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Abstract

Telescoping polynomial series with specified restrictions on the zeros of the polynomial components turn
out to be entire functions. Applied to polynomial Lp-approximation, 1 < p ≤∞, on a compact set E,
we obtain a converse theorem based only on the location of the zeros of the difference of consecutive
polynomials and the asymptotic behavior of the zeros of the polynomials. In contrast to the Bernstein-
Walsh theorem, no information about the asymptotic behavior of the error of approximation is needed.
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1 Introduction

Let E be a compact set in C with connected complement Ω := C\E and positive capacity and let us denote by Pn the collection of
algebraic polynomials of degree at most n.

If f is an entire function, then there exist polynomials pn ∈ Pn such that

limsup
n→∞

|| f − pn||
1/n
E = 0, (1)

where ||.||E denotes the maximum norm on E. For example, we can choose pn as the best polynomial approximation to f on E
with respect to Pn, n ∈ N. Or we can construct interpolating polynomials to f on a scheme

Zn : zn,0, zn,1, ..., zn,n ∈ ∂ E

such that the normalized counting measures νn of Zn converge weakly to the equilibrium measure µ of E. In order to achieve
this, Leja [4] proposed an iterative scheme

Zn = {z0, z1, ..., zn}, n ∈ N,

where
Zn+1 = Zn ∪ {zn+1}

and the point zn+1 is chosen in such a way that
n
∏

i=0

|zn+1 − zi |=max
z∈E

n
∏

i=0

|z − zi |.

(The starting point z0 is an arbitrary point of E).

In the case that {pn}n∈N is the sequence of best polynomial approximations of a real-valued function f with respect to the
maximum norm on a compact set E ⊂ R, pn−1 is characterized by n+1 points of alternation of the error function f − pn−1. Hence,
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the difference pn− pn−1 has exactly n different zeros, not necessarily in E itself, but in the convex hull of E if pn 6= pn−1. If pn ∈ Pn,
n ∈ N, are the Leja interpolation polynomials on Zn = {z0, z1, ..., zn} to f again the difference pn − pn−1 has exactly n different
zeros on E, namely

(pn − pn−1)(z j) = 0 for z j ∈ Zn−1.

If {pn}n∈N is a sequence of polynomials such that the asymptotic behavior (1) holds, then f can be continued to an entire
function. This converse result was proved by Bernstein and Walsh via the telescoping series

p0 +
∞
∑

n=1

(pn − pn−1)

and their Bernstein-Walsh lemma.

In this paper we want to obtain a converse theorem by using

(a) the location of the zeros of pn − pn−1, and

(b) a "concentration point" of the zeros of pn.

The approach is stimulated by papers of Lungu ([5],[6]), who proved converse results for diagonal rational Chebyshev
approximation on the interval [−1,1] and Padé approximation using restrictions for the location of the poles of the rational
approximants. Generalisations of the Lungu results to the non-diagonal case were investigated by E. Nguyen in her dissertation
[7].

2 A converse theorem

Let E be a compact set in C with connected complement Ω= C\E and positive capacity cap E, and let

f = p0 +
∞
∑

n=1

(pn − pn−1) (2)

be a telescoping polynomial series, pn ∈ Pn.

Notations: Let Nn be the set of zeros of pn, the zeros listed according to their multiplicity, then we denote by N the set of limit
points of {Nn}∞n=1, i.e.,

N =
�

ζ ∈ C : there exists a subsequence Λ ⊂ N and ζn ∈Nn, n ∈ Λ, such that lim
n∈Λ,n→∞

ζn = ζ
	

.

For a fixed a ∈ C and ε > 0, let us define the disks

K(a,ε) :=
§

{z ∈ C : |z − a| ≤ ε}, a ∈ C,
{z ∈ C : |z| ≥ 1/ε}, a =∞.

We denote by ψn(a,ε) the number of points of Nn in K(a,ε) and set

ψ(a) := lim
ε→0

lim inf
n→∞

ψn(a,ε)
deg(pn)

,

where deg(pn) is the degree of pn. The limit in lim
ε→0

exists, since ψn(a,ε)/deg(pn) is bounded by 1 and

lim inf
n→∞

ψn(a,ε)
deg(pn)

is monotonically decreasing with ε→ 0.

Theorem. Let f be a telescoping polynomial series (2) with the following properties:

(i) There exist infinitely many numbers n ∈ N with pn 6= pn−1; if pn 6= pn−1 then pn − pn−1 has n zeros in E.
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(ii) There exists a point ζ ∈ C\E such that ζ 6∈N .

(iii) There exists a ∈ C\E with ψ(a)> 0.

(iv) lim sup
n→∞

||pn||
1/n
E = c <∞.

Then f is an entire function and, in the case that a 6=∞, f is identically 0.

Remarks and Examples

1. Let f be a power series with center at 0, but not a polynomial, and with positive radius ρ of convergence. Let E be compact
in D(ρ) = {z ∈ C : |z|< ρ} and let us denote by pn the n-th partial sum of f . Then pn − pn−1 has n zeros at 0 if pn 6= pn−1.
Hence, (i) is satisfied as well as (iv) with c = 1. Moreover, we can choose a point ξ ∈ D(ρ)\E such that (ii) holds. If we
can find a point a ∈ C\E with ψ(a)> 0, then the theorem tells us that f is an entire function:
In the case that ρ is finite there exists, due to a result of Szegő [11], a subsequence Λ ⊂ N such that the normalized zero
counting measures νn of pn converge weakly to the equilibrium measure of the circle {z ∈ C : |z|= ρ} as n→∞, n ∈ Λ.
Consequently, for any point a ∈ C we obtain ψ(a) = 0 and condition (iii) is never satisfied.
In the case ρ =∞, the uniform convergence of the power series in C leads to ψ(a) = 0 for all a ∈ C and ψ(∞) = 1.
Hence, the theorem shows that f is an entire function, not at all surprising since the starting point was ρ =∞.
So we can summarize that we can prove the holomorphy of the power series f in C, based only on ψ(∞) = 1, without
the help of Szegő’s theorem.

2. If f is holomorphic on E, but not a polynomial, then the conditions (i) and (ii) are satisfied for Leja polynomials and for
the best approximating polynomials of a real-valued function f on an interval E ⊂ R, because of the characterization by
alternation points. In both examples, the condition (iii) cannot hold for a ∈ C. Namely, if f is an entire function then
the polynomials converge uniformly to f in C. Hence, again ψ(a) = 0 for a ∈ C and ψ(∞) = 1. In the case that f is
holomorphic on E, but not entire, then best approximating or Leja polynomials to f on E converge maximally to f (Walsh
[13]) and, due a generalization of Szegő’s result, the normalized zero counting measures of these polynomials converge
weakly to the equilibrium of the maximal Green domain of holomorphy of f , at least for a subsequence Λ ⊂ N ([1],[2]).
Hence, we have again ψ(a) = 0 for any a ∈ C, and as in the case of a power series f , we obtain the holomorphy of f in C,
based only on ψ(∞) = 1, without the help of generalizations of Szegő’s theorem.

3. Let E be compact and f holomorphic on E. We consider the Hermite-Lagrange interpolating polynomials pn on {z0, . . . , zn} ⊂
E, n ∈ N. Then (i) holds and if additionally (ii)− (iv) are satisfied, then the theorem can be applied.

4. In all previous examples the constant c in (iv) was 1. We want to discuss an example where c > 1: Let E ⊂ R be compact,
but not an interval, and let f be a continuous, real-valued function on E which is not a polynomial. Let us consider the
polynomials pn of the best approximation to f , then the characterization by alternation points leads to n zeros of pn − pn−1
on the convex hull conv(E) of E if pn 6= pn−1. Then

lim sup
n→∞

||pn||
1/n
E = 1

and the Bernstein-Walsh lemma yields

limsup
n→∞

||pn||
1/n
conv(E) ≤ c = max

z∈conv(E)
gΩ(z,∞),

where gΩ(z,∞) is Green’s function of Ω with pole at∞. Hence, replacing E by conv(E), the condition (i) holds and (iv)
is true with a constant c > 1.

3 Proof

Using a translation of E, we may assume in (ii) that ζ= 0. Then we use the linear transformation

z = h(w) :=
1
w

(3)

and obtain the following properties:

(a) h(0) =∞.

(b) Let eE := h(E), then eE is compact in C since ζ= 0 is mapped to∞ and 0 6∈ E.

(c) Since Ω= C\E is connected, then the set eΩ := C\eE is also connected.

(d) If K is compact in C, then eK = h(K) is compact in C. But we remark that∞∈ eK is possible.
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Because of (3), we obtain

pn(z) = (pn ◦ h)(w) =
epn(w)

wn
(4)

with a polynomial epn ∈ Pn.

Let us define Dn(z) := pn(z)− pn−1(z), then

eDn(w) := Dn(h(w)) = (pn ◦ h)(w)− (pn−1 ◦ h)(w) = (5)

=
epn(w)−wepn−1(w)

wn
(6)

=
eqn(w)

wn
(7)

with eqn ∈ Pn.

Now we assume in the following that n is an index with pn 6= pn−1. Then (ii) implies that there exist n points

ζn,i ∈ E, 1≤ i ≤ n,

(counted with their multiplicity) such that
eDn(1/ζn,i) = 0.

Therefore,
eqn(w) = An

fWn(w), An 6= 0, (8)

where

fWn(w) =
n
∏

i=1

(w−
1
ζn,i
).

(7) and (8) lead to

An =
eqn(w0)
fWn(w0)

, (9)

inserting any point w0 with fWn(w0) 6= 0. Define

ea := h(a), eNn := h(Nn)

and

eψ(ea) := lim
ε→0

lim inf
n→∞

eψn(ea,ε)
deg(epn)

,

where eψn(a,ε) denotes the number of points of eNn in K(ea,ε). Then ea ∈ C and eψ(ea) =ψ(a).

Since ea 6∈ eE, we can fix ε, 0< ε < 1, such that

0< ε <
dist (ea, eE)

2
.

Then there exists n0(ε) ∈ N such that K(ea,ε) contains at least deg(epn) eψ(ea)/2 points of eNn for all n≥ n0(ε), whether pn = pn−1
or pn 6= pn−1.

We obtain with (6) - (8):

eDn(w) =
eqn(w)

wn
=

An
fWn(w)
wn

or

An =
eqn(w0)
fWn(w0)

=
epn(w0)
fWn(w0)

,

inserting any point w0 with fWn(w0) 6= 0 and epn−1(w0) = 0.

So let us consider any index n > n0(ε) with pn 6= pn−1. We fix a zero ηn−1 of epn−1 in K(ea,ε) and the special choice w0 = ηn−1
leads to

An =
epn(ηn−1)
fWn(ηn−1)

. (10)

We estimate the numerator and the denominator in (10) separately.
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Upper bounds for epn(ηn−1)

Let epn(w) = anwn + . . ., then an 6= 0 since we consider only indices n with pn 6= pn−1. Consequently

epn(w) = an

∏

η∈fNn

(w−η), (11)

where η runs through the points of eNn and
||epn||eE ≥ |an|(cap eE)n. (12)

We have used for the last inequality the well-known bound

||qn||eE ≥ (cap eE)n

for all monic polynomials qn ∈ Pn (cf. Pommerenke [8], Lemma 11.2). Moreover,

||epn||eE = ||w
npn(

1
w
)||

eE ≤ ||pn||E max
w∈eE
|wn|.

Set
c1 :=max

w∈eE
|w|,

then c1 > 0 and (12) leads to

|an| ≤
c n

1

(cap eE)n
||pn||E (13)

(We keep in mind that cap eE > 0 because of cap E > 0). Using property (iv) we obtain a constant c2 > 0 such that

||pn||
1/n
E ≤ c2 for all n ∈ N.

Let
c3 := (cap eE)−1c1c2,

then
|an| ≤ cn

3 , n ∈ N, (14)

and
|epn(ηn−1)| ≤ cn

3

∏

η∈fNn

|ηn−1 −η|.

We subdivide the product into two factors
∏

η∈fNn

=
∏

η∈fNn ,|ea−η|≤ε

∏

η∈fNn ,|ea−η|>ε

.

Since 0 6∈N , there exists a neighborhood U of 0 and n1(ε)≥ n0(ε) such that Nn−1 ∩ U = ; for all n≥ n1(ε). Because the linear
transformation h maps U to a neighborhood of∞, there exists a constant c4 > 1 such that

|ηn−1 −η| ≤ c4 for any η ∈ eNn, n≥ n1(ε).

Hence,
∏

η∈fNn ,|ea−η|>ε

|ηn−1 −η| ≤ cn
4 .

On the other hand
∏

η∈fNn ,|ea−η|≤ε

|ηn−1 −η| ≤ εn eψ(ea)/2, n≥ n1(ε),

and therefore we get
|epn(ηn−1)| ≤ (c3c4)

nεnψ(a)/2, n≥ n1(ε). (15)

Lower bounds for fWn(ηn−1)

Since

fWn(ηn−1) =
n
∏

i=1

(ηn−1 −
1
ζn,i
)

and 1/ζn,i ∈ eE, we have for n≥ n1(ε)
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|ηn−1 −
1
ζn,i
| ≥ dist(ηn−1, eE)≥

dist(ea, eE)
2

=: 1/c5

or
|fWn(ηn−1)| ≥ (1/c5)

n. (16)

Together with (10), we finally obtain from and (15) and (16)

|An| ≤ (c3c4c5)
nεnψ(a)/2 for n≥ n1(ε). (17)

Summarizing, we have got for w ∈ C\eE, w 6= 0 :

eDn(w) = An
1

wn

n
∏

i=1

(w−
1
ζn,i
),

where An is bounded by (17) for n≥ n1(ε). Observe that

n
∏

i=1

|w−
1
ζn,i
| ≤

n
∏

i=1

(|w|+ |
1
ζn,i
|)≤ (2 max

w∈eE
|w|)n ≤ (2c1)

n.

Define
c6 :=max

w∈eE
|1/w|,

then
max
w∈eE
|eDn(w)| ≤ (2c1c3c4c5c6)

nεnψ(a)/2 (18)

for all n≥ n1(ε) or
max
w∈eE
|eDn(w)| ≤ c(ε)n (19)

with
c(ε) = 2c1c3c4c5c6 ε

ψ(a)/2. (20)

Next we use a modification of the Bernstein-Walsh lemma for the growth of the functions eDn(w) in eΩ= C\eE: Since 0 ∈ eΩ
and cap eE > 0, there exists the Green function g

eΩ(w, 0) with pole at 0. g
eΩ(w, 0) satisfies the following properties:

(a) g
eΩ(w, 0) is nonnegative and harmonic in eΩ\{0} and bounded as w stays away from 0,

(b) lim
w→0
(g

eΩ(w, 0) + log |w|) exists and g
eΩ(w, 0) + log |w| is harmonic at the point w= 0,

(c) lim
w→z,w∈eΩ

g
eΩ(w, 0) = 0 for quasi-every z ∈ ∂ eΩ

(cf. Saff, Totik [9], chapter II, 4, p.108 ff or Tsuji [12] chapter I, 6, p.14).

Then we use the following lemma

Lemma (modified Bernstein-Walsh). Let eE be a compact set in C with cap eE > 0, eΩ := C\eE and 0 ∈ eΩ. If

eDn(w) =
epn(w)

wn
, epn ∈ Pn,

then for all w ∈ eΩ\{0}:

|eDn(w)|= ||eDn||eE eng
eΩ(w,0).

Proof of the Lemma: Define

g(w) :=
1
n

log |eDn(w)| − g
eΩ(w, 0),

then g is harmonic in eΩ and
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lim
w→z,z∈∂ eΩ

g(w)≤
1
n

log ||eDn||eE

for quasi-every point z ∈ ∂ eΩ. Then the maximum principle for harmonic functions implies that

g(w)≤
1
n

log ||eDn||eE

for every w ∈ eΩ\{0}, or

|eDn(w)| ≤ ||eDn||eE eng
eΩ(w,0)

for all w ∈ eΩ\{0}. �

Now we can continue with the main proof.

Let K be compact in C, then eK := h(K) is compact in C\{0}. Define

m(eK) :=max
w∈eK

g
eΩ(w, 0),

then m(eK)> 0 and the modified Bernstein-Walsh lemma gives

max
w∈eK
|eDn(w)| ≤ ||eDn||eE em(eK)n

and (18) yields

max
w∈eK
|eDn(w)| ≤ c(ε)nem(eK)n

with c(ε) as in (20). Then we can choose ε such that

c(ε)em(eK) < δ < 1

for all n≥ n1(ε), where pn 6= pn−1 was satisfied. But the remaining members

pn − pn−1

in the telescoping series are 0. Hence, the telescoping series (2.1) converges uniformly on K for any compact set K of C.
Consequently, f is an entire function and the first part of the theorem is proved. Concerning the second part for a 6=∞, we
notice that f must have a zero at the point a of infinite order. This is only possible if f is identically 0. �

4 Application to Lp−approximation

Let w be a weight on I = [−1,1] such that
∫

I
w d x = 1 and w > 0 almost everywhere on I . We consider the space Lp(I),

1< p <∞, with the norm

|| f ||Lp(I) =
�

∫

I

| f |pw d x
�1/p

and denote by Bn,p( f ) the polynomial of best Lp− approximation of f ∈ Lp(I) in Pn. It is well known that Bn( f ) is characterized
by the orthogonality relation

∫

I

pn| f − Bn,p( f )|p−1sgn( f − Bn,p( f ))d x = 0, pn ∈ Pn. (21)
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Now, let us consider for fixed f ∈ Lp(I) the telescoping series

f = B0,p( f ) +
∞
∑

n=1

(Bn,p( f )− Bn−1,p( f )). (22)

Our intention is to apply Theorem 1, using
pn := Bn,p( f ), n= 0, 1,2, . . . ,

on E = I .
In the following we assume that f is holomorphic on I . Then Walsh ([13],§5.2) proved that the sequence {Bn,p( f )}∞n=0

converges maximally to f . Hence, if f is not identically 0 there exists a point ξ ∈ C\I such that ξ 6∈N , i.e., the condition (ii) is
true for the sequence Bn,p( f ), n ∈ N0.

Next, we will use some notations to formulate a Nikolski-type inequality and we follow the arguments in the paper of
Kroó-Swetits ([3], section 2.1): Let µ be a the equilibrium measure of I and define for 0≤ ε ≤ 1

φ(w,ε) := inf{
∫

A

w d x : A∈ I , µ(A)≥ ε}.

Then φ(w,ε) is a continuous, increasing function on [0, 1], positive on (0, 1) and satisfying φ(w, 0) = 0 and φ(w, 1) = 1. Hence,
for every n ∈ N the equation

φ(w,ε) = e−nε (23)

has a unique solution εn(w). Then 0< εn(w)< 1 and εn(w) tends monotonically to 0 as n→∞. The number εn(w) appears in
the Nikolski-type inequality

||pn||I ≤ eCnεn(w)||pn||Lp(I), pn ∈ Pn,

where C is a fixed positive constant, independent of n ∈ N (Kroó, Swetits [3], inequality 6 on page 89). Hence,

limsup
n→∞

||Bn,p( f )||
1/n
I = 1

and the property (iv) is satisfied for the sequence {Bn,p( f )}n∈N.

Now, we turn our attention to
Dn,p( f ) := Bn,p( f )− Bn−1,p( f ) ∈ Pn. (24)

Because of (21), the function
Φn,p( f ) :=

| f − Bn−1,p( f )|p−1sgn( f − Bn−1,p( f ))− | f − Bn,p( f )|p−1sgn( f − Bn,p( f )) (25)

satisfies the orthogonality condition
∫

I

pn−1Φn,p( f )w d x = 0, pn−1 ∈ Pn−1. (26)

Then Kroó and Swetits ([3], Proposition 2, p. 94) have pointed out a link between Φn,p( f ) and Dn,p( f ), namely

sgn Φn,p( f ) = sgn(Bn,p( f )− Bn−1,p( f )). (27)

Finally we obtain from (26) and (27) that Dn,p( f ) has exactly n zeros inside I if Bn,p( f ) 6= Bn−1,p( f ). Hence, condition (i) is
satisfied for {Bn,p( f )}n∈N.

Therefore, we immediately obtain from the theorem in section 2 for polynomial Lp-approximation the following converse
result.

Corollary. Let 1< p <∞ and let f be holomorphic on I = [−1, 1], but not a polynomial. If Bn,p( f ) is the best Lp-approximation of
f in Pn, then we denote by ψn(∞,ε) the number of zeros of Bn,p( f ) in

K(∞,ε) = {z ∈ C : |z| ≥ 1/ε} (ε > 0)

and we set

ψ(∞) = lim
ε→0

lim inf
n→∞

ψn(∞,ε)
deg(Bn,p( f ))

.

If ψ(∞)> 0, then the function f can be continued to an entire function.
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Finally, we want to give a more general example for L2-approximation: Let E be compact, convex set in C and µ a positive,
regular Borel measure on E. We consider the space L2(µ), i.e., the set of complex-valued functions f endowed with the norm

|| f ||L2(µ) =
�

∫

| f |2dµ
�1/2

.

We consider the polynomials Bn,2( f ) of best L2(µ)-approximation of f ∈ L2(µ) in Pn. Then it is well-known that

Bn,2( f )− Bn−1,2( f ) = cnpn,µ,

where cn ∈ C and pn,µ is the n-th orthonormal polynomial corresponding to µ. Due to a theorem of Fejér, pn,µ has n zeros in the
convex hull of E which is E itself, since E is convex. Because of the regularity of µ, we have

limsup
n→∞

||Bn,2( f )||
1/n
E = 1,

if f is not a polynomial (cf. Stahl, Totik [10]).

Hence, the application of the theorem is straightforward for functions f holomorphic on E.
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