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Abstract

Let
�

λ j
	∞

j=1 be a strictly increasing sequence of positive numbers with λ1 > 0. We find an explicit formula

for the orthogonal Dirichlet polynomials {φn} formed from linear combinations of
¦

λ−i t
j

©n

j=1
, associated

with rational weights

w (t) =
L
∑

j=1

c j

π
�

1+
�

b j t
�2� ,

where 0< b1 < b2 < ..., and the
�

c j
	

are appropriately chosen. Only
¦

λ−i t
j

©n

j=n−L
appear in the formula.

In the case L = 2, we show that the weight can always be taken positive in R.
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1 Introduction
Throughout, let

0< λ1 < λ2 < λ3 < ... . (1)

Let Ln denote the set of Dirichlet polynomials
n
∑

j=1

c jλ
−i t
j

with complex coefficients
�

c j

	

.
In a 2014 paper [5], we showed that

φn (t) =
λ1−i t

n −λ1−i t
n−1

q

λ2
n −λ

2
n−1

=
−1

q

λ−2
n−1 −λ−2

n

det
�

λ−i t
n−1 λ−i t

n
λ−1

n−1 λ−1
n

�

is the nth orthogonal Dirichlet polynomial for the arctan density, that is
∫ ∞

−∞
φn (t)φm (t)

d t
π (1+ t2)

= δmn, m, n≥ 1. (2)

We also estimated the Christoffel functions, convergence of associated orthonormal expansions, and universality limits. These
orthonormal polynomials have been applied and provided in a variety of questions by Weber and Dimitrov as well as the author
[4], [6], [8], [10], [11], [12]. In a follow up paper [7], the author considered orthogonal Dirichlet polynomials for the Laguerre
weight, though it turned out that much of the material there was already subsumed by Műntz orthogonal polynomials [3].

In this note, we consider rational densities

w (t) =
L
∑

m=1

cm

π
�

1+ (bm t)2
� (3)

with appropriately chosen
�

c j

	

. Here L ≥ 1, and

1= b1 < b2 < ...< bL . (4)
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Define, for n≥ L,

ψn (t) = det















λ−i t
n−L λ−i t

n−L+1 · · · λ−i t
n−1 λ−i t

n

λ
−1/b1
n−L λ

−1/b1
n−L+1 · · · λ

−1/b1
n−1 λ−1/b1

n
...

...
. . .

...
...

λ
−1/bL−1
n−L λ

−1/bL−1
n−L+1 · · · λ

−1/bL−1
n−1 λ−1/bL−1

n

λ
−1/bL
n−L λ

−1/bL
n−L+1 · · · λ

−1/bL
n−1 λ−1/bL

n















. (5)

Observe that ψn (t) is a linear combination of only
¦

λ−i t
j

©

n−L≤ j≤n
. Also define for a given fixed n, and j ≥ 1, 1≤ m≤ L,

d jm =

∫ ∞

−∞
ψn (t)

λi t
j

π
�

1+ (bm t)2
� d t (6)

and let B be the (L − 1)× L matrix

B =









dn−L+1,1 dn−L+1,2 · · · dn−L+1,L
dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L









(7)

and

D = det













dn−L+1,1 dn−L+1,2 · · · dn−L+1,L
dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L
dn,1 dn,2 · · · dn,L













. (8)

Theorem 1
Let n≥ L ≥ 1. Let 0< λ1 < λ2 < ...< λn and ψn be given by (5).
(a) Let c= [c1 c2...cL]T be taken as any non-trivial solution of Bc= 0. Let

w (t) =
L
∑

m=1

cm

π
�

1+ (bm t)2
� . (9)

Then for 1≤ j ≤ n− 1,
∫ ∞

−∞
ψn (t)λ

i t
j w (t) d t = 0. (10)

(b) If D defined by (8) is non-0, then we can take

w (t) = Adet















dn−L+1,1 dn−L+1,2 · · · dn−L+1,L
dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L
1

π(1+(b1 t)2)
1

π(1+(b2 t)2) · · · 1
π(1+(bL t)2)















, (11)

for any A 6= 0, while
∫ ∞

−∞
ψn (t)λ

i t
n w (t) d t = AD. (12)

(c)

ψn (t) =
n
∑

j=n−L

α jλ
−i t
j (13)

where for n− L ≤ j ≤ n,
α j (−1) j−n+L > 0. (14)

Remarks

(a) Note that as
n

1
π(1+(bm t)2)

oL

m=1
are linearly independent, w above is not identically 0. As an even rational function with

numerator degree at most 2L − 2 and denominator degree 2L, w has at most L − 1 sign changes in (0,∞). It seems to be an
interesting problem to investigate the positivity of w.
(b) In addition to the orthogonality relation above, we note that for any 1≤ m≤ L, and 0< λ≤ λn−L ,

∫ ∞

−∞
ψn (t)

λi t

π
�

1+ (bm t)2
� d t = 0.
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This does not require anything of the
�

c j

	

above.

In the case L = 2, we can prove positivity of the weight:

Theorem 2
Assume the notation of Theorem 1 with L = 2. Then we can choose c1 < 0< c2 such that if

w (t) =
2
∑

k=1

ck

π
�

1+ (bk t)2
�

then
w (t)> 0, t ∈ R,

and w is given by the determinant (11), with

A=
c2

dn−1,1
< 0.

Remark
In the proof of Theorem 2, we show that one can take

c1 = −c2

g
�

1
b2

�

g
�

1
b1

�

where

g (s) = s

�

�

λn−2

λn−1

�s

−
�

λn−2

λn−1

�−s�

.

We prove the theorems in the next section.

2 Proofs

Proof of Theorem 1
(a) We use the following simple consequence of the residue theorem: for real µ,

∫ ∞

−∞

eiµt

π (1+ t2)
d t = e−|µ|. (15)

Then if 0< λ≤ λn−L , and n− L ≤ k ≤ n,
∫ ∞

−∞

(λ/λk)
i t

π
�

1+ (bm t)2
� d t =

1
bm

∫ ∞

−∞

eisb−1
m log(λ/λk)

π (1+ s2)
ds =

1
bm

�

λ

λk

�1/bm

.

Then for such λ,
∫ ∞

−∞
ψn (t)

λi t

π
�

1+ (bm t)2
� d t

= det













∫∞
−∞

(λ/λn−L )
i t

π(1+(bm t)2) d t · · ·
∫∞
−∞

(λ/λn−1)
i t

π(1+(bm t)2) d t
∫∞
−∞

(λ/λn)
i t

π(1+(bm t)2) d t

λ
−1/b1
n−L · · · λ

−1/b1
n−1 λ−1/b1

n
...

. . .
...

...
λ
−1/bL
n−L · · · λ

−1/bL
n−1 λ−1/bL

n













= det













1
bm

�

λ
λn−L

�1/bm
· · · 1

bm

�

λ
λn−1

�1/bm 1
bm

�

λ
λn

�1/bm

λ
−1/b1
n−L · · · λ

−1/b1
n−1 λ−1/b1

n
...

. . .
...

...
λ
−1/bL
n−L · · · λ

−1/bL
n−1 λ−1/bL

n













= 0,

by taking 1
bm
λ1/bm times row m+ 1 from the first row. So we have the orthogonality relation (10) for λ = λ j , all j ≤ n− L. Next,

the equations
∫ ∞

−∞
ψn (t)λ

i t
n−L+ j w (t) d t = 0, 1≤ j ≤ L − 1

are equivalent to (recall (3) and (6))

L
∑

m=1

cmdn−L+ j,m =
L
∑

m=1

cm

∫ ∞

−∞
ψn (t)

λi t
n−L+ j

π
�

1+ (bm t)2
� d t = 0, 1≤ j ≤ L − 1
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which in turn is equivalent to Bc= 0, recall (7). This is a system of L − 1 homogeneous linear equations in L variables, so there
is a non-trivial solution for c.

(b) First observe that w defined by (11) is indeed a linear combination of
n

1
π(1+(bm t)2)

oL

m=1
. Next, we see from (11) that

∫ ∞

−∞
ψn (t)λ

i t
k w (t) d t = Adet













dn−L+1,1 dn−L+1,2 · · · dn−L+1,L
dn−L+2,1 dn−L+2,2 · · · dn−L+2,L

...
...

. . .
...

dn−1,1 dn−1,2 · · · dn−1,L
dk,1 dk,2 · · · dk,L













= 0,

if n− L+1≤ k ≤ n−1. If k = n, we instead obtain the non-0 number AD. It also then follows that w cannot be the zero function.
(c) Let E be the L × (L + 1) matrix

E =











λ
−1/b1
n−L λ

−1/b1
n−L+1 · · · λ

−1/b1
n−1 λ−1/b1

n
...

...
. . .

...
...

λ
−1/bL−1
n−L λ

−1/bL−1
n−L+1 · · · λ

−1/bL−1
n−1 λ−1/bL−1

n

λ
−1/bL
n−L λ

−1/bL
n−L+1 · · · λ

−1/bL
n−1 λ−1/bL

n











.

Thus E consists of the last L rows of the matrix used to define ψn. For 1≤ k ≤ L + 1, let E (k) denote the L × L matrix obtained
from E by deleting its kth column. Then with the notation (13), we see that

α j = (−1) j−n+L det (E ( j − n+ L + 1)) .

To show that each det (E (k))> 0, we use the fact that the kernel K (s, t) = est is totally positive for s, t ∈ R [1, p. 212] or [9]. If
we set s j = −

1
b j

, while t i = logλn−L+i−1, then s1 < s2 < ...sL and t1 < t2 < ...< t L , then

det (E (k)) = det









K (s1, t1) . . . K (s1, tk−1) K (s1, tk+1) . . . K (s1, t L+1)
K (s2, t1) . . . K (s2, tk−1) K (s2, tk+1) . . . K (s2, t L+1)

... . . .
...

... . . .
...

K (sL , t1) . . . K (sL , tk−1) K (sL , tk+1) . . . K (sL , t L+1)









> 0.

�

Proof of Theorem 2
From (5) for L = 2,

ψn (t) = det





λ−i t
n−2 λ−i t

n−1 λ−i t
n

λ
−1/b1
n−2 λ

−1/b1
n−1 λ−1/b1

n

λ
−1/b2
n−2 λ

−1/b2
n−1 λ−1/b2

n



 . (16)

Let

w (t) =
2
∑

k=1

ck

π
�

1+ (bk t)2
�

where for the moment we do not specify the choice of c1, c2. Then we already have for k = 1, 2, ..., n− 2,
∫ ∞

−∞
ψn (t)λ

i t
k w (t) d t = 0

no matter what is the choice of c1, c2 - as follows from the proof of Theorem 1(a). So let us investigate the remaining condition in
(10), namely

∫ ∞

−∞
ψn (t)λ

−i t
n−1w (t) d t = 0.

This is equivalent to

0=
2
∑

k=1

ck

∫ ∞

−∞
ψn (t)λ

i t
n−1

d t

π
�

1+ (bk t)2
� = c1dn−1,1 + c2dn−1,2.

(17)
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Now for k = 1,2, we see from the determinant expression (16) and then from (15) that

dn−1,k =
1
bk

det







∫∞
−∞

�

λn−1
λn−2

�is/bk ds
π(1+s2) 1

∫∞
−∞

�

λn−1
λn

�is/bk ds
π(1+s2)

λ
−1/b1
n−2 λ

−1/b1
n−1 λ−1/b1

n

λ
−1/b2
n−2 λ

−1/b2
n−1 λ−1/b2

n







=
1
bk

det







�

λn−2
λn−1

�1/bk
1

�

λn−1
λn

�1/bk

λ
−1/b1
n−2 λ

−1/b1
n−1 λ−1/b1

n

λ
−1/b2
n−2 λ

−1/b2
n−1 λ−1/b2

n







=
1
bk
λ

1/bk
n−1 det







�

λn−2
λ2

n−1

�1/bk
λ
−1/bk
n−1 λ−1/bk

n

λ
−1/b1
n−2 λ

−1/b1
n−1 λ−1/b1

n

λ
−1/b2
n−2 λ

−1/b2
n−1 λ−1/b2

n







=
1
bk
λ

1/bk
n−1 det







�

λn−2
λ2

n−1

�1/bk
−λ−1/bk

n−2 0 0

λ
−1/b1
n−2 λ

−1/b1
n−1 λ−1/b1

n

λ
−1/b2
n−2 λ

−1/b2
n−1 λ−1/b2

n







=
1
bk

�

�

λn−2

λn−1

�1/bk

−
�

λn−1

λn−2

�1/bk
�

�

λ
−1/b1
n−1 λ−1/b2

n −λ−1/b1
n λ

−1/b2
n−1

�

< 0,

(18)

as λn−2
λn−1
∈ (0,1), 1

b1
− 1

b2
> 0, and

λ
−1/b1
n−1 λ−1/b2

n −λ−1/b1
n λ

−1/b2
n−1

= λ
−1/b1
n−1 λ−1/b2

n

�

1−
�

λn−1

λn

�
1
b1
− 1

b2

�

> 0.

In summary,
dn−1,k < 0, k = 1,2. (19)

Next, let r = λn−2
λn−1
∈ (0,1) , and

g (s) = s
�

r s − r−s
�

.

From (18) and (17) and cancelling a common factor of λ−1/b1
n−1 λ−1/b2

n −λ−1/b1
n λ

−1/b2
n−1 , we have

c1 g
�

1
b1

�

+ c2 g
�

1
b2

�

= 0. (20)

Here
g ′ (s) =

�

r s − r−s
�

+ (s ln r)
�

r s + r−s
�

< 0,

as r = λn−2
λn−1

< 1 so ln r < 0. Then g is decreasing and negative, and

0> g
�

1
b2

�

> g
�

1
b1

�

so (20) gives

c1 = −c2

g
�

1
b2

�

g
�

1
b1

� and |c1|< |c2| . (21)

To ensure that w (0) = 1
π (c1 + c2)> 0, we then need to choose c1 < 0< c2. To ensure that w (t)> 0 for all t, we need for all such

t.

|c1| ≤ c2
1+ (b1 t)2

1+ (b2 t)2
.

As

min
t∈R

1+ (b1 t)2

1+ (b2 t)2
=
�

b1

b2

�2

,

this is equivalent to
g
�

1
b2

�

g
�

1
b1

� ≤
�

b1

b2

�2

,
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that is, (recall g < 0),
b2

�

r−1/b2 − r1/b2
�

≤ b1

�

r−1/b1 − r1/b1
�

.
Now let

h (s) =
1
s

�

r−s − r s
�

,

so that we want

h
�

1
b2

�

≤ h
�

1
b1

�

. (22)

This would be true if h is increasing over the range
�

1
b2

, 1
b1

�

. Now

h′ (s) = −
1
s2

�

r−s − r s
�

−
1
s
(ln r)

�

r−s + r s
�

(23)

= −
r−s

s2

�

1− r2s +
1
2

�

ln r2s
� �

1+ r2s
�

�

= −
r−s

s2
G (x)

where
x (s) = r2s ∈ (0,1) decreases as s increases

and

G (x) = 1− x +
1
2
(ln x) (1+ x) .

Here G(0+) = −∞ and G (1) = 0 while for x ∈ (0, 1) ,

G′ (x) = −
1
2
+

1
2x
+

1
2

ln x

⇒ G′′ (x) =
1

2x

�

1−
1
x

�

< 0.

Thus G is concave in (0,1) and G′ is a decreasing function of x with G′ (0+) =∞ and G′ (1) = 0 = G (1). It follows that
G′ (x)> 0 for x ∈ (0,1), so

G (x)< G (1) = 0 for x ∈ (0, 1) .
So, indeed,

h′ (s) = −
r−s

s2
G (x)> 0 for s > 0,

and as desired, we have (22). Then with c1 and c2 given by (21), and c2 > 0, we do have

w (t)> 0, t ∈ (−∞,∞) .
It remains to show that this w is also given by (11) with L = 2. We know that c1, c2 are non-0 so

det

�

dn−1,1 dn−1,2
1

π(1+(b1 t)2)
1

π(1+(b2 t)2)

�

= det

�

dn−1,1 dn−1,2 +
c1
c2

dn−1,1
1

π(1+(b1 t)2)
1

π(1+(b2 t)2) +
c1
c2

1
π(1+(b1 t)2)

�

= det

�

dn−1,1 0
1

π(1+(b1 t)2)
1
c2

w (t)

�

=
dn−1,1

c2
w (t) .

Thus the determinant is of one sign. Choosing A= c2
dn−1,1

< 0 gives the result. �
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