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Abstract

Training a residual neural network with L2 regularization on weights and biases is equivalent to minim-
izing a discrete least action principle and to controlling a discrete Hamiltonian system representing the
propagation of input data across layers. The kernel/feature map analysis of this Hamiltonian system
suggests a mean-field limit for trained weights and biases as the number of data points goes to infinity.
The purpose of this paper is to investigate this mean-field limit and illustrate its existence through
numerical experiments and analysis (for simple kernels).

1 Introduction
Supervised learning is a class of learning problems which seek to find a relationship between a set of predictor variables (the
inputs) and a set of target variables (the outputs). The target, also called dependent variable, can correspond to a quantitative
measurement (e.g., height, stock prices, etc.) or to a qualitative measurement (e.g., sex, class, etc.). The problem of predicting
quantitative variables is called regression. On the other hand, classification problems aim at predicting qualitative variables. Over
many years of research, various models have been developed to solve both type of problems. In particular, artificial neural network
(ANN) models have become very popular since their complex architecture allows the model to capture underlying patterns in the
data. This architecture has proved to be successful in different areas of artificial intelligence such as image processing, speech
recognition or text mining. ANNs transform the inputs using a composition of consecutive mappings, generally represented by a
directed acyclic graph. With this representation, the inputs are being propagated through multiple layers, defining a trajectory
that is optimized by training the parameters of the network.

In this paper we investigate the propagation of the inputs from a Dynamical Systems perspective, an approach recently
explored by Houman Owhadi in [10]. Owhadi shows that the minimizers of L2 regularized ResNets, a particular class of ANNs,
satisfy a discrete least action principle implying the near preservation of the norm of weights and biases across layers. The
parameters of trained ResNets can be identified as solutions of a Hamiltonian system defined by the activation function and the
architecture of the ANN. The form of the Hamiltonian suggests that it is amenable to mean-field limit analysis as the number of
data points increases. Furthermore, when the mean-field limit holds, the trajectory of inputs across layers is given by a mean-field
Hamiltonian system where position and momentum variables are nearly decoupled through mean-field averaging. The purpose
of this paper is to analyse and numerically illustrate this mean-field limit by investigating the convergence of the trained
weights and biases of the model (appearing in the Hamiltonian in our kernel/feature map setting) as the number of data
points goes to infinity.

In Section A we define the mathematical setting of supervised learning and introduce kernel learning, a class of problems that
encompasses ANNs and which is used throughout this paper. In Section B we explain how to identify the optimization of neural
networks as a dynamical system problem and characterize the optimal trajectory of the inputs. In Section 2 we reformulate the
dynamics using the feature space representation of kernels. With this representation we show that the trajectory is determined by
a parameter amenable to mean-field limit analysis. In Section 3, we simulate this parameter on regression and classification
datasets.

All the results in the Appendices are a review of some results in Owhadi’s paper [10].

2 Mean-field analysis of Hamiltonian dynamics
In Section B, we derived the Hamiltonian representation of minimizers of mechanical regression and idea registration. We
stated that the propagation of the inputs is completely determined by the initial momentum p(0). In this section, we derive
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another system which does not involve the momentum. The system is obtained for an operator-valued kernel Γ with feature map
ψ : X −→ L(X ,F) such that (42) holds,

Γ (x , x ′) =ψT (x)ψ(x ′).

Then, the ODE for the trajectory is of the form
�

q̇i =ψT (qi)α(t)
qi(0) = x i ,

(1)

for some mapping α(t). We characterize α using the feature map identification (44) of the RKHS V and show that this mapping
is amenable to mean-field limit analysis. We also discuss a data-based method to simulate this limit.

2.1 Feature space representation of kernels

We reformulate mechanical regression and idea registration using the feature space representation of kernels (cf., Sec. A.4) as
presented in [10, Sec. 6].

2.1.1 Mechanical regression

The following theorem characterizes the minimizers of mechanical regression in the feature space of Γ .

Theorem 2.1 (Mechanical regression in feature space). Let Γ be a kernel of RKHS V with associated feature space and map F
and ψ : X −→ L(X ,F). Then, α1, . . . ,αL satisfy

�

Minimize νL
2

∑L
s=1 ∥αs∥2

F + ℓ(φL(X ), Y ),
over α1, . . . ,αL ∈ F ,

(2)

if and only if the vs(·) =ψT (·)αs ∈ V minimize (59) and

φL(·) = (I +ψT (·)αL) ◦ · · · ◦ (I +ψT (·)α1). (3)

This theorem identifies the minimizers vs with parameters αs belonging to the feature space F (possibly infinite-dimensional).
In practice, we choose Γ to be a scalar operator-valued kernel (see Def. A.4) obtained with a finite dimensional feature space F
and map ϕ,

Γ (x , x ′) = ϕT (x)ϕ(x ′)IX .

Using Lemma A.4, {αs}L
s=1 are matrices in Rdim(X )×dim(F) and ∥αs∥2

F corresponds to a matrix Frobenius norm. These parameters
define the optimal discrete trajectory q1, . . . , qL+1

�

qs+1 = qs + αsϕ(qs), for s = 1, . . . , L
q1 = X ,

(4)

where we used ψT (·)αs = αsϕ(·). By introducing ∆t = 1/L and αs =∆t α̃s, the system is equivalent to
�

qs+1 = qs +∆t α̃sϕ(qs), for s = 1, . . . , L
q1 = X ,

(5)

where {α̃s}L
s=1 minimize

ν

2

L
∑

s=1

∥α̃s∥2
F ∆t + ℓ(qL+1(X ), Y ), where qL+1 = φL(X ). (6)

(5) is a discrete dynamical system which approximates (1) (for each input x i). The time-dependent parameter α(t) is
approximated by {αs} with αs = α(s/L) at time ts = s/L.

2.1.2 Idea registration

The next theorem characterizes α in the feature map representation of idea registration.

Theorem 2.2 (Idea registration in feature space). The α(t) satisfy
¨

Minimize ν
2

∫ 1

0
∥α(t)∥2

F d t + ℓ(φv(X , 1), Y )
over α ∈ C([0,1],F)

(7)

if and only if v(·, t) =ψT (·)α(t) and φv(x , t) minimize (69). Furthermore, at the minimum, ∥α(t)∥2
F is constant over t ∈ [0,1].

Hence, α is identified as the minimizer of (7) and (71) implies q̇i =ψT (qi)α(t). If in addition, Γ is scalar operator-valued,
the ODE for the trajectory becomes

�

q̇i = α(t)ϕ(qi)
qi(0) = x i .

(8)
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2.1.3 Equivalence with ResNet block minimizers

In Sec. 2.1.1 we reformulated mechanical regression using the feature map representation of Γ . In addition, if Γ is a SOV kernel,
the minimizers are identified with matrices {αs}L

s=1. In the special case that Γ and K have the form in (54), mechanical regression
is equivalent to minimizing one ResNet block (see Ex. A.3) with L2 regularization on weights and biases. This is summarized in
the following theorem.

Theorem 2.3. If Γ (x , x ′) = ϕ(x)Tϕ(x ′)IX and K(x , x ′) = ϕ(x)Tϕ(x ′)IY , where ϕ(x) is given by (53), then minimizers of (59)
are of the form

f (x) = α̃ϕ(x) and vs(x) = αsϕ(x), (9)

where α̃= (W̃ , b̃) ∈ L(X ⊕R,Y), αs = (Ws, bs) ∈ L(X ⊕R,X ) are minimizers of

min
α̃,α1 ,...,αL

νL
2

L
∑

s=1

∥αs∥2
L(X⊕R,X ) + λ∥α̃∥

2
L(X⊕R,Y) + ∥ f (φL(X ))− Y ∥2

YN , (10)

and ∥α∥L(F,Z) corresponds to the Frobenius norm of the linear map α : F −→ Z.

The approximation f ‡ = f ◦φL is of the form

f ◦φL(x) = (α̃ϕ) ◦ (I +αLϕ) ◦ · · · ◦ (I +α1ϕ)(x). (11)

2.2 Mean-field analysis

2.2.1 The mean-field approximation

Mean-field theory aims at developing approximation strategies for systems composed of interacting particles. It was originally
developed in statistical physics to study systems such as the Ising model [2]. The central idea behind mean-field theory is to
approximate the interacting terms in the system by a simpler non-interacting function. Our aim is to apply this strategy to study
the Hamiltonian (79),

H(q, p) =
1
2

N
∑

i, j=1

pT
i Γ (qi , q j) p j . (12)

It can be viewed as a system of interacting particles. The feature map representation of Γ allows us to split the interacting term
Γ (qi , q j) into two terms ψT (qi) and ψ(q j). If we re-scale the momentum p̄ j := N p j and define

α(t) :=
1
N

N
∑

j=1

ψ(q j(t)) p̄ j(t), (13)

we can remove the interaction in the Hamiltonian

H(q, p) =
1
2

N
∑

i=1

pT
i ψ

T (qi)α(t).

We can rewrite the dynamics of (q, p) as
(

q̇i =ψT (qi)α
˙̄pi = −∂x

�

p̄T
i ψ

T (x)α
�

�

�

�

x=qi

.
(14)

Note that this coincides with the dynamics of q obtained in Theorem 2.2. Eq. (13) suggests that α(t) is amenable to mean-field
limit analysis as N →∞. If the limit exists, the system (12) behaves like a decoupled system of particles in the sense that the
trajectory of each data input is not influenced by other inputs. Secondly, α(t) defines the ODE for the flow map φv (70),

φ̇v(x , t) = α(t)φv(x , t)

which determines the solution of idea registration f ‡(·) = f (φv(·, 1)).

2.2.2 Type of convergence

In theory, α(t) is a possibly infinite-dimensional object belonging to the feature space F of the operator-valued kernel Γ . In
practice, we consider Γ to be scalar operator-valued defined with a finite-dimensional feature space F= RD. Lemma A.4 states
that α(t) ∈ Rp×D for all t ∈ [0, 1] (taking Y = X in the lemma). To simulate the limit, we need to plot a functional of {α(t)}0<t<1
against different values of N . A natural choice corresponds to the energy integral appearing in the loss (7),

E(α) =

∫ 1

0

∥α(t)∥2
F d t. (15)
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Numerically, we approximate α(t) with {αs}L
s=1 using mechanical regression. The energy (15) is then approximated by

E(α1, . . . ,αL) =
L
∑

s=1

∥αs∥2
F ∆t

=
1
L

L
∑

s=1

∥αs∥2
F ,

(16)

which corresponds to the average Frobenius norm of αs across the layers of the network, and appears in the formulation (6) of
mechanical regression.

2.3 Numerical simulations

Provided that Γ is a Scalar Operator Valued (SOV) kernel, the feature space representation of mechanical regression given by
Theorem 2.1 reduces the search for the optimal trajectory to the search for matrices {αs}L

s=1 that minimize (2). These parameters
correspond to a discretization of the time-dependent parameter α(t) in idea registration (Thm. 2.2). We present the optimization
algorithm with the feature space framework.

Let X = Rp and Y = Rd be the input and output space. Let Γ and K be scalar operator-valued kernels obtained using feature
maps ϕ, ϕ2 with corresponding feature spaces F and F2,

• Γ (x , x ′) = ϕT (x)ϕ(x ′)IX , where ϕ(x) ∈ F= RD for some D ≥ 1.

• K(x , x ′) = ϕT
2 (x)ϕ2(x ′)IY , where ϕ2(x) ∈ F2 = RD2 for some D2 ≥ 1.

Obtain φL(X ) = qL+1 from the discrete dynamics (4). The function f is of the form f (·) = w2ϕ2(·), where

w2 =
�

ϕT
2 (φL(X ))ϕ2(φL(X )) + (Nλ) ID2

�−1

ϕT
2 (φL(X ))Y ∈ Rd×D2 (17)

minimizes the ridge loss

ℓrid ge(φL(X ), Y ) =
1
N
∥w2ϕ2(φL(X ))− Y ∥2 +λ∥w2∥2

F2
, (18)

where the squared error term has been normalized. By renormalizing the squared error in the ridge loss term, we aim to illustrate
the convergence of the trained model parameters {αs}L

s=1 and w (obtained as minimizers of (2)) as N →∞.
The normalization of the squared error will control the ridge loss as N increases. If the trained model parameters {αs}L

s=1 and
w (obtained as minimizers of (2)) converge as N →∞, then the energy integral E(α) must converge too.

For any deformed input φL(X ), (17) uniquely defines w2. Thus, the loss (2) is completely determined by α1, . . . ,αL ,

L(α1, . . . ,αL) :=
νL
2

L
∑

s=1

∥αs∥2
F + ℓrid ge(φL(X ), Y ). (19)

We can use a gradient-based method to minimize the loss (19) with respect to α1, . . . ,αL . In this article we use the Adam
optimizer, a gradient-based method that computes adaptive learning rates for each parameter [12].

The feature perspective has the advantage that it doesn’t involve simulating a mechanical system unlike the shooting method
(Sec. B.4).

2.4 Analytical example: Linear kernel

In order to gain intuition about the optimization of α(t), we derive an analytical solution to (1) when X = R and Γ is the scalar
operator-valued linear kernel

Γ (x , x ′) = ϕ(x)ϕ(x ′)IX , ϕ(x) = x .

Applying Ex. A.5 with p = 1, the feature space of Γ is F = R. The trajectory (8) is

q̇i = α(t)qi

=⇒
q̇i

qi
= α(t)

=⇒ qi(t) = x i exp
�

∫ t

0

α(s) ds
�

.

Energy preservation of ∥α(t)∥2
F = α

2(t) over t implies that α(t) is constant in t, i.e. α(t) ≡ α ∈ R. Hence, the inputs are
deformed according to the trajectory

qi(t) = x i eα t =⇒ qi(1) = x i e
α.

Dolomites Research Notes on Approximation ISSN 2035-6803



Smirnov · Hamzi · Owhadi 129

The deformation depends on the optimal α that minimizes the loss (7), which can be explicitly written as,

L(α) =
ν

2
α2 + λY T [K(X eα, X eα) +λIN ]

−1Y

=
ν

2
α2 + λe−2αY T [K(X , X ) +λe−2α IN ]

−1Y.

The minimizer α of L changes the regularization λ on the ridge loss into a parameter λ̃= λe−2α. Therefore, deforming the input
space is equivalent to tuning the regularization of the ridge loss. Since λ̃→ 0 as α→∞, the regularization ν > 0 penalizes
overfitting of the training data.

3 Simulations in feature space representation
In this Section we simulate the parameter α(t) described in Section 2 for both regression and classification datasets. For regression,
one is a synthetic dataset and the second is the Boston housing dataset [4]. For classification datasets, we choose MNIST and
Fashion MNIST, two benchmark sets.

3.1 Model optimization

The input and output spaces are X = Rp and Y = Rd .

3.1.1 Choice of feature maps

We suppose that the kernels Γ , K are scalar operator-valued kernels obtained using feature maps ϕ, ϕ2 with corresponding feature
spaces F and F2 defined as follows:

• Γ (x , x ′) = ϕ(x)Tϕ(x ′)IX , where ϕ(x) = (a(x), 1) ∈ F= Rp+1 is defined through an activation as in Sec. A.4.3.

• K(x , x ′) = ϕ2(x)Tϕ2(x ′)IY , where ϕ2(x) = a(W 2 x + b2) ∈ F2, W 2 ∈ RdimF2×p and b2 ∈ RdimF2 . We take F2 = RD2 . The
entries W 2

i, j , b2
i are taken randomly as discussed in Sec. A.4.4.

3.1.2 Choice of other parameters

We train the model for three different activation functions a(x): ReLU, tanh and sigmoid. The kernel Γ is used to deform the
input space and its feature map up-samples the inputs by one dimension. For the ridge kernel K we can choose F2 such that it
up-samples or down-samples the inputs. For our experiments we fix F2 = R10.

3.1.3 Model training and comparison

We train the model as described in Sec. 2.3 using the Adam optimizer to minimize the L2 regularized loss (19). We initialize
the parameters at αs = 0 for s = 1, . . . , L, which corresponds to no deformation of the inputs, i.e. qL+1 = X . We apply ridge
regression without space deformation, then we plot the training and tests errors. For regression data, the MSE is used as the
metric error; for classification we use the proportion of misclassified samples. We show test errors for the sake of completeness
since the purpose of this paper is not to improve test error but to study the convergence of the trained model parameters
as we increase N . To analyze convergence, we plot the energy E(α) given by (16) as a function of N , for different activation
functions and different values of L.

3.2 Regression datasets

3.2.1 Synthetic data

We take a synthetic dataset (X i , Yi)Ni=1 where X i ∈ X = R and

Yi = X 2
i + X i + εi , εi ∼N (0,σ2) for σ2 = 1.

We choose N training inputs evenly spaced in the interval [−5, 5] with N = 50 · 2k and k = 0, 1, . . . , 5. We fix the test dataset
to 200 points: 100 in each of the intervals [−7.5,−5] and [5,7.5].

3.2.2 Boston housing dataset

The Boston housing data [4] was collected in 1978 and each of the N = 506 entries represent aggregated data about 14 features
for homes from various suburbs in Boston, Massachusetts. The target variable is the median value of owner-occupied homes and
the remaining features are the predictors. Thus, we have X = R13 and Y = R. For reasons of numerical instability, we only train
the model with ReLU and tanh activations.

We split the dataset into training and test set, where we choose 10% of the total set size for test data (around 50 points), the
remaining data is used for training. Test set size is kept low on purpose since we are interested in getting as much training data
to get the most accurate estimate of mean-field convergence.
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3.2.3 Result interpretation

Model performance

On the synthetic data (Fig. 4), mechanical regression outperforms ridge regression for any choice of L and activation, except for
tanh and L = 2. For ReLU and tanh using L = 2 layers produces a higher training/test MSE and L2 regularized loss compared to
deeper models; for L ≥ 4, the models have very similar MSE and objective loss Fig. (4A), Fig. (4(B). For the sigmoid activation,
these values are identical for all values of L Fig. (4C). The key element is the deformation of the inputs, which improves both the
fit and the L2 regularized loss: compare the Ridge curves and mechanical regression curves. For all activations, the deformation
yields a considerable reduction in L2 loss.

On the Boston housing dataset (Fig. (9)), mechanical regression outperforms ridge regression on the training set for both
activation functions. The best decrease in MSE on the training set is for the ReLU activation (9A).

Convergence

On the synthetic dataset, Fig. 5 shows that E(α) appears to converge as N increases. This seems to holds for of all values of L.
The exceptions are mechanical regression with L = 2 and the ReLU activation (5A), which is upward trending, as well as with
sigmoid activation.
Fig. 6 shows that on the Boston housing dataset, E(α) fluctuates less as L increases. Hence, using a deeper network, controls the
energy as we increase N . When L = 2 fluctuations are very important compared to other values of L.
Finally, an increase in L appears to reduce the average norm E(α) on both datasets. This means that the energy in the loss (19),
becomes smaller as we decrease the time step used to discretize idea registration.

3.3 Classification datasets

3.3.1 MNIST

MNIST is a classification dataset containing images of handwritten digits. It has a training set of 60,000 examples and a test set of
10,000 examples. We train mechanical regression with N data points taken from the training set, where N ∈ {500, 1000, . . . , 5000}
with a step of 500. We choose F2 = R784, which corresponds to the dimension of a flattened 28× 28 input image. The database is
widely used for training and testing models in machine learning.

3.3.2 Fashion MNIST

Fashion MNIST is a dataset of Zalando’s article images consisting of a training set of 60,000 examples and a test set of 10,000
examples. Each example is a 28× 28 image, associated with a label from 10 classes. Observe that it shares the same image size
and structure of training and testing splits as MNIST. This dataset is used for benchmarking machine learning algorithms and is
regarded as more complicated than MNIST (in terms of model performance).

3.3.3 Result interpretation

Model performance

On MNIST (Fig. 13), mechanical regression with ReLU and tanh converge towards a 5− 6% testing error (2a,2b) as we increase
the number of training data points, while sigmoid converges towards a 14% testing error (2c). The same pattern holds for Fashion
MNIST (Fig. 18), with ReLU and tanh converging towards 15− 16% and sigmoid towards 21%. Interestingly, as N increases, the
training accuracy decreases, but test accuracy increases. A possible explanation is that increasing N , increases the penalty in the
ridge loss (Nλ in Eq. (17)) which prevents the model from overfitting. This can lead to better generalization, which is reflected
in the better test accuracy and worse training accuracy.

Convergence

Fig. 14 (MNIST) and Fig. 19 (Fashion MNIST) have very similar shapes. Convergence clearly holds for L = 2,3. For L = 1,
convergence seems to be slower since the values are slightly decreasing in N . The curves are flatter for MNIST which indicates
a faster convergence than for Fashion MNIST. This could be explained by the fact that Fashion MNIST is a more challenging
classification problem than MNIST, which requires more training samples.

3.4 Discussion

3.4.1 Observations

Our model presented in Sec. 3.1 uses the feature map representation of mechanical regression to approximate idea registration.
We train the model on several classification and regression datasets, including a dynamical system. We observed the behaviour of
the energy E(α) after minimizing the loss for increasing values of N . On the synthetic, MNIST and Fashion MNIST datasets we can
observe clear convergence in N . On MNIST and Fashion MNIST, there is also convergence of the test loss. On the Boston housing
dataset, the fluctuation of the energy decreases as we use more hidden layers but we cannot observe a similar convergence to MNIST.
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3.4.2 Limitations and suggestions

The rationale behind initializing α to 0 is the following: since the regularization ν induces a penalty on the deformation of the
inputs, we allow it to occur only if the reduction in ridge loss is greater than this penalty. The limitation of this reasoning is that
the optimizer may get stuck at a local minimum, hence not exploring the full parameter space. One approach to overcome this
could be to optimize α with different random initializations and pick the one that minimizes the loss (19).

Secondly, the high-dimensionality of α complicates the study of element-wise convergence. We use the energy since its
presence in the loss function makes it a natural candidate. Other transformations can be explored.

Thirdly, the value of E(α) is certainly affected by the penalty parameters λ and ν. We have not explored other values which
can change it. For example, an interesting case would be to try the simulations for ν= 0, thus not penalizing the deformation.

Finally, other network architectures will lead to different values for E(α) and possibly faster convergence to a minimum.
Hence, further experiment with other model architectures should be performed.

4 Conclusion
In this article we presented a dynamical system perspective of the training of neural networks by characterizing the optimal
propagation of the inputs across its layers. We reviewed the theory of kernel based learning and introduced operator-valued
kernels as a tool to construct spaces of functions. Using this setting, we introduced a model architecture, called mechanical
regression, whose minimizers are identified as a solution of a discrete Hamiltonian system. We obtained the continuous dynamics
as an infinite-depth limit of the discrete case.

We then used the feature space representation of kernels to reformulate the dynamics of the minimizers. The form of the
trajectory in this representation is amenable to mean-field limit analysis. We showed a data-based approach to simulate a
functional of this limit, involving the training of a neural network. Finally, we trained our model on various standard datasets
and investigated its performance and the limiting behaviour of the functional. We observed a convergence in energy on MNIST
and Fashion MNIST, two benchmark classification datasets. However, we should verify this convergence with other datasets and
model architectures which motivates the need for further investigation.
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6 Code
The Python codes of all numerical experiments in this paper are at https://github.com/alexsm98/Mean-field-limit-code-.
git

A Supervised learning with Kernels

A.1 Introduction

Supervised learning aims at finding a relationship between x ∈ X and y ∈ Y. We are given N pairs of training data points
{(x i , yi)}Ni=1, which we use to model the relationship. We set X = (x1, . . . , xN ) ∈ X N and Y = (y1, . . . , yN ) ∈ YN . In regression,
X = Rp, where the p coordinates are called features, and Y = Rd for some p, d ≥ 1. In classification, Y corresponds to a discrete
subset D= {c1, . . . , cl} ⊂ Rd . We formulate the supervised learning problem as follows.
Problem A.1 (Supervised learning). Let f † be an unknown function mapping X to Y. Given the information f †(X ) = Y with the
training data (X , Y ) ∈ X N ×YN approximate f † with a mapping f that minimizes a loss function

ℓ : YN ×YN −→ R≥0.

In parametric models, we look for the optimal f in a certain Hilbert space of functions H and its performance is evaluated
using a given metric. It is important to note the difference between loss and metric. The former is the objective function that we
minimize to get f , while the latter measures the model’s performance on the data. In regression, the mean squared error (MSE)

ℓY( f (X ), Y ) :=
1
N
∥ f (X )− Y ∥2

YN , where ∥Y ∥2
YN :=

N
∑

i=1

∥Yi∥2
Y ,

is usually chosen as the metric, while in classification data we use the proportion of misclassified samples. The MSE can also be
used as a loss function for both regression and classification. Throughout this paper we will use the ridge loss

ℓrid ge( f (X ), Y ) := ∥ f (X )− Y ∥2
YN + λ∥ f ∥2

H, (20)
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where λ > 0 is a positive regularization parameter and ∥ f ∥2
H is the norm of the function f in the Hilbert space H to which it

belongs. This loss introduces an additional penalty term λ > 0 on f to prevent overfitting of the training data, an issue that
commonly arises when using the MSE as the loss. Overfitting means that the model well-approximates the training output Y but
fails to generalize to new data, resulting in large approximation error.

The ridge loss can be used for both regression and classification. In regression, the output Y is directly predicted with
Ŷ = f (X ). In classification, f (X ) is a vector whose dimension is equal to the number of possible classes. The class is predicted
with Ŷ = argmax f (X ).

Example A.1 (Linear ridge regression). We aim to determine a parametric function of the form fθ

fθ : Rp −→ R

x 7−→ fθ (x) = x Tθ

The Hilbert space H can be identified with the space of parameters θ ∈ Rp and the penalty term regularizes the Euclidean
norm ∥ fθ ∥2

H = ∥θ∥
2. The parameter that minimizes the ridge loss is

θ rid ge =
�

X T X +λ IN

�−1
X T Y. (21)

A new input x∗ is predicted as

y∗ = θ T
rid ge x∗ =

p
∑

k=1

θk x∗k.

The solution also admits a dual form, obtained using the relationship (cf., [13])
�

X T X +λ IN

�−1
X T Y = X T
�

X X T +λ IN

�−1
Y. (22)

Thus, we can write θ rid ge = X T α and the prediction as

y∗ =
N
∑

i=1

αi x T
i x∗. (23)

When formulating the problem in dual form, we optimize over a parameter α ∈ RN , whose dimension corresponds to the
number of data points. Additionally, observe the presence of dot product terms x T

i x∗, which can be viewed as a similarity measure
between two input samples. Kernel methods generalize this idea by replacing the dot product with a function k(x i , x∗) which
corresponds to an inner product of the inputs in a transformed space, called the feature space.

A.2 Neural networks

In this section, we introduce neural networks and refer the reader to [3] for a more detailed overview on this topic.

A neural network can be used as a supervised learning model whose architecture contains multiple layers of input data
transformation. The general idea is to transform the input x into x ′ by a composition of consecutive mappings. We then map the
modified input to the output y . The function f can be expressed as a composition

f = fD ◦ · · · ◦ f1, (24)

where fk : Xk −→ Xk+1 and fk belongs to a Hilbert space Hk for k = 1, . . . , D. We have X0 = X ,XD+1 = Y. Note that each
function fk maps Xk into a new space Xk+1. The space Xk is commonly referred to as the k-th layer of the network and all the
layers Xk ̸= X ,Y are called the hidden layers.

Example A.2 (Artificial Neural Network). Each function fk is of the form

fk(x) = a(Wk x + bk), (25)

where a is a fixed activation function, Wk ∈ L(Xk, Xk+1), and L is the space of linear operators between Xk and Xk+1, and bk ∈ Xk+1.
Popular choices for a are the Relu, tanh or sigmoid activations. The function Wk is a bounded linear operator called the weight of
the k-th layer; the term bk is called the bias. With this architecture the solution to Pb. A.1 is the minimizer of the loss

min
Wk ,bk

ℓ( f (X ), Y ).

In practice, we have Xk = Rdk for all k, such that Wk is a matrix in Rdk×dk+1 .

Example A.3 (Residual Neural Network). Write f = FD ◦ · · · ◦ F1, where

Fk = fk ◦ (I + vk
Lk
) ◦ · · · ◦ (I + vk

1 ), (26)

where fk is defined as in Example A.2 and vk
s = a(W k

s x + bk
s ). We can also take vk

s =W k
s a(x) + bk

s . Residual neural networks
are commonly called ResNets.

More generally, one can choose any sequence of Hilbert spaces H1, . . . ,HD to which the mappings f1, . . . , fD belong. In
particular, we will choose Reproducing Kernel Hilbert (RKHS) spaces, which are defined by a kernel function. We present the
theory of kernel learning and RKHS in the next section.
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A.3 Scalar-valued Kernels

In this section, we provide a brief summary of supervised learning with scalar real-valued kernels. For a more detailed overview
we suggest [14] and [15].

A.3.1 Motivation and the kernel trick

The idea behind kernel methods is to map the input space X into a Hilbert space (F , 〈·, ·〉F ) with a mapping Φ : X −→ F and
look for linear models in this space,

fθ (x) = 〈θ ,Φ(x)〉F .

In view of (23) and assuming that F = RP , an input x∗ is predicted as

y∗ =
N
∑

i=1

αi Φ
T (x i)Φ(x

∗), (27)

where
α=
�

Φ(X )ΦT (X ) +λ IN

�−1
Y (28)

and the matrixΦ(X ) has rowsΦT (x i). Eq. (27),(28) use the feature space only to calculate inner products since (Φ(X )ΦT (X ))i, j =
ΦT (x i)Φ(x j). Hence, if we define a function k : X ×X −→ R, called a positive definite kernel (or simply kernel), such that

k(x i , x j) = 〈Φ(x i),Φ(x j)〉F , (29)

the model in (27) becomes

y∗ =
N
∑

i=1

αi k(x i , x∗).

The approximation f is

f (·) =
N
∑

i=1

αi k(x i , ·). (30)

Eq. (29) corresponds to the definition of a real-valued kernel k : X ×X −→ R (see [5]). Thus, a kernel corresponds to an
inner product in a Hilbert space, called the feature space. This approach is called the kernel trick and the theoretical result that
justifies (30) is the Representer theorem presented in Sec. A.3.3.

Recall that supervised learning aims at finding the best approximation f within a Hilbert space of functions. Eq. (30) suggests
that this space is defined by the kernel k. That is indeed the case and the space is the Reproducing Kernel Hilbert Space (RKHS) of
k.

A.3.2 Reproducing Kernel Hilbert Space

We start with the following definitions [15, p. 119].
Definition A.1. Let H be a Hilbert space of functions f : X −→ R defined on a non-empty set X .
(i) A function k : X ×X −→ R is called a reproducing kernel of H if we have k(·, x) ∈ H for all x ∈ X and the reproducing
property

f (x) = 〈 f , k(x , ·)〉 (31)

holds for all f ∈H and all x ∈ X . In particular,

〈k(x , ·), k(x ′, ·)〉= k(x , x ′). (32)

(ii) The space H is called a reproducing kernel Hilbert space over X if for all x ∈ X the Dirac functional δx : H −→ R
defined by

δx ( f ) := f (x), f ∈H,

is continuous.

From (32) it follows that k is symmetric in its arguments and satisfies the conditions for positive definiteness, hence it is a
kernel. In fact, every RKHS has a unique reproducing kernel k which spans H as follows,

H = span{k(x , ·) | x ∈ X }.

On the other hand, given a kernel k we want to define an RKHS such that k is its (unique) reproducing kernel. Thm. 4.21 in
[15, p. 121] states that every kernel admits a unique RKHS H, which can be defined as the completion of the set

Hpre :=
§ n
∑

i=1

αi k(x i , ·) : n ∈ N, α1, . . . ,αn ∈ R, x1, . . . , xn ∈ X
ª

.

For every f =
∑n

i=1 αi k(x i , ·) ∈Hpre we have

∥ f ∥2
H =

n
∑

i, j=1

αiα j k(x i , x j) (33)

Consequently, we have a bijection between kernels and RKHS of functions.
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A.3.3 The Representer Theorem

Given a training dataset (X , Y ) ∈ X N × YN we consider the supervised learning problem, where the space of functions is the
RKHS H of a kernel k. The following theorem provides the explicit form of the solution to this problem [14, p.90] (with slight
modifications in the notations).

Theorem A.1 (Representer theorem). Define

1. Ω : [0,∞) −→ R a strictly increasing monotonic function.

2. ℓY :
�

YN ×YN
�

−→ R∪ {∞} an arbitrary error function.

This defines a loss function
ℓ( f ) = ℓY( f (X ), Y ) + Ω(∥ f ∥). (34)

Then a minimizer of ℓ in H admits a representation of the form

f (·) =
N
∑

i=1

αi k(x i , ·). (35)

Example A.4 (Kernel ridge regression). Given a λ > 0 and a kernel k defining an RKHS (H, 〈·, ·〉H) of functions mapping X to
Y = R, the ridge regression solution approximates f † with the minimizer of (20), where Ω(∥ f ∥) = λ∥ f ∥2

H and ℓY( f (X ), Y ) =
∥ f (X )− Y ∥2

YN . The optimal parameter α is given by

α=
�

k(X , X ) + λ IN

�−1
Y, (36)

where k(X , X )i, j = k(x i , x j). Given a new input x , use (35) and (36) to write the solution as

f (x) = k(x , X )
�

k(X , X ) + λ IN

�−1
Y, (37)

where k(x , X ) =
�

k(x , x1), . . . , k(x , xN )
�

. Observe that for λ = 0, the function interpolates exactly the training data, meaning
that f (x i) = yi . The ridge loss is given by the formula

ℓrid ge( f (X ), Y ) = λY T [k(X , X ) +λIN ]
−1Y. (38)

Since the function f is entirely determined by the kernel k and the penalty λ, we will write ℓ(X , Y ) for ℓrid ge( f (X ), Y ).

A.4 Operator-valued kernels

A.4.1 Introduction and main results

Operator-valued kernels are described in details in [6]. The need to introduce them arises when a supervised learning problem is
considered in a functional setting: each attribute of the data is a function, and the label of each data is also a function. Similarly
to scalar-valued kernels, operator-valued kernels are in one-to-one correspondence with RKHS of functions f : X −→ Y. With
operator-valued kernels, the training of weights and biases of neural networks is equivalent to identifying the minimal function in
a suitable RKHS defined by such a kernel. We provide a quick overview of the theory of operator-valued kernels as presented in
[10, Sec 2],

Definition A.2 (Operator-valued kernel). We call K : X ×X −→ L(Y) an operator-valued kernel if
(1) K is Hermitian, i.e.

K(x , x ′) = K(x ′, x)T for x , x ′ ∈ X , (39)

writing AT for the adjoint of the operator A with respect to 〈·, ·〉Y .
(2) non-negative, i.e.

m
∑

i, j=1

〈yi , K(x i , x j)y j〉Y ≥ 0, for (x i , yi) ∈ X ×Y, m ∈ N. (40)

We call K non-degenerate if
∑m

i, j=1〈yi , K(x i , x j)y j〉Y = 0 implies yi = 0 for all i whenever x i ̸= x j for i ̸= j.

For operator-valued kernels a feature map and space are defined as follows.

Definition A.3 (Feature space/map). F and ψ : X −→ L(Y,F) are a feature space and feature map for the kernel K if, for all
(x , x ′, y, y ′) ∈ X 2 ×Y2,

y T K(x , x ′)y ′ = 〈ψ(x)y,ψ(x ′)y ′〉F . (41)

Write ψT (x) ∈ L(F ,Y) for the adjoint of ψ(x) and αTα′ := 〈α,α′〉F for the inner product in F so that we can write K(x , x ′)
as

K(x , x ′) =ψT (x)ψ(x ′). (42)

For α ∈ F , write ψTα for the function X −→ Y mapping x to the element y such that

〈y ′, y〉Y = 〈y ′,ψT (x)α〉Y = 〈ψ(x)y ′,α〉F . (43)

The following theorem characterizes the RKHS of an operator-valued kernel.
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Theorem A.2 (RKHS of an operator-valued kernel). The RKHS H defined by the kernel (42) is

H = span{ψTα | α ∈ F : ∥α∥2
F <∞}, (44)

which corresponds to the linear span of ψTα over α ∈ F with finite norm. Furthermore,

〈ψT (·)α,ψT (·)α′〉H = 〈α,α′〉F and ∥ψT (·)α∥2
H = ∥α∥

2
F (45)

for α,α′ ∈ F .

The RKHS of an operator-valued kernel K : X ×X −→ L(Y) is a Hilbert space of functions f : X −→ Y. This allows us to
extend kernel learning to problems where the output belongs to a set Y ̸= R. Similarly to scalar valued kernels, the Representer
theorem also holds in the case of operator-valued kernels (see [6, Appendix B] for a proof) and is of the form

F(·) =
N
∑

i=1

K(x i , ·)ui(·),

where the weights ui are Y−valued functions.

A.4.2 Scalar operator-valued kernels

Scalar operator-valued (SOV) kernels correspond to operator-valued kernels defined by scalar kernels.

Definition A.4 (Scalar operator-valued kernel). An operator-valued kernel K : X ×X −→ L(Y) is scalar if

K(x , x ′) = k(x , x ′)IY , (46)

for some scalar-valued kernel k : X ×X −→ R, and we have

〈y, K(x , x ′)y ′〉Y = k(x , x ′)〈y, y ′〉Y . (47)

Given a feature space F and feature map ϕ : X −→ F of a scalar-valued kernel k, we can construct a feature space/map for
the SOV kernel K(x , x ′) = k(x , x ′)IY . For β ∈ F and y ∈ Y write yβ T ∈ L(F,Y) for the outer product between y and β defined
as the linear function mapping

yβ T : F −→ Y
β ′ 7−→ y〈β ,β ′〉F. (48)

We now have all the tools to define a feature space of K .

Theorem A.3 (Feature space of scalar operator-valued kernels). A feature space of the operator-valued kernel K is F := L(F,Y)
and its corresponding feature map ψ : X −→ L(Y,F) is defined by

ψ(x)y = y(ϕ(x))T for (x , y) ∈ X ×Y. (49)

Furthermore,
ψT (x)α= αϕ(x) for x ∈ X and α ∈ F . (50)

Writing H for the RKHS (44) defined by K,

∥ψT (·)α∥2
H = ∥α∥

2
F = ∥α∥

2
L(F,Y) = Tr[αTα], (51)

where Tr is the Trace operator.

In [10], there is no mention of the finite-dimensional case dimF<∞, so we formulate it in the next proposition.

Lemma A.4. Let X = Rp, Y = Rd and K(x , x ′) = k(x , x ′)IY for a scalar kernel k with finite feature space F= RD and feature map
ϕ : X −→ F. Then, the RKHS of K is

H = span
�

αϕ(·) | α ∈ Rd×D
	

(52)

where the set of linear operators α ∈ L(RD,Rd) is identified with matrices Rd×D. Additionally, (51) corresponds to the matrix
Frobenius norm in Rd×D.

Proof. Follows directly from Thm A.3.

Example A.5. If k(x , x ′) = x T x ′ is the linear kernel, thenϕ(x) = x and F = Rp. The operator-valued kernel K(x , x ′) = k(x , x ′)IRd

has feature space F = Rp×p and its RKHS is H = span
�

α IRp | α ∈ Rp×d
	

= Rp×d .
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A.4.3 Kernels from activation functions

Scalar-valued kernels correspond to an inner product in a Hilbert space through a feature map (see Eq. (29)). Thus, we can
define them with feature maps using an activation function. This makes a connection between the architecture of neural networks
(Sec. A.2) and RKHS of functions. Consider the following feature map

ϕ : X −→ F= X ⊕R

x 7−→
�

a(x)
1

� (53)

where a : X −→ X is an arbitrary nonlinear activation function. From ϕ we define the operator-valued kernel Γ : X ×X −→ L(Z),

Γ (x , x ′) = ϕT (x)ϕ(x ′)IZ
= (aT (x)a(x ′) + 1)IZ .

(54)

In particular, we take Z to be the input space X or the output space Y. The feature map ψ of Γ satisfies (49)

ψ(x)z = z
�

a(x)
1

�T

∈ L(X ⊕R,Z),

corresponding to the matrix operator A : X ⊕R −→ Z, A(x ′, y ′) = z (aT (x)x ′ + y ′). Lemma A.4 implies that the RKHS H consists
of linear functionals f (·) = w̃ϕ(·), where w̃= (W, b) ∈ L(X ⊕R,Z) and

w̃ϕ(x) =W a(x) + b, (55)

where W and b can be viewed as the weights and bias of a neural network layer, which are incorporated into a single variable
w̃.

A.4.4 Random feature maps

Another way to construct scalar operator-valued kernels is through random feature maps. Kernel approximation using such maps
has recently gained a lot of interest. In kernel based learning, we optimize over a parameter whose dimension corresponds to
the number of data points. Thus, kernel methods are not suited to large scale machine learning. Random feature maps can
overcome these limitations by reducing training and testing times of kernel based learning algorithms. In their paper [11], Ali
Rahimi and Ben Recht suggest to approximate k(x , x ′) with an inner product in a low-dimensional space using a randomized
map z : Rp −→ RR,

k(x , y) = 〈ψ(x),ψ(y)〉H ≈ z(x)T z(y), (56)

where ψ and H are the feature map and space of the kernel k. For example, the Gaussian RBF [14, p.45] is approximated using
random features sampled from the probability distribution of a Fourier transform.

Owhadi suggests another approach in [10, Sec. 6]: map the input space X = Rp to a finite-dimensional space F= RD using
an affine function with a randomly chosen weight and bias, then pass it through an activation function. The obtained feature
map holds the form

ϕ(x) = a(W x + b), (57)

where all the entries of W, b are independent and selected as

Wi, j ∼
�

1
p

p

�

N (0,1),

bi ∼ 0.1N (0, 1).

The operator-valued kernel is then obtained as usual with

K(x , x ′) = ϕT (x)ϕ(x ′)IY ,

and a function in the RKHS of K : X ×X −→ Z is

f (x) = w a(W x + b), w ∈ Rdim(Z)×D.

The form of the feature map corresponds to the standard architecture of a multi-layer perceptron in neural networks. Such
a feature map can up-sample (or down-sample) the input space into a new space RD. We will use such feature maps in our
simulations (cf., Section 3).

B Kernel learning: a dynamical system perspective
In this section, we introduce the main results behind the dynamics of the inputs across the layers of a neural network. We present
both the discrete and continuous dynamical system and discuss a method to simulate it. All the results are taken from Owhadi’s
paper [10] with added clarification when needed.
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B.1 Discrete dynamics

B.1.1 Mechanical regression

In his paper [10], Owhadi provides a model architecture, which he calls mechanical regression, that uses two RKHS of functions.
Problem B.1 (Mechanical regression). Let Γ : X ×X −→ L(X ) and K : X ×X −→ L(Y) be two kernels defining, respectively,

• an RKHS V of functions mapping X to X .

• an RKHS H of functions mapping X to Y.

Consider the problem in which f † is approximated by

f ‡ = f ◦φL , where φL = (I + vL) ◦ · · · ◦ (I + v1). (58)

The functions satisfy v1, . . . , vL ∈ V, f ∈ H and I is the identity map. We define the optimal solution (v1, . . . , vL , f ) as the
minimizer of

νL
2

L
∑

s=1

∥vs∥2
V + λ∥ f ∥2

H + ∥ f (φL(X ))− Y ∥2
YN , (59)

where ν and λ are positive parameters.
The transformation φL deforms the input space and is obtained from the composition of L displacements vs : X −→ X . The

function f maps the deformed inputs φL(X ) to the output Y with the solution of a kernel ridge regression (37). The associated
ridge loss is

ℓ(φL(X ), Y )
(38)
= λY T [K(φL(X ),φL(X )) +λIN ]

−1Y

= λY T [K v(X , X ) +λIN ]
−1Y,

(60)

where K v(X , X ) := K(φL(X ),φL(X )) is a warped kernel, i.e. a kernel obtained from the deformation of the inputs via the mapping
φL . In the loss (59), ν penalizes deformations of X induced by mappings with large RKHS norm, whereas λ prevents overfitting
of the training data (X , Y ).

The deformations (I + vs) in φL can be interpreted as jumps occurring at discrete time steps. Divide the interval [0, 1] into L
sub-intervals [s/L, (s+ 1)/L] for s = 0, . . . , L − 1 and define

qs+1 := (I + vs) ◦ · · · ◦ (I + v1)(X ) (61)

for 1≤ s ≤ L and q1 = X . Then, define the position q(t) of the inputs as follows

• For t = ts := s/L, q(t) = qs+1.

• For ts ≤ t < ts+1, q(t) = q(ts).

In particular, q(1) = qL+1 = φL(X ). Thus, q1, . . . , qL+1 describes the discrete trajectory q(t) of the input variables as it gets
deformed by the function φL over t ∈ [0, 1]. As we increase the number of layers L, we make jumps at smaller intervals of time,
which lead to a continuous trajectory as L→∞. In this section, we characterize the behaviour of the discrete (L <∞) and
continuous (L→∞) trajectory as presented in [10].

B.1.2 Discrete least action principle

For fixed λ and ν, f is completely determined by the warped kernel K v , so we only need to optimize over the functions v1, . . . , vL
which define this kernel. By defining q1, . . . , qL+1 with (61), we minimize over a discrete trajectory in the input space X N instead
of minimizing over mappings in the RKHS V. This is the statement of the next theorem.

Theorem B.1 (Discrete dynamic of minimizers). v1, . . . , vL ∈ V is a minimizer of (59) if and only if

vs(x) = Γ (x , qs) Γ (qs, qs)−1(qs+1 − qs) for x ∈ X , s ∈ {1, . . . , L}, (62)

where q1, . . . , qN ∈ X N are defined in (61) and minimize the discrete least action principle (cf., Appendix C)
¨

Minimize ν
2

∑L
s=1

� qs+1−qs

∆t

�T
Γ (qs, qs)−1
� qs+1−qs

∆t

�

∆t + ℓ(qL+1, Y ),
over q2, . . . , qL+1 ∈ X N with q1 = X ,

(63)

where ∆t := 1/L. Introducing the momentum variable

ps := Γ (qs, qs)−1 qs+1 − qs

∆t
, (64)

(qs, ps) follows the discrete Hamiltonian dynamics
�

qs+1 = qs +∆tΓ (qs, qs)ps

ps+1 = ps − ∆t
2 ∂qs+1

�

(ps+1)T Γ (qs+1, qs+1)ps+1
�

,
(65)

with q1 = X and p1 minimizes
ν

2

L
∑

s=1

(ps)T Γ (qs, qs)ps∆t + ℓ(qL+1, Y ). (66)
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Eq. (62) is the representer theorem for operator-valued kernels obtained from the exact interpolation vs(qs) = qs+1 − qs. The
matrix Γ (qs, qs) is a block operator matrix with entries Γ (qs

i , qs
j) (see [6, Def. 2]).

Equation (63) is a discrete variational problem whose minimizer satisfies the discrete Euler-Lagrange equations. This is a
classical result from discrete mechanics and we refer the reader to [7, 9] for a standard reference on this topic. The discrete
Hamiltonian system (65) is obtained using the correspondence between Lagrangian and Hamiltonian mechanics, where the
Lagrangian is

L(q, q̇) :=
1
2

q̇T Γ (q, q)−1q̇, (67)

and the loss in (63) approximates

ν

L
∑

s=1

L(qs/L , q̇s/L)∆t + ℓ(qL+1, Y ). (68)

B.2 Continuous dynamics

B.2.1 Idea registration: infinite-depth limit

The solution of mechanical regression is a function represented by a neural network with L hidden layers. The infinite-depth
limit L→∞ is called idea registration. The next theorem characterizes the solution of this problem.

Theorem B.2 (Idea registration). As L→∞, the minimizer f ◦φL of Pb. (B.1) converges to a minimizer of the form f ◦φv(X , 1)
where (v, f ) are minimizers of

min
f ,v

ν

2

∫ 1

0

∥v(·, t)∥2
V d t + λ∥ f ∥2

H + ∥ f (φv(X , 1))− Y ∥2
YN , (69)

and φv(x , t) is the flow map of v defined as the solution of
�

φ̇(x , t) = v(φ(x , t), t) for (x , t) ∈ X × [0, 1],
φ(x , 0) = x for x ∈ X ,

(70)

where v belongs to the space C([0,1],V) of continuous functions v : X × [0, 1] −→ X such that

1. x 7−→ v(x , t) is a map from X to V for all t ∈ [0,1],

2. v(x , t) is uniformly Lipschitz continuous (in t and x).

The optimal deformation of the inputs is defined by the flow map φv(·, t). Let qi(t) := φv(x i , t), then each input propagates
according to the ODE

�

q̇i(t) = v(qi(t), t), for t ∈ [0,1]
qi(0) = x i ,

(71)

which is completely determined by v.

We explain how to get (69), (70) from mechanical regression with a formal derivation (cf., [10] for a proof). Consider
v1, . . . , vL in (58) and introduce ∆t = 1/L, vs =∆t ṽs. Then, {ṽs}L

s=1 minimize

ν

2

L
∑

s=1

∥ṽs∥2
V∆t + ℓ(φL(X ), Y ). (72)

The discrete dynamic of the flow map is

φs+1(x)−φs(x)
∆t

= ṽs+1(φs(x)). (73)

As L→∞, φs = (I +∆t ṽs)◦ · · · ◦ (I +∆t ṽ1) and ṽs approximate φv and v at time ts := s
L . The sum in (72) becomes the integral

ν

2

∫ 1

0

∥v(·, t)∥2
V d t

and the flow map satisfies the continuous dynamic (70).
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B.2.2 Continuous least action principle

By considering a continuous trajectory q ∈ C1([0, 1],X N ), the sum in (68) becomes the action integral

A[q] =
∫ 1

0

L(q(t), q̇(t)) d t. (74)

Hence, a continuous trajectory evolves according to the following least action principle
�

Minimize νA[q] + ℓ(q(1), Y )
over q ∈ C1([0, 1],X N ), subject to q(0) = X .

(75)

Similarly to mechanical regression, the minimizer v of (69) can be reduced to the minimizer of the continuous least action
principle (75).
Theorem B.3 (Continuous dynamics of minimizers). Let ( f , v) be the minimizers of (69), then

v(x , t) = Γ (x , q)Γ (q, q)−1q̇, (76)

where q(t) is the minimizer of the least action principle (75).
Let p be the momentum variable defined as p := Γ (q, q)−1q̇. Therefore, the flow map is of the form

�

φ̇v(x , t) = Γ (φv(x , t), q)p for (x , t) ∈ X × [0,1]
φv(x , 0) = x for x ∈ X .

(77)

The following result characterizes the Hamiltonian dynamics of the trajectory in idea registration.
Corollary B.4 (Hamiltonian system). Let q ∈ X N starting at q(0) = X be the minimizer of (75). Then, the pair of position and
momentum variables (q, p), with p := Γ (q, q)−1q̇, is a solution of the Hamiltonian system

�

q̇i = ∂pi
H(q, p)

ṗi = −∂qi
H(q, p),

(78)

where the Hamiltonian is

H(q, p) =
1
2

pT Γ (q, q)p

=
1
2

N
∑

i, j=1

pT
i Γ (qi , q j)p j ,

(79)

and p(0) minimizes
B(p(0), X , Y ) := νH(X , p(0)) + ℓ(q(1), Y ). (80)

Furthermore, p(1) satisfies
ν p(1) + ∂q(1)ℓ(q(1), Y ) = 0. (81)

The dynamics of q is completely determined by the initial momentum p(0). Hence, both v and f are determined by p(0).
The Hamiltonian representation of minimizers of (75) reduces the search for the optimal trajectory to the search for an initial
momentum p(0) identified as the minimizer of (80). In image registration [1] this method is known as geodesic shooting.

B.2.3 Energy preservation

Eq. (76) formulates v as a function of (q, p) using the Representer theorem. A consequence of this representation is that ∥v(·, t)∥2
V

is constant over t ∈ [0,1]. To see this, use (33)

∥v(·, t)∥2
V =

N
∑

i, j=1

pT
i Γ (qi , q j)p j

= 2H(q, p).

Since the Hamiltonian is a constant of motion, the norm is constant in time.

B.3 Existence of minimizers

The existence and uniqueness of minimizers are discussed in details in [10, Sec. 3]. We provide the main condition on the kernel
Γ to guarantee existence of minimizers of mechanical regression and idea registration.
Lemma B.5. Assume that
(1) there exists r > 0 such that Z T Γ (X , X )Z > rZ T Z for all Z ∈ X N ,

(2) Γ admits F and ψ as feature space/map, F is finite-dimensional, ψ and its first and second order partial derivatives are
continuous and uniformly bounded,

(3) X is finite-dimensional.
(1) is equivalent to the non singularity of Γ (X , X ) and (2) implies that (x , x ′)→ Γ (x , x ′) and its first and second order partial

derivatives are continuous and uniformly bounded.
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B.4 Trajectory optimization: geodesic shooting

The formulation of mechanical regression with RKHS spaces V,H in Problem (B.1) is a minimization problem over functions in
V, which defines a trajectory satisfying the least action principle (75). In Sec. B.2.2 we characterized the optimal trajectory of
idea registration using the initial momentum p(0) (Corollary B.4). To minimize the loss B(p(0), X , Y ) given by (80), we need to
obtain q(1) as a function of p(0), which requires us to solve the Hamiltonian system (78). In general we need to discretize the
system with a suitable integrator.

B.4.1 p(0) optimization

1. Set p(0) = 0 which corresponds to no deformation of the inputs, i.e. q(1) = X .

2. Discretize the Hamiltonian (78) with L discrete time steps using a suitable integrator to obtain a discrete trajectory where
qL+1 = q(1).

3. Calculate the gradient of B(p(0), X , Y ) with respect to p(0).

4. Update p(0) using gradient descent
p(0)← p(0)− γ∂p(0)B

or any other gradient based method.

5. Repeat (2)-(4) for the desired number of steps or until convergence of B(p(0), X , Y ).

Optimizing p(0) is a N × dim(X ) dimensional minimization problem. Thus, it does not scale well as we increase the number
of training points. Additionally, it requires to simulate a mechanical system using a discrete integrator. Although the discrete
dynamics of mechanical regression (65) is a natural choice, this integrator is implicit, which makes it a poor choice from a
computational point of view. We will prefer the use of an explicit and non-separable integrator. See [8] for a discussion on
variational integrators.

C Least action principle
We start this section by introducing the least action principle, also known as the principle of critical action, which appears
in classical mechanics. We provide a brief overview of some concepts from Lagrangian and Hamiltonian mechanics taking the
notation from [9] and [8] (with a slight modification).

In Lagrangian mechanics, the framework is as follows:

• Identify a configuration space Q with coordinates (q1, . . . , qn).

• Form the velocity phase space TQ, also called the tangent bundle of Q. Coordinates on TQ are denoted by (q1, . . . , qn, q̇1, . . . , q̇n).

• The Lagrangian is regarded as a function L : TQ −→ R. We use the shorthand notation L(q(t), q̇(t)) or simply L(q, q̇)
when referring to L(q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)). The coordinate notation L(qi(t), q̇i(t)) will be useful for proving the
results in this section.

We can now define the action of a curve q(t) joining two fixed points in Q over a time interval [t0, t1] as follows,

A[q] =
∫ t1

t0

L(q(t), q̇(t)) d t. (82)

The action functional depends on t0 and t1, but this is not explicit in the notation. The idea behind Hamilton’s principle is to
find the curve q(t) for which the functional A is stationary under variations of q(t) with fixed endpoints. By variation we mean
a function δq, such that q+δq is a small modification of q with same endpoints. We think of it as a family of curves with respect
to a parameter ε. We illustrate this idea with the example below.

Example C.1 (Variation). For a fixed curve q(t), consider a modification of the form

qε(t) = q(t) + εη(t),

where η(t) is a smooth curve η(t0) = η(t1) = 0. Then, we write δq = η.

More generally, for a family of smooth parametric curves qε, corresponding to small modifications of q, we write

dqε

dε

�

�

�

ε=0
= δq. (83)

We can now state the least action principle [9, p.221].

Definition C.1 (Path space). Let Q be a manifold and let L : TQ −→ R be a regular Lagrangian (def. in [9, Sect. 7.2, p.183]).
Fix two points y0 and y1 in Q and an interval [t0, t1], and define the path space from y0 to y1 by

Ω(y0, y1, [t0, t1]) = {q : [t0, t1] −→Q |q is a C2 curve, q(t0) = y0, q(t1) = y1}. (84)
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Theorem C.1 (Variational principle of Hamilton). Let L be a Lagrangian on TQ. A curve q : [t0, t1] −→Q joining y0 = q(t0) to
y1 = q(t1) satisfies the Euler-Lagrange equations

d
d t

�

∂L

∂ q̇i

�

=
∂L

∂ qi
(85)

if and only if q is a critical point of the function A : Ω(y0, y1, [t0, t1]) −→ R, that is

dA(q(t)) ·δq(t) :=
d
dε

�

�

�

�

ε=0

A[qε(t)] = 0 (86)

for all δq(t) with δq(t0) = δq(t1) = 0, where qε is a smooth family of curves with q0 = q and with δq defined in (83).

Proof. Passing the derivative under the integral and using integration by parts, yields

dA(q(t)) ·δq(t) =
dqε

dε

�

�

�

ε=0

∫ t1

t0

L(qεi (t), q̇εi (t)) d t

=

∫ t1

t0

δqi

�

∂L

∂ qi
−

d
d t
∂L

∂ q̇i

�

d t +
∂L

∂ q̇i
δqi

�

�

�

t1

t0

. (87)

Since (86) and the boundary conditions for δq hold, the Euler-Lagrange (85) equation must be satisfied.

Lemma C.2. The solution of (75) satisfies the Euler-Lagrange equation with the Lagrangian defined in (67).

Proof. Consider the setting of Theorem C.1 with Q = X N , t0 = 0, t1 = 1 and y0 = X . Let q be the minimizer of (75) and set
y1 = q(1). Finally, define S[q] := νA[q] + ℓ(q(1), Y ).

The term ℓ(qε(1), Y ) is constant for all smooth curves qε satisfying the conditions of Theorem C.1. This implies that the
functional derivative A[q] of the minimizing curve q must be equal to 0, from which the Euler-Lagrange equation follows.
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Figure 1: ReLU

Figure 2: tanh

Figure 3: sigmoid

Figure 4: Ridge regression vs. Mechanical regression against N on the synthetic dataset. N corresponds to the number of training samples which
are used to train α. (1) Comparison of the MSE on the training set; (2) comparison on the test set. (3) Comparison between the L2 regularized
loss (19). Ridge regression corresponds to the untrained model with αs = 0. Mechanical regression is obtained by minimizing (19) with respect
to the parameters {αs}Ls=1 with L ∈ {2,4, 6,8}. The x−axis is in log scale.

Figure 5: Energy E(α) of mechanical regression for L ∈ {2,4,6,8} against N on the synthetic dataset. Mechanical regression is obtained by
minimizing (19) with respect to the parameters {αs}Ls=1 with L ∈ {2, 4,6, 8}.
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Figure 6: Energy E(α) of mechanical regression for L ∈ {2,4, 6,8} against N on the Boston housing dataset.

Figure 7: ReLU

Figure 8: tanh

Figure 9: Ridge regression vs. Mechanical regression against N on the Boston housing dataset. N corresponds to the number of training samples
which are used to train α. (1) Comparison of the MSE on the training set; (2) comparison on the test set. (3) Comparison between the L2
regularized loss (19). Ridge regression corresponds to the untrained model with αs = 0. Mechanical regression is obtained by minimizing (19)
with respect to the parameters {αs}Ls=1 with L ∈ {2,4, 6,8}.
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Figure 10: ReLU

Figure 11: tanh

Figure 12: sigmoid

Figure 13: Ridge regression vs. Mechanical regression against N on MNIST. (1) Comparison of the error on the training set; (2) comparison
on the test set. The error corresponds to the number of misclassified samples. (3) Comparison between the L2 regularized loss (19). Ridge
regression corresponds to the untrained model with αs = 0. Mechanical regression is obtained by minimizing (19) with respect to the parameters
{αs}Ls=1 with L ∈ {1, 2,3}.

Figure 14: Energy E(α) of mechanical regression for L ∈ {1, 2,3} against N on MNIST.
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Figure 15: ReLU

Figure 16: tanh

Figure 17: sigmoid

Figure 18: Ridge regression vs. Mechanical regression against N on Fashion MNIST. (1) Comparison of the error on the training set; (2)
comparison on the test set. The error corresponds to the number of misclassified samples. (3) Comparison between the L2 regularized loss (19).
Ridge regression corresponds to the untrained model with αs = 0. Mechanical regression is obtained by minimizing (19) with respect to the
parameters {αs}Ls=1 with L ∈ {1,2, 3}.

Figure 19: Energy E(α) of mechanical regression for L ∈ {1,2, 3} against N on Fashion MNIST.
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