right)}{g\left(\frac{1}{b_{1}}\right)}
$$

where

$$
g(s)=s\left[\left(\frac{\lambda_{n-2}}{\lambda_{n-1}}\right)^{s}-\left(\frac{\lambda_{n-2}}{\lambda_{n-1}}\right)^{-s}\right] .
$$

We prove the theorems in the next section.

2 Proofs

Proof of Theorem 1

(a) We use the following simple consequence of the residue theorem: for real μ,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{e^{i \mu t}}{\pi\left(1+t^{2}\right)} d t=e^{-|\mu|} \tag{15}
\end{equation*}
$$

Then if $0<\lambda \leq \lambda_{n-L}$, and $n-L \leq k \leq n$,

$$
\int_{-\infty}^{\infty} \frac{\left(\lambda / \lambda_{k}\right)^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t=\frac{1}{b_{m}} \int_{-\infty}^{\infty} \frac{e^{i s b_{m}^{-1} \log \left(\lambda / \lambda_{k}\right)}}{\pi\left(1+s^{2}\right)} d s=\frac{1}{b_{m}}\left(\frac{\lambda}{\lambda_{k}}\right)^{1 / b_{m}} .
$$

Then for such λ,

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \psi_{n}(t) \frac{\lambda^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t \\
= & \operatorname{det}\left[\begin{array}{cccc}
\int_{-\infty}^{\infty} \frac{\left(\lambda / \lambda_{n-L}\right)^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t & \cdots & \int_{-\infty}^{\infty} \frac{\left(\lambda / \lambda_{n-1}\right)^{i t}}{\pi\left(1+\left(1 m_{m} t\right)^{2}\right)} d t & \int_{-\infty}^{\infty} \frac{\left(\lambda / \lambda_{n}\right)^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t \\
\lambda_{n-L}^{-1 / b_{1}} & \cdots & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\vdots & \ddots & \vdots & \vdots \\
\lambda_{n-L}^{-1 / b_{L}} & \cdots & \lambda_{n-1}^{-1 / b_{L}} & \lambda_{n}^{-1 / b_{L}}
\end{array}\right] \\
= & \operatorname{det}\left[\begin{array}{cccc}
\frac{1}{b_{m}}\left(\frac{\lambda}{\lambda_{n-1}}\right)^{1 / b_{m}} & \cdots & \frac{1}{b_{m}}\left(\frac{\lambda}{\lambda_{n-1}}\right)^{1 / b_{m}} & \frac{1}{b_{m}}\left(\frac{\lambda}{\lambda_{n}}\right)^{1 / b_{m}} \\
\lambda_{n-1}^{-1 / b_{1}} & \cdots & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\vdots & \ddots & \vdots & \vdots \\
\lambda_{n-L}^{-1 / b_{L}} & \cdots & \lambda_{n-1}^{-1 / b_{L}} & \lambda_{n}^{-1 / b_{L}}
\end{array}\right]=0,
\end{aligned}
$$

by taking $\frac{1}{b_{m}} \lambda^{1 / b_{m}}$ times row $m+1$ from the first row. So we have the orthogonality relation (10) for $\lambda=\lambda_{j}$, all $j \leq n-L$. Next, the equations

$$
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{n-L+j}^{i t} w(t) d t=0,1 \leq j \leq L-1
$$

are equivalent to (recall (3) and (6))

$$
\sum_{m=1}^{L} c_{m} d_{n-L+j, m}=\sum_{m=1}^{L} c_{m} \int_{-\infty}^{\infty} \psi_{n}(t) \frac{\lambda_{n-L+j}^{i t}}{\pi\left(1+\left(b_{m} t\right)^{2}\right)} d t=0,1 \leq j \leq L-1
$$

which in turn is equivalent to $B \mathbf{c}=\mathbf{0}$, recall (7). This is a system of $L-1$ homogeneous linear equations in L variables, so there is a non-trivial solution for \mathbf{c}.
(b) First observe that w defined by (11) is indeed a linear combination of $\left\{\frac{1}{\pi\left(1+\left(b_{m} t\right)^{2}\right)}\right\}_{m=1}^{L}$. Next, we see from (11) that

$$
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{k}^{i t} w(t) d t=A \operatorname{det}\left[\begin{array}{cccc}
d_{n-L+1,1} & d_{n-L+1,2} & \cdots & d_{n-L+1, L} \\
d_{n-L+2,1} & d_{n-L+2,2} & \cdots & d_{n-L+2, L} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1, L} \\
d_{k, 1} & d_{k, 2} & \cdots & d_{k, L}
\end{array}\right]=0,
$$

if $n-L+1 \leq k \leq n-1$. If $k=n$, we instead obtain the non- 0 number $A D$. It also then follows that w cannot be the zero function. (c) Let E be the $L \times(L+1)$ matrix

$$
E=\left[\begin{array}{ccccc}
\lambda_{n-L}^{-1 / b_{1}} & \lambda_{n-L+1}^{-1 / b_{1}} & \cdots & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\lambda_{n-L}^{-1 / b_{L-1}} & \lambda_{n-L+1}^{-1 / b_{L-1}} & \cdots & \lambda_{n-1}^{-1 / b_{L-1}} & \lambda_{n}^{-1 / b_{L-1}} \\
\lambda_{n-L}^{-1 / b_{L}} & \lambda_{n-L+1}^{-1+b_{L}} & \cdots & \lambda_{n-1}^{-1 / b_{L}} & \lambda_{n}^{-1 / b_{L}}
\end{array}\right]
$$

Thus E consists of the last L rows of the matrix used to define ψ_{n}. For $1 \leq k \leq L+1$, let $E(k)$ denote the $L \times L$ matrix obtained from E by deleting its k th column. Then with the notation (13), we see that

$$
\alpha_{j}=(-1)^{j-n+L} \operatorname{det}(E(j-n+L+1)) .
$$

To show that each $\operatorname{det}(E(k))>0$, we use the fact that the kernel $K(s, t)=e^{s t}$ is totally positive for $s, t \in \mathbb{R}$ [1, p. 212] or [9]. If we set $s_{j}=-\frac{1}{b_{j}}$, while $t_{i}=\log \lambda_{n-L+i-1}$, then $s_{1}<s_{2}<\ldots s_{L}$ and $t_{1}<t_{2}<\ldots<t_{L}$, then

$$
\operatorname{det}(E(k))=\operatorname{det}\left[\begin{array}{cccccc}
K\left(s_{1}, t_{1}\right) & \ldots & K\left(s_{1}, t_{k-1}\right) & K\left(s_{1}, t_{k+1}\right) & \ldots & K\left(s_{1}, t_{L+1}\right) \\
K\left(s_{2}, t_{1}\right) & \ldots & K\left(s_{2}, t_{k-1}\right) & K\left(s_{2}, t_{k+1}\right) & \ldots & K\left(s_{2}, t_{L+1}\right) \\
\vdots & \ldots & \vdots & \vdots & \ldots & \vdots \\
K\left(s_{L}, t_{1}\right) & \ldots & K\left(s_{L}, t_{k-1}\right) & K\left(s_{L}, t_{k+1}\right) & \ldots & K\left(s_{L}, t_{L+1}\right)
\end{array}\right]>0 .
$$

Proof of Theorem 2

From (5) for $L=2$,

$$
\psi_{n}(t)=\operatorname{det}\left[\begin{array}{ccc}
\lambda_{n-2}^{-i t} & \lambda_{n-1}^{-i t} & \lambda_{n}^{-i t} \tag{16}\\
\lambda_{n-2}^{-1 / b_{1}} & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\lambda_{n-2}^{-1 / b_{2}} & \lambda_{n-1}^{-1 / b_{2}} & \lambda_{n}^{-1 / b_{2}}
\end{array}\right] .
$$

Let

$$
w(t)=\sum_{k=1}^{2} \frac{c_{k}}{\pi\left(1+\left(b_{k} t\right)^{2}\right)}
$$

where for the moment we do not specify the choice of c_{1}, c_{2}. Then we already have for $k=1,2, \ldots, n-2$,

$$
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{k}^{i t} w(t) d t=0
$$

no matter what is the choice of c_{1}, c_{2}-as follows from the proof of Theorem 1 (a). So let us investigate the remaining condition in (10), namely

$$
\int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{n-1}^{-i t} w(t) d t=0
$$

This is equivalent to

$$
\begin{equation*}
0=\sum_{k=1}^{2} c_{k} \int_{-\infty}^{\infty} \psi_{n}(t) \lambda_{n-1}^{i t} \frac{d t}{\pi\left(1+\left(b_{k} t\right)^{2}\right)}=c_{1} d_{n-1,1}+c_{2} d_{n-1,2} \tag{17}
\end{equation*}
$$

Now for $k=1,2$, we see from the determinant expression (16) and then from (15) that

$$
\begin{align*}
d_{n-1, k} & =\frac{1}{b_{k}} \operatorname{det}\left[\begin{array}{ccc}
\int_{-\infty}^{\infty}\left(\frac{\lambda_{n-1}}{\lambda_{n-2}}\right)^{i s / b_{k}} \frac{d s}{\pi\left(1+s^{2}\right)} & 1 & \int_{-\infty}^{\infty}\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right)^{i s / b_{k}} \frac{d s}{\pi\left(1+s^{2}\right)} \\
\lambda_{n-2}^{-1 / b_{1}} & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\lambda_{n-2}^{-1 / b_{2}} & \lambda_{n-1}^{-1 / b_{2}} & \lambda_{n}^{-1 / b_{2}}
\end{array}\right] \\
& =\frac{1}{b_{k}} \operatorname{det}\left[\begin{array}{ccc}
\left(\frac{\lambda_{n-2}}{\lambda_{n-1}}\right)^{1 / b_{k}} & 1 & \left(\frac{\lambda_{n-1}}{\lambda_{n}}\right)^{1 / b_{k}} \\
\lambda_{n-1 / b_{1}}^{-1 / 2} & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\lambda_{n-2}^{-1 / b_{2}} & \lambda_{n-1}^{-1 / b_{2}} & \lambda_{n}^{-1 / b_{2}}
\end{array}\right] \\
& =\frac{1}{b_{k}} \lambda_{n-1}^{1 / b_{k}} \operatorname{det}\left[\begin{array}{ccc}
\left(\frac{\lambda_{n-2}}{\lambda_{n-1}^{n-1}}\right)^{1 / b_{k}} & \lambda_{n-1}^{-1 / b_{k}} & \lambda_{n}^{-1 / b_{k}} \\
\lambda_{n-b_{1}}^{-1 / b_{1}} & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\lambda_{n-2}^{-1 / b_{2}} & \lambda_{n-1}^{-1 / b_{2}} & \lambda_{n}^{-1 / b_{2}}
\end{array}\right] \\
& =\frac{1}{b_{k}} \lambda_{n-1}^{1 / b_{k}} \operatorname{det}\left[\begin{array}{ccc}
\left(\frac{\lambda_{n-2}}{\lambda_{n-1}^{n-2}}\right)^{1 / b_{k}}-\lambda_{n-2}^{-1 / b_{k}} & 0 & 0 \\
\lambda_{n-2}^{-1 / b_{1}} & \lambda_{n-1}^{-1 / b_{1}} & \lambda_{n}^{-1 / b_{1}} \\
\lambda_{n-2}^{-1 / b_{2}} & \lambda_{n-1}^{-1 / b_{2}} & \lambda_{n}^{-1 / b_{2}}
\end{array}\right] \\
& =\frac{1}{b_{k}}\left[\left(\frac{\lambda_{n-2}}{\lambda_{n-1}}\right)^{1 / b_{k}}-\left(\frac{\lambda_{n-1}}{\lambda_{n-2}}\right)^{1 / b_{k}}\right]\left[\begin{array}{cc}
\left.\lambda_{n-1}^{-1 / b_{1}} \lambda_{n}^{-1 / b_{2}}-\lambda_{n}^{-1 / b_{1}} \lambda_{n-1}^{-1 / b_{2}}\right]<0,
\end{array}\right. \tag{18}
\end{align*}
$$

as $\frac{\lambda_{n-2}}{\lambda_{n-1}} \in(0,1), \frac{1}{b_{1}}-\frac{1}{b_{2}}>0$, and

$$
\begin{aligned}
& \lambda_{n-1}^{-1 / b_{1}} \lambda_{n}^{-1 / b_{2}}-\lambda_{n}^{-1 / b_{1}} \lambda_{n-1}^{-1 / b_{2}} \\
= & \lambda_{n-1}^{-1 / b_{1}} \lambda_{n}^{-1 / b_{2}}\left[1-\left(\frac{\lambda_{n-1}}{\lambda_{n}}\right)^{\frac{1}{b_{1}}-\frac{1}{b_{2}}}\right]>0 .
\end{aligned}
$$

In summary,

$$
\begin{equation*}
d_{n-1, k}<0, k=1,2 . \tag{19}
\end{equation*}
$$

Next, let $r=\frac{\lambda_{n-2}}{\lambda_{n-1}} \in(0,1)$, and

$$
g(s)=s\left[r^{s}-r^{-s}\right] .
$$

From (18) and (17) and cancelling a common factor of $\lambda_{n-1}^{-1 / b_{1}} \lambda_{n}^{-1 / b_{2}}-\lambda_{n}^{-1 / b_{1}} \lambda_{n-1}^{-1 / b_{2}}$, we have

$$
\begin{equation*}
c_{1} g\left(\frac{1}{b_{1}}\right)+c_{2} g\left(\frac{1}{b_{2}}\right)=0 . \tag{20}
\end{equation*}
$$

Here

$$
g^{\prime}(s)=\left(r^{s}-r^{-s}\right)+(s \ln r)\left(r^{s}+r^{-s}\right)<0,
$$

as $r=\frac{\lambda_{n-2}}{\lambda_{n-1}}<1$ so $\ln r<0$. Then g is decreasing and negative, and

$$
0>g\left(\frac{1}{b_{2}}\right)>g\left(\frac{1}{b_{1}}\right)
$$

so (20) gives

$$
\begin{equation*}
c_{1}=-c_{2} \frac{g\left(\frac{1}{b_{2}}\right)}{g\left(\frac{1}{b_{1}}\right)} \text { and }\left|c_{1}\right|<\left|c_{2}\right| . \tag{21}
\end{equation*}
$$

To ensure that $w(0)=\frac{1}{\pi}\left(c_{1}+c_{2}\right)>0$, we then need to choose $c_{1}<0<c_{2}$. To ensure that $w(t)>0$ for all t, we need for all such t.

$$
\left|c_{1}\right| \leq c_{2} \frac{1+\left(b_{1} t\right)^{2}}{1+\left(b_{2} t\right)^{2}} .
$$

As

$$
\min _{t \in \mathbb{R}} \frac{1+\left(b_{1} t\right)^{2}}{1+\left(b_{2} t\right)^{2}}=\left(\frac{b_{1}}{b_{2}}\right)^{2}
$$

this is equivalent to

$$
\frac{g\left(\frac{1}{b_{2}}\right)}{g\left(\frac{1}{b_{1}}\right)} \leq\left(\frac{b_{1}}{b_{2}}\right)^{2},
$$

that is, (recall $g<0$),

$$
b_{2}\left[r^{-1 / b_{2}}-r^{1 / b_{2}}\right] \leq b_{1}\left[r^{-1 / b_{1}}-r^{1 / b_{1}}\right] .
$$

Now let

$$
h(s)=\frac{1}{s}\left[r^{-s}-r^{s}\right],
$$

so that we want

$$
\begin{equation*}
h\left(\frac{1}{b_{2}}\right) \leq h\left(\frac{1}{b_{1}}\right) . \tag{22}
\end{equation*}
$$

This would be true if h is increasing over the range $\left[\frac{1}{b_{2}}, \frac{1}{b_{1}}\right]$. Now

$$
\begin{align*}
h^{\prime}(s) & =-\frac{1}{s^{2}}\left[r^{-s}-r^{s}\right]-\frac{1}{s}(\ln r)\left[r^{-s}+r^{s}\right] \tag{23}\\
& =-\frac{r^{-s}}{s^{2}}\left[1-r^{2 s}+\frac{1}{2}\left(\ln r^{2 s}\right)\left[1+r^{2 s}\right]\right]=-\frac{r^{-s}}{s^{2}} G(x)
\end{align*}
$$

where

$$
x(s)=r^{2 s} \in(0,1) \text { decreases as } s \text { increases }
$$

and

$$
G(x)=1-x+\frac{1}{2}(\ln x)(1+x)
$$

Here $G(0+)=-\infty$ and $G(1)=0$ while for $x \in(0,1)$,

$$
\begin{aligned}
G^{\prime}(x) & =-\frac{1}{2}+\frac{1}{2 x}+\frac{1}{2} \ln x \\
& \Rightarrow G^{\prime \prime}(x)=\frac{1}{2 x}\left(1-\frac{1}{x}\right)<0
\end{aligned}
$$

Thus G is concave in $(0,1)$ and G^{\prime} is a decreasing function of x with $G^{\prime}(0+)=\infty$ and $G^{\prime}(1)=0=G(1)$. It follows that $G^{\prime}(x)>0$ for $x \in(0,1)$, so

$$
G(x)<G(1)=0 \text { for } x \in(0,1) .
$$

So, indeed,

$$
h^{\prime}(s)=-\frac{r^{-s}}{s^{2}} G(x)>0 \text { for } s>0
$$

and as desired, we have (22). Then with c_{1} and c_{2} given by (21), and $c_{2}>0$, we do have

$$
w(t)>0, t \in(-\infty, \infty)
$$

It remains to show that this w is also given by (11) with $L=2$. We know that c_{1}, c_{2} are non- 0 so

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{cc}
\frac{d_{n-1,1}}{\pi\left(1+\left(b_{1} t\right)^{2}\right)} & \frac{d_{n-1,2}}{\pi\left(1+\left(b_{2} t\right)^{2}\right)}
\end{array}\right] \\
&= \operatorname{det}\left[\begin{array}{cc}
\frac{d_{n-1,1}}{\frac{1}{2}} & \frac{d_{n-1,2}+\frac{c_{1}}{c_{2}} d_{n-1,1}}{\pi\left(1+\left(b_{1} t\right)^{2}\right)} \\
\pi\left(1+\left(b_{2} t\right)^{2}\right) \\
c_{1} & 1 \\
c_{2} & 1 \\
= & \operatorname{det}\left[\begin{array}{cc}
\frac{d_{n-1,1}}{\frac{1}{\left.1+\left(b_{1} t\right)^{2}\right)}}
\end{array}\right] \\
= & \frac{1}{\pi\left(1+\left(b_{1} t\right)^{2}\right)} \\
\frac{1}{c_{2}} w(t)
\end{array}\right] \\
& c_{n-1,1} w(t)
\end{aligned}
$$

Thus the determinant is of one sign. Choosing $A=\frac{c_{2}}{d_{n-1,1}}<0$ gives the result.

References

[1] T. Ando, Totally Positive Matrices, Linear Algebra and its Applications, 90(1987), 165-219.
[2] H. Bohr, Almost Periodic Functions, Chelsea, New York, 1947.
[3] P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Springer, New York, 1995.
[4] D.K. Dimitrov and W.D. Oliveira, An Extremal Problem Related to Generalizations of the Nyman-Beurling and Baez-Duarte Criteria, manuscript.
[5] D.S. Lubinsky, Orthogonal Dirichlet Polynomials with Arctan Density, J. Approx. Theory, 177(2014), 43-56.
[6] D.S. Lubinsky, Uniform Mean Value Estimates and Discrete Hilbert Inequalties via Orthogonal Dirichlet Series, Acta Math Hungarica, 143(2014), 422-438.
[7] D.S. Lubinsky, Orthogonal Dirichlet Polynomials with Laguerre Weight, J. Approx. Theory, 194(2015), 146-156.
[8] W.D. Oliveira, Zeros of Dirichlet Polynomials via a Density Criterion, Journal of Number Theory, to appear.
[9] A. Pinkus, Totally Positive Matrices, Cambridge Tracts in Mathematics, Vol. 181, Cambridge University Press, Cambridge, 2009.
[10] M. Weber, Dirichlet polynomials: some old and recent results, and their interplay in number theory, (in) Dependence in probability, analysis and number theory, (2010), Kendrick Press, Heber City, UT, pp. 323-353.
[11] M. Weber, On mean values of Dirichlet polynomials, Math. Inequal. Appl. 14 (2011), 529-534.
[12] M. Weber, Cauchy Means of Dirichlet Polynomials, J. Approx. Theory, 204(2016), 61-79.

[^0]: ${ }^{1}$ Research supported by NSF grant DMS1800251
 ${ }^{a}$ School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160 (USA). email: lubinsky@math.gatech.edu

