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Abstract

In this paper we propose some new Bernstein-Durrmeyer type operators modified in Bezier-King sense,
which are not positive on the entire interval [0,1] . We prove that, even though the operators are not
positive on the entire [0,1], they can approximate all continuous functions on [0, 1], first, by using the
first order modulus of continuity, and then the second order one, with the appropriate K-functionals.
Finally, we prove a Voronovkaja type theorem.
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1 Introduction

In order to give a proof of Weierstrass’s approximation theorem [22], S. N. Bernstein [9] proposed the following sequence of
positive and linear operators

Bn ( f , x) =
n
∑

k=0

pn,k (x) f
�

k
n

�

, x ∈ [0,1] , f ∈ C[0, 1], (1)

where pn,k (x) =
�n

k

�

x k (1− x)n−k , for 0≤ k ≤ n, and pn.k (x) = 0 for k > n. It is well-known that these operators can be used to
uniformly approximate all continuous functions on [0, 1]. This operators have been extensively studied and are still a subject of
interest, see, for example [11, 18, 19, 21].

After this operators have been introduced, there arose a lot of generalizations, some of which are used in this paper. Let
us recall the King operators, introduced by J. P. King in paper [16]: let V τn ( f , x) a sequence of positive linear Bernstein-type
operators defined for every f ∈ C[0, 1] by:

V τn ( f , x) =
n
∑

k=0

�

n
k

�

(τ(x))k(1−τ(x))n−k f
�

k
n

�

, x ∈ [0,1], (2)

where τ(x) is a continuous function on [0, 1] and 0≤ τ(x)≤ 1.
In his paper, King focused his attention on operators that fix the monomial function e2(t) = t2. This kind of modification of

operators constitutes a matter of interest and were studied in some recent research papers such as [2, 15, 24].
Another topic that presents a lot of interest is represented by Bézier curves which are used for systems that designs free form

curves and surfaces. These curves are used in computer graphics to generate smooth curves and surfaces that are adequate for
some geometric problems where smoothness is of great importance. The Bézier modification of Bernstein operators is defined as
follows:

Bθn ( f , x) =
n
∑

k=0

Qθn,k (x) f
�

k
n

�

, x ∈ [0,1] , f ∈ C[0,1], (3)

where θ ≥ 1 is an integer, Qθn,k (x) =
�

Jn,k(x)
�θ
−
�

Jn,k+1(x)
�θ

, and Jn,k(x) =
∑n

i=k pn,k(x). More details about studies on Bézier
modified operators can be found in [6, 8, 14].
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From the research on modifications of Bernstein operators, one that proved very useful was done by Durrmeyer in paper [13],
where the author introduced the operators which are now known as Bernstein-Durrmeyer operators and they are defined as:

Dn ( f , x) = (n+ 1)
n
∑

k=0

pn,k(x)

∫ 1

0

pn,k(t) f (t)d t, x ∈ [0, 1], (4)

for f ∈ L1[0, 1] and pn,k defined as before. These operators were intensively studied and represented a great interest for many
authors, see [7, 10, 3].

In paper [17], D. A. Meleşteu proposed the following modification of Bernstein operators: Sαn : C[0,1]→ C
�

0, n
n+t

�

, α > 0,
n ∈ N:

Sαn ( f , x) =
n
∑

k=0

pαn,k(x) f
�

k
n

�

, x ∈ [0, 1], (5)

where pαn,k(x) =
�

n+α
n

�n �n
k

�

x k( n
n+α − x)n−k, 0 ≤ k ≤ n. For these modified Bernstein type operators, the author proved some

approximation results for x ∈ [0,1− ε], where operators are positive.
The operators mentioned above are positive and linear. In this paper we will study approximation properties of some linear

operators defined using the methods mentioned above. The operators studied are not positive operators on the entire [0,1]
interval.

2 Preliminaries

Throughout the paper we will use the following notions:
Let f be a function defined on [0, 1]. Denote by C[0, 1] the class of all continuous functions on [0, 1].

Definition 2.1. Let τ : [0, 1]→ [0, 1] be a differentiable and increasing function with τ (0) = 0 and τ (1) = 1.

In order to prove our results we need the following moduli of continuity, K-functionals and the link between them (see
[11, 12]). Let f be a bounded function on [0,1]. We have the first order modulus of continuity which is defined as:

ω1( f , t) = sup
|x−y|≤t
x ,y∈[0,1]

| f (x)− f (y)|, t > 0, (6)

and the second order modulus of continuity:

ω2( f , t) = sup
0<h≤t

sup
h
| f (x + 2h)− 2 f (x + h) + f (x)|, t > 0. (7)

In order to prove our results we will need the following K - functionals which are equivalent to the moduli mentioned above.
For the following K - functionals

Ki( f , t i) = inf
g∈C i [0,1]

{‖ f − g‖+ t i‖g(i)‖}, t ≥ 0, i ∈ 1,2, (8)

we have the equivalence for f ∈ C [0,1], with C , C̃ > 0 depending only on i, see [12]:

C̃ωi( f , t)≤ Ki( f , t i)≤ Cωi( f , t), t > 0, (9)

Having in mind the operators studied in papers [4, 5, 23]: let f ∈ C [0,1] and α≥ 0 :

Dαn ( f , x) = (n+ 1)
�n+α

n

�
n
∑

k=0

pαn,k (x)

∫
n

n+α

0

pαn,k (t) f (t) d t,

where pαn,k (x) =
�

n+α
n

�n �n
k

�

x k
�

n
n+α − x

�n−k
, we propose the following King-Bézier modification of this operators:

Dα,θ
n,τ ( f , x) = (n+ 1)

�n+α
n

�
n
∑

k=0

Qα,τ,θ
n,k (x)

∫
n

n+α

0

pαn,k (t)
�

f ◦τ−1
�

(t) d t, x ∈ [0,1] , (10)

where, α ≥ 0, Qα,τ,θ
n,k (x) =

�

Jα,τ
n,k (x)

�θ

−
�

Jα,τ
n,k+1 (x)

�θ

, with θ ≥ 1 an integer, Jα,τ
n,k (x) =

∑n
j=k pα,τ

n,k (x) , and pα,τ
n,k (x) =

�

n+α
n

�n �n
k

�

τk (x)
�

n
n+α −τ (x)

�n−k
.

Remark 1. 1. If the index θ is missing, we assumed that θ = 1;

2. If the index τ is missing, then we considered τ(x) = x .

With the established notations and definitions we can immediately state the following remarks.

Remark 2. From the definition, it can be seen that the operators Dα,θ
n,τ are linear operators on C [0, 1].

Remark 3. There is ξn ∈ (0, 1) having the property τ(ξn) =
n

n+α , such that τ (x) > n
n+α for x ∈ (ξn, 1] and τ (x) ≤ n

n+α for
x ∈ [0,ξn] , therefore the operators Dα,θ

n,τ are not positive on the entire interval [0,1] .
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3 Auxiliary results

In order to prove our results concerning these operators, we will need the following results concerning operators Dαn,τ, i.e. when
θ = 1.

Lemma 3.1. We have the following:

∫
n

n+α

0

t s pαn,k (t) d t =
� n

n+α

�s+1 �n
k

�

β (k+ s+ 1, n− k+ 1) , (11)

where β (a, b) is Euler’s Beta function.

Proof. The formula can be obtained by changing the variable u= n+α
n t.

Another useful result is the recurrence relation of functions pα,τ
n,k (x) , which is:

Lemma 3.2. For the functions pα,τ
n,k (x) =

�

n+α
n

�n �n
k

�

τk (x)
�

n
n+α −τ (x)

�n−k
we have the following:

τ (x)
� n

n+α
−τ (x)

�
�

pα,τ
n,k (x)

�′
= nτ′(x)

�

k
n+α

−τ (x)
�

pα,τ
n,k (x) , x ∈ [0,1]. (12)

Proof. Let us compute the derivative of pα,τ
n,k (x):

�

pα,τ
n,k (x)

�′
=
�n+α

n

�n �n
k

��

kτk−1(x)τ′(x)
� n

n+α
−τ(x)

�n−k
− (n− k)τk(x)τ′(x)

� n
n+α

−τ(x)
�n−k−1�

.

Now, if we multiply the expression above with τ (x)
�

n
n+α −τ (x)

�

, we get the desired result.

Lemma 3.3. The operators Dαn,τ satisfy the following relations:

1. Dαn,τ (e0, x) = 1, where e0 (t) = t0;

2. Dαn,τ (τ, x) = 1
n+2

�

nτ (x) + n
n+α

�

;

3. Dαn,τ

�

τ2, x
�

= 1
(n+2)(n+3)

�

n (n− 1)τ2 (x) + 4n2

n+ατ (x) +
2n2

(n+α)2

�

;

where τ is defined as before and x ∈ [0, 1] .

Proof. The results can be obtained by direct computation using relation (11).

Denote by µτ,α
n,m (x) the m-th order central moment of the operators Dαn,τ, m ∈ N0 = N∪ {0}, which is defined as follows

µτ,α
n,m (x) = Dαn,τ ((τ (t)−τ (x))

m , x) , x ∈ [0, 1] .

Lemma 3.4. The following recurrence relation holds:

(m+ n+ 2)τ′(x)µτ,α
n,m+1 (x) = (13)

τ (x)
� n

n+α
−τ (x)

�h

2mτ′ (x)µτ,α
n,m−1 (x) +

�

µτ,α
n,m

�′
(x)
i

+ (m+ 1)τ′ (x)
� n

n+α
− 2τ (x)

�

µτ,α
n,m (x) .

Proof. We have that:

µτ,α
n,m (x) = Dαn,τ ((τ (t)−τ (x))

m , x) =

(n+ 1)
�n+α

n

�
n
∑

k=0

pα,τ
n,k (x)

∫
n

n+α

0

pαn,k (t) (t −τ (x))
m d t.

Now, we compute the derivative of µτ,α
n,m (x) and we get:

�

µτ,α
n,m (x)

�′
=

(n+ 1)
�n+α

n

�
n
∑

k=0

�

pα,τ
n,k (x)

�′
∫

n
n+α

0

pαn,k (t) (t −τ (x))
m d t −mτ′ (x)µτ,α

n,m−1 (x) .
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In order to apply relation (12) we will consider:

τ (x)
�n+α

n
−τ (x)

�h

mτ′ (x)µτ,α
n,m−1 (x) +

�

µτ,α
n,m (x)

�′i

=

(n+ 1)
�n+α

n

�

τ′ (x)
n
∑

k=0

n
�

k
n+α

−τ (x)
�

pα,τ
n,k (x)

∫
n

n+α

0

pαn,k (t) (t −τ (x))
m d t.

Now, if we take into account that the recurrence relation for pα,τ
n,k (x), when we take τ (x) = x , becomes a recurrence relation for

pαn,k (t) , and by rearranging the terms, we get:

τ (x)
�n+α

n
−τ (x)

�h

mτ′ (x)µτ,α
n,m−1 (x) +

�

µτ,α
n,m (x)

�′i

=

(n+ 1)
�n+α

n

�

τ′ (x)
n
∑

k=0

pα,τ
n,k (x)

�

∫
n

n+α

0

n
�

k
n+α

− t
�

pαn,k (t) (t −τ (x))
m d t + n

∫
n

n+α

0

pαn,k (t) (t −τ (x))
m+1 d t

�

= (n+ 1)
�n+α

n

�

τ′ (x)
n
∑

k=0

pα,τ
n,k (x)

∫
n

n+α

0

t
� n

n+α
− t
�
�

pαn,k (t)
�′
(t −τ (x))m d t + nτ′ (x)µτ,α

n,m+1 (x) .

We rewrite the integral part as:

∫
n

n+α

0

t
� n

n+α
− t
�
�

pαn,k (t)
�′
(t −τ (x))m d t =

∫
n

n+α

0

h

τ (x)
� n

n+α
−τ (x)

�

+
� n

n+α
− 2τ (x)

�

(t −τ (x))− (t −τ (x))2
i
�

pαn,k (t)
�′
(t −τ (x))m d t.

Now, by integration by parts formula we get:

τ (x)
�n+α

n
−τ (x)

�h

mτ′ (x)µτ,α
n,m−1 (x) +

�

µτ,α
n,m (x)

�′i

=

nτ′ (x)µτ,α
n,m+1 (x)−mτ′ (x)τ (x)

� n
n+α

−τ (x)
�

µτ,α
n,m−1 (x)−

(m+ 1)τ′ (x)
� n

n+α
− 2τ (x)

�

µτ,α
n,m (x)+

(m+ 2)τ′ (x)µτ,α
n,m+1,

which completes our proof.

Remark 4. For the simplicity of the results, we will make the following notation: φτ (x) := τ (x)
�

n
n+α −τ (x)

�

.

Remark 5. The function φτ (x) attains its maximum for τ(x) = n
2(n+α) and its maximum value is maxφτ =

1
4

�

n
n+α

�2
.

Lemma 3.5. We have the following expressions for some central moments of the operators Dαn,τ :

1. µτ,α
n,0 (x) = 1;

2. µτ,α
n,1 (x) = −

2
n+2τ (x) +

n
(n+2)(n+α) ;

3. µτ,α
n,2 (x) =

2
(n+2)(n+3)

�

(n− 3)φτ (x) +
�

n
n+α

�2�

;

4. µτ,α
n,3 (x) =

6
(n+2)(n+3)(n+4)

�

n
n+α − 2τ (x)

�

�

2 (n− 1)φτ (x) +
�

n
n+α

�2�

;

5. µτ,α
n,4 (x) =

12
(n+2)(n+3)(n+4)(n+5)

¦

φ2
τ
(x)

�

n2 − 12n+ 10
�

+ 6 (n− 3)φτ (x)
�

n
n+α

�2
+ 2

�

n
n+α

�4©

.

Proof. By direct computation and using the recurrence formula (13).

Proposition 3.6. We have the following:




Dαn,τ f




≤ e2α ‖ f ‖ , (14)

for all f ∈ C [0, 1] .

Proof. In order to prove the result we will consider two cases, i.e. x ∈ [0,ξn] and x ∈ [ξn, 1] , where ξn is as in Remark 3.
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Case 1. Consider x ∈ [0,ξn]. In this case, the operators have the property that they are positive. We have:

�

�

�Dαn,τ ( f , x)
�

�

�≤ (n+ 1)
�n+α

n

�
n
∑

k=0

pα,τ
n,k (x)

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)
�

� d t

≤


 f ◦τ−1


 (n+ 1)
�n+α

n

�
n
∑

k=0

pα,τ
n,k (x)

∫
n

n+α

0

pαn,k (t) d t

=


 f ◦τ−1


Dαn,τ (1, x) = ‖ f ‖ .

Case 2. Consider x ∈ [ξn, 1]. In this case the operators are not positive. Hence, we have:

�

�

�Dαn,τ ( f , x)
�

�

�≤ (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�pα,τ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)
�

� d t

≤


 f ◦τ−1


 (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�pα,τ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t) d t

=


 f ◦τ−1


 (n+ 1)
�n+α

n

�n+1 n
∑

k=0

§�

n
k

�

τk (x)
�

τ (x)−
n

n+α

�n−k

�n+α
n

�n �n
k

�

� n
n+α

�n+1 k! (n− k)!
(n+ 1)!

ª

=


 f ◦τ−1




�n+α
n

�n n
∑

k=0

�

n
k

�

τk (x)
�

τ (x)−
n

n+α

�n−k

=


 f ◦τ−1




�n+α
n

�n �

2τ (x)−
n

n+α

�n

=


 f ◦τ−1




�

2τ (x)
n+α

n
− 1

�n

.

By the choice of τ (x) we know that τ (x)≤ 1. Therefore, we get:
�

�

�Dαn,τ ( f , x)
�

�

�≤


 f ◦τ−1




�

1+
2α
n

�n

≤ e2α


 f ◦τ−1


= e2α ‖ f ‖ .

Now, combining both cases and taking into account that α≥ 0, we get
�

�

�Dαn,τ ( f , x)
�

�

�≤max
�

1, e2α
�

‖ f ‖= e2α ‖ f ‖ for all x ∈ [0,1],

which leads to
�

�

�

�

�

�Dαn,τ f
�

�

�

�

�

�≤ e2α ‖ f ‖ .

Before we proceed to our main results, we need the following:

Remark 6. For a, b ∈ [−1,1] and θ ≥ 1 integer, the inequality
�

�aθ − bθ
�

�≤ θ |a− b| (15)

holds.

Remark 7. We have the following inequality

|Qα,τ,θ
n,k (x) |=

�

�

�

�

Jα,τ
n,k (x)

�θ

−
�

Jα,τ
n,k+1 (x)

�θ
�

�

�≤ θ
�

�

�Jα,τ
n,k (x)− Jα,τ

n,k+1 (x)
�

�

�= θ |pα,τ
n,k (x) |, (16)

obtained as a consequence of Remark 6, where θ ≥ 1 is an integer.

Using the results stated above, we get the following results concerning the operators Dα,θ
n,τ .

Proposition 3.7. We have the following:




Dα,θ
n,τ f





≤ θ e2α ‖ f ‖ , (17)

for all f ∈ C [0, 1] .

Proof. The proof is similar to the one above but using the inequality in Remark 7, with θ ≥ 1 an integer:

|Qα,τ,θ
n,k (x) | ≤ θ |pα,τ

n,k (x) |.

Now, if we consider x ∈ [0, 1] we will split the proof as in Proposition 3.6, for x ∈ [0,ξn] and for x ∈ [ξn, 1].
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Case 1. Consider x ∈ [0,ξn], then we have:

�

�

�Dα,θ
n,τ ( f , x)

�

�

� ≤ (n+ 1)
�n+α

n

�
n
∑

k=0

Qα,τ,θ
n,k

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)
�

� d t

≤ θ


 f ◦τ−1


 (n+ 1)
�n+α

n

�
n
∑

k=0

pα,τ
n,k (x)

∫
n

n+α

0

pαn,k (t) d t

= θ


 f ◦τ−1


Dαn,τ (1, x) = θ ‖ f ‖ ,

where we could drop the absolute value on Qα,τ,θ
n,k because in this case the operators are positive.

Case 2. For the second part of the proof we will consider x ∈ [ξn, 1] and take into account that the operators are not positive
on this interval and that τ (x)> n

n+α . We get:

�

�

�Dα,θ
n,τ ( f , x)

�

�

�≤ (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�Qα,τ,θ
n,k

�

�

�

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)
�

� d t

≤ θ


 f ◦τ−1


 (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�pα,τ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t) d t.

From this point, the proof is similar to the one in Proposition 3.6, Case 2, and this concludes our result.

Remark 8. We have Dα,θ
n,τ (e0, x) = 1 for all x ∈ [0,1] . Indeed, computing Dα,θ

n,τ (e0, x), we get

Dα,θ
n,τ (e0, x) =

n
∑

k=0

Qα,τ,θ
n,k (x) =

n
∑

k=0

n
�

Jα,τ
n,k (x)

�θ

−
�

Jα,τ
n,k+1 (x)

�θ
o

=
�

Jα,τ
n,0 (x)

�θ
=

� n
∑

k=0

pα,τ
n,k (x)

�θ

= 1,

for all x ∈ [0, 1] .

4 Quantitative approximation

In the following we will establish some quantitative results using different types of moduli of continuity: the classical modulus of
continuity ω1 and a combination of ω1 and the modulus of smoothness ω2.

Theorem 4.1. For f ∈ C[0, 1] we have

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

¨

1+
1
δ

n
n+α

√

√ θ (n+ 1)
2 (n+ 2) (n+ 3)

«

ω1

�

f ◦τ−1,δ
�

, (18)

for x ∈ [0,ξn] ,δ > 0, and
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ θ e2α
§

1+
1
δ′

�

2α
n
+

n
(n+ 2) (n+α)

�ª

ω1

�

f ◦τ−1,δ′
�

, (19)

for x ∈ [ξn, 1] ,δ′ > 0.

Proof. We will prove the result considering two cases.
Case 1. We take x ∈ [0,ξn]. We know that Dα,θ

n,τ (e0, x) = 1 for all x ∈ [0, 1] . We have:
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

(n+ 1)
�n+α

n

�
n
∑

k=0

Qα,τ,θ
n,k (x)

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)− f (x)
�

� d t ≤

�

(n+ 1)
�n+α

n

�
n
∑

k=0

Qα,τ,θ
n,k (x)

∫
n

n+α

0

pαn,k (t)
�

1+
|t −τ (x)|

δ

�

d t

�

·ω1

�

f ◦τ−1,δ
�

.
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Now, by applying Cauchy-Schwarz inequality to the integral part, we get:
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
§

1+
1
δ

�

Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�
1
2
ª

ω1

�

f ◦τ−1,δ
�

≤
§

1+
1
δ

�

θDαn,τ

�

(τ (t)−τ (x))2 , x
�

�
1
2
ª

ω1

�

f ◦τ−1,δ
�

=

¨

1+
1
δ

�

2θ
(n+ 2) (n+ 3)

�

(n− 3)φτ (x) +
� n

n+α

�2��
1
2
«

ω1

�

f ◦τ−1,δ
�

.

Since φτ (x) = τ (x)
�

n
n+α −τ (x)

�

attains its maximum for τ (x) = n
2(n+α) , we get:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

¨

1+
1
δ

n
n+α

√

√ θ (n+ 1)
2 (n+ 2) (n+ 3)

«

ω1

�

f ◦τ−1,δ
�

.

Case 2. For the second part of the result we will consider x ∈ [ξn, 1] and take into account that the operators are not positive
on this interval and that τ (x)> n

n+α . We get:
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

(n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�Qα,τ,θ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t)
�

�

�

f ◦τ−1
�

(t)− f (x)
�

� d t

≤

�

(n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�Qα,τ,θ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t)
�

1+
|t −τ (x)|

δ′

�

d t

�

ω1

�

f ◦τ−1,δ′
�

.

Now, we use
�

�

�Qα,τ,θ
n,k (x)

�

�

� ≤ θ
�

�

�pα,τ
n,k (t)

�

�

� = θ
�

n+α
n

�n �n
k

�

τk (x)
�

τ (x)− n
n+α

�n−k
, and the fact that for t ∈

�

0, n
n+α

�

, |t −τ (x)| =
τ (x)− t. Hence:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ θ
�

2τ (x)
n+α

n
− 1

�n

ω
�

f ◦τ−1,δ
�

+

θ

δ′

�

2τ (x)
n+α

n
− 1

�n−1

×
�

2τ2 (x)
n+α

n
− 2τ (x) +

n
(n+α) (n+ 2)

�

ω1

�

f ◦τ−1,δ′
�

.

In order to get the desired result we will use that τ(x)≤ 1, but only in terms
�

2τ (x) n+α
n − 1

�n
and

�

2τ (x) n+α
n − 1

�n−1
:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

≤ θ
�

e2α +
e2α

δ′

�

2τ2 (x)
n+α

n
− 2τ (x) +

n
(n+α) (n+ 2)

��

ω1

�

f ◦τ−1,δ′
�

.

Now, consider the quadratic expression gτ (x) = 2τ2 (x) n+α
n −2τ (x)+ n

(n+α)(n+2) which attains its minimum for τ (x) = 1
2

n
n+α . But,

we established that x ∈ [ξn, 1] so τ (x)> n
n+α , hence function gτ (x) is increasing on that section, and also τ (x) is an increasing

function, therefore gτ (x) attains its maximum for τ (x) = 1. We obtained that gτ (x)≤
2α
n +

n
(n+α)(n+2) . Therefore:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ θ e2α
�

1+
1
δ′

�

2α
n
+

n
(n+α) (n+ 2)

��

ω1

�

f ◦τ−1,δ′
�

.

Corollary 4.2. Let f ∈ C[0,1]. We have:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ 2ω1

�

f ◦τ−1|[0,ξn],
n

n+α

√

√ θ (n+ 1)
2 (n+ 2) (n+ 3)

�

, (20)

for x ∈ [0,ξn] , and
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ 2θ e2αω1

�

f ◦τ−1|[ξn ,1],
2α
n
+

n
(n+ 2) (n+α)

�

, (21)

for x ∈ [ξn, 1] .

Proof. Taking into account Theorem 4.1, we get the desired result by taking δ = n
n+α

Ç

θ (n+1)
2(n+2)(n+3) , when x ∈ [0,ξn], and

δ′ = 2α
n +

n
(n+2)(n+α) when x ∈ [ξn, 1] .

Dolomites Research Notes on Approximation ISSN 2035-6803



VASIAN 111

Lemma 4.3. For x ∈ [0, 1], we have the following:

Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

≤ θ
n+ 1

2 (n+ 2) (n+ 3)

� n
n+α

�2
, f or x ∈ [0,ξn], (22)

and
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤ θ e2α
2n
�

n2 − n (2−α)− 3α
�

(n+ 2) (n+ 3) (n+α)2
, f or x ∈ [ξn, 1]. (23)

Proof. Case 1. Let us first consider the case x ∈ [0,ξn]. In this case the operators Dα,θ
n,τ are positive. Then:

Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

=

(n+ 1)
�n+α

n

�
n
∑

k=0

Qα,τ,θ
n,k (x)

∫
n

n+α

0

pαn,k (t) (t −τ (x))
2 (t) d t

≤ θµτ,α
n,2 (x) = θ

2
(n+ 2) (n+ 3)

�

(n− 3)φτ (x) +
� n

n+α

�2�

.

If we consider the fact that φτ (x) attains its maximum for τ (x) = n
2(n+α) and the maximum value is 1

4

�

n
n+α

�2
, we get:

Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

≤ θ
n+ 1

2 (n+ 2) (n+ 3)

� n
n+α

�2
.

Case 2. Now, let us consider x ∈ [ξn, 1] :
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�

≤ (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�Qα,τ,θ
n,k (x)

�

�

�

�

�

�

�

�

∫
n

n+α

0

pαn,k (t) (t −τ (x))
2 (t) d t

�

�

�

�

�

≤ θ (n+ 1)
�n+α

n

�
n
∑

k=0

�

�

�pα,τ
n,k (x)

�

�

�

∫
n

n+α

0

pαn,k (t) (t −τ (x))
2 (t) d t.

Taking
�

�

�pα,τ
n,k (x)

�

�

�=
�

n+α
n

�n �n
k

�

τk (x)
�

τ (x)− n
n+α

�n−k
, we get:

�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤

≤ θ (n+ 1)
�n+α

n

�
n
∑

k=0

�n+α
n

�n �n
k

�

τk (x)
�

τ (x)−
n

n+α

�n−k
×

∫
n

n+α

0

pαn,k (t) (t −τ (x))
2 (t) d t.

Now we treat the integral part of the inequality:

I =

∫
n

n+α

0

pαn,k (t) (t −τ (x))
2 (t) d t =

�n+α
n

�n �n
k

�

�

∫
n

n+α

0

tk+2
�

t −
n

n+α

�n−k
d t − 2τ (x)

∫
n

n+α

0

tk+1
�

t −
n

n+α

�n−k
d t+

τ2 (x)

∫
n

n+α

0

tk
�

t −
n

n+α

�n−k
d t

�

.

Using the formula (11), we get

I =
� n

n+α

�3 (k+ 1) (k+ 2)
(n+ 1) (n+ 2) (n+ 3)

− 2τ (x)
� n

n+α

�2 k+ 1
(n+ 1) (n+ 2)

+τ2 (x)
� n

n+α

� 1
n+ 1

.

We obtain:
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤

θ (n+ 1)
�n+α

n

�
n
∑

k=0

�n+α
n

�n �n
k

�

τk (x)
�

τ (x)−
n

n+α

�n−k
×

�

� n
n+α

�3 (k+ 1) (k+ 2)
(n+ 1) (n+ 2) (n+ 3)

− 2τ (x)
� n

n+α

�2 k+ 1
(n+ 1) (n+ 2)

+

τ2 (x)
� n

n+α

� 1
n+ 1

�
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Returning to the expression of
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�with (k+ 1) (k+ 2) = k (k− 1)+4k+2 and making the computations,

we obtain:
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤ θ
§

τ2 (x)
n (n− 1)

(n+ 2) (n+ 3)

�

2τ (x)
n+α

n
− 1

�n−2

+

�

4τ (x)
n2

(n+α) (n+ 2) (n+ 3)
− 2τ2 (x)

n
n+ 2

�

�

2τ (x)
n+α

n
− 1

�n−1

+
�

τ2 (x)− 2τ (x)
n

(n+ 2) (n+α)
+ 2

� n
n+α

�2 1
(n+ 2) (n+ 3)

�

�

2τ (x)
n+α

n
− 1

�nª

.

Now, we can write:
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤

θ

§

τ2 (x)
�

2τ (x)
n+α

n
− 1

�n−2 � n (n− 1)
(n+ 2) (n+ 3)

− 2
n

n+ 2

�

2τ (x)
n+α

n
− 1

�

+
�

2τ (x)
n+α

n
− 1

�2�

+

2τ (x)
�

2τ (x)
n+α

n
− 1

�n−1 n
(n+ 2) (n+α)

h

2
n

n+ 3
−
�

2τ (x)
n+α

n
− 1

�i

+

2
� n

n+α

�2 1
(n+ 2) (n+ 3)

�

2τ (x)
n+α

n
− 1

�nª

= θ
§

τ2 (x)
�

2τ (x)
n+α

n
− 1

�n−2

g1 (t)+ 2τ (x)
�

2τ (x)
n+α

n
− 1

�n−1 n
(n+ 2) (n+α)

g2 (t)+

2
� n

n+α

�2 1
(n+ 2) (n+ 3)

�

2τ (x)
n+α

n
− 1

�nª

,

where we denoted t = 2τ (x) n+α
n − 1 and

g1 (t) =
n (n− 1)

(n+ 2) (n+ 3)
− 2

n
n+ 2

t + t2,

and
g2 (t) = 2

n
n+ 3

− t,

where t ∈
�

1,1+ 2α
n

�

. The function g1 (t) has the roots t1 =
n

n+2 +
1

n+2

q

n(n+1)
n+3 > 1+ 2α

n and t2 =
n

n+2 −
1

n+2

q

n(n+1)
n+3 < 1, so the

function is negative on this interval, hence we can take g1 (t) ≤ 0.
For g2 (t) we see that is a decreasing function, hence it attains its maximum for t = 1, so the maximum value is g2 (1) =

n−3
n+3 .

Returning to the inequality, we have:
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤

θ

§

2τ (x)
�

2τ (x)
n+α

n
− 1

�n−1 n
(n+ 2) (n+α)

n− 3
n+ 3

+ 2
� n

n+α

�2 1
(n+ 2) (n+ 3)

�

2τ (x)
n+α

n
− 1

�nª

.

Now, because τ (x)≤ 1, we have
�

2τ (x) n+α
n − 1

�n−1
≤
�

2τ (x) n+α
n − 1

�n
≤ e2α, so we get:

�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤

θ e2α 2
(n+ 2) (n+ 3)

n
n+α

h

τ (x) (n− 3) +
n

n+α

i

,

and, using again that τ (x)≤ 1, we obtain:

�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�≤ θ e2α
2n
�

n2 − n (2−α)− 3α
�

(n+ 2) (n+ 3) (n+α)2
. (24)

Another result that will be proved is expressed in terms of ω1 and ω2. In order to obtain this result we have to impose some
restrictions to function τ (x) as follows:

• τ (x) ∈ C2 [0,1] ;

• infx∈[0,1] τ
′ (x)≥ l, l ∈ R+.

• supx∈[0,1] |τ′′ (x)| ≤ β , β ∈ R+.
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Theorem 4.4. For f ∈ C [0, 1] , we have:
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ (25)

≤
θ e2α + 1

2



C1ω1

�

f ,
2ζ1

�

1+ β

2l ζ1

�

θ e2α + 1

�

+ C2ω2

 

f ,

√

√ ζ2
1

θ e2α + 1

!



 , x ∈ [0,ξn] ,

where ζ1 =
p
θ
l

n
n+α

q

n+1
2(n+2)(n+3) and C1, C2 are constants not depending on n, and

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤ (26)

≤
θ e2α + 1

2



C∗1ω1

�

f ,
2ζ2

�

1+ β

2l ζ2

�

θ e2α + 1

�

+ C∗2ω2

 

f ,

√

√ ζ2
2

θ e2α + 1

!



 , x ∈ [ξn, 1] ,

where ζ2 =
1
l

s

θ e2α 2n[n2−n(2−α)−3α]
(n+2)(n+3)(n+α)2

, and C∗1 , C∗2 are constants not depending on n.

Proof. We will use the following representation

g (t) =
�

g ◦τ−1
�

(τ (t)) =
�

g ◦τ−1
�

(τ (x)) +
�

g ◦τ−1
�′
(τ (x)) (τ (t)−τ (x))

+

τ(t)
∫

τ(x)

�

g ◦τ−1
�′′
(u) (τ (t)− u) du.

If we apply Dα,θ
n,τ to the expression above and take into account that Dα,θ

n,τ (e0, x) = 1, we get:

Dα,θ
n,τ (g, x)− g (x) =

�

g ◦τ−1
�′
(τ (x))Dα,θ

n,τ (τ (t)−τ (x) , x)+ (27)

Dα,θ
n,τ





τ(t)
∫

τ(x)

�

g ◦τ−1
�′′
(u) (τ (t)− u) du, x



 .

We treat separately the absolute value of the integral:
�

�

�

�

�

�

τ(t)
∫

τ(x)

�

g ◦τ−1
�′′
(u) (τ (t)− u) du

�

�

�

�

�

�

=

�

�

�

�

�

�

t
∫

x

�

g ′′ (y)

(τ′ (y))2
− g ′ (y)

τ′′ (y)

(τ′ (y))3

�

(τ (t)−τ (y))τ′ (y) d y

�

�

�

�

�

�

≤
�‖g ′′‖

l2
+ β
‖g ′‖

l3

�

(τ (t)−τ (x))2

2
.

Now, taking the absolute value of the expression (27) we get:
�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�≤

‖g ′‖
l

Dα,θ
n,τ (|τ (t)−τ (x)| , x) +

1
2

�‖g ′′‖
l2
+ β
‖g ′‖

l3

�
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

� .

Hence, using Cauchy-Schwarz inequality for Dα,θ
n,τ (|τ (t)−τ (x)| , x), we obtain:

�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�≤
‖g ′‖

l

Ç

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
��

�+

1
2

�‖g ′′‖
l2
+ β
‖g ′‖

l3

�
�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

� .

At this point we will split the proof in two cases.
Case 1. Let x ∈ [0,ξn]. In this case, our operators are positive. Then, using Lemma 4.3, we have:
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�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�≤
p
θ

l



g ′




n
n+α

√

√ n+ 1
2 (n+ 2) (n+ 3)

+
θ

2

�‖g ′′‖
l2
+ β
‖g ′‖

l3

�

� n
n+α

�2 n+ 1
2 (n+ 2) (n+ 3)

=

p
θ

l
n

n+α



g ′




√

√ n+ 1
2 (n+ 2) (n+ 3)

�

1+

p
θβ

2l2

n
n+α

√

√ n+ 1
2 (n+ 2) (n+ 3)

�

+

θ

2
‖g ′′‖

l2

� n
n+α

�2 n+ 1
2 (n+ 2) (n+ 3)

.

For f ∈ C [0, 1] we take
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
�

�

�Dα,θ
n,τ ( f − g, x)

�

�

�+ | f (x)− g (x)|+
�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�

≤
�

θ e2α + 1
�

‖ f − g‖+
p
θ

l
n

n+α

√

√ n+ 1
2 (n+ 2) (n+ 3)



g ′




�

1+

p
θβ

2l2

n
n+α

√

√ n+ 1
2 (n+ 2) (n+ 3)

�

+

θ

2
‖g ′′‖

l2

� n
n+α

�2 n+ 1
2 (n+ 2) (n+ 3)

.

Further, we rearrange the terms to match the K-functionals K1 and K2. In order to simplify the relation, denote ζ1 =p
θ
l

n
n+α

q

n+1
2(n+2)(n+3) . We have:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
�

θ e2α + 1
�

‖ f − g‖+ ζ1

�

1+
β

2l
ζ1

�

‖g ′‖+
1
2
ζ2

1‖g
′′‖

=
θ e2α + 1

2

�

‖ f − g‖+
2ζ1

�

1+ β

2l ζ1

�

θ e2α + 1
‖g ′‖+ ‖ f − g‖+

ζ2
1

θ e2α + 1
‖g ′′‖

�

.

Now, passing to infimum over g ∈ C2[0, 1] we get:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
θ e2α + 1

2

�

K1

�

f ,
2ζ
�

1+ β

2l ζ
�

θ e2α + 1

�

+ K2

�

f ,

√

√ ζ2

θ e2α + 1

��

. (28)

Using the equivalence between K - functionals and moduli of continuity, we get:

�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
θ e2α + 1

2



C1ω1

�

f ,
2ζ1

�

1+ β

2l ζ1

�

θ e2α + 1

�

+ C2ω2

 

f ,

√

√ ζ2
1

θ e2α + 1

!



 ,

where C1, C2 are constants not depending on n.
Case 2. Let us take x ∈ [ξn, 1] . Then:

�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�≤

‖g ′‖
l

Ç

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
��

�+
1
2

�‖g ′′‖
l2
+ β
‖g ′‖

l3

�

Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

≤

‖g ′‖
l

√

√

√

θ e2α
2n [n2 − n (2−α)− 3α]

(n+ 2) (n+ 3) (n+α)2
+

1
2

�‖g ′′‖
l2
+ β
‖g ′‖

l3

�

θ e2α
2n
�

n2 − n (2−α)− 3α
�

(n+ 2) (n+ 3) (n+α)2
.

In order to simplify the notations, we denote ζ2 =
1
l

s

θ e2α 2n[n2−n(2−α)−3α]
(n+2)(n+3)(n+α)2

, so we can write:

�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�≤ ζ2



g ′


+
1
2
ζ2

2

�



g ′′


+ β
‖g ′‖

l

�

.

Now, let us take
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤
�

�

�Dα,θ
n,τ ( f − g, x)

�

�

�+ | f (x)− g (x)|+
�

�

�Dα,θ
n,τ (g, x)− g (x)

�

�

�

≤
�

θ e2α + 1
�

‖ f − g‖+ ζ2



g ′


+
1
2
ζ2

2

�



g ′′


+ β
‖g ′‖

l

�

=
θ e2α + 1

2

�

‖ f − g‖+
2ζ2

�

1+ βζ2
2l

�

θ e2α + 1



g ′


+

‖ f − g‖+
ζ2

2

θ e2α + 1



g ′′




�

.
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Passing to infimum over g ∈ C2[0, 1]
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

θ e2α + 1
2



K1

�

f ,
2ζ2

�

1+ β

2l ζ2

�

θ e2α + 1

�

+ K2

 

f ,

√

√ ζ2
2

θ e2α + 1

!



 ,

and using the equivalence between K - functionals and moduli of continuity ω1 and ω2 we get:
�

�

�Dα,θ
n,τ ( f , x)− f (x)

�

�

�≤

θ e2α + 1
2



C∗1ω1

�

f ,
2ζ2

�

1+ β

2l ζ2

�

θ e2α + 1

�

+ C∗2ω2

 

f ,

√

√ ζ2
2

θ e2α + 1

!



 ,

where C∗1 , C∗2 are constants not depending on n.

5 Voronovskaja type result

In this section we will prove a Voronovskaja type result for the operators Dα,θ
n,τ .

Lemma 5.1. Let f ∈ C2[0,1].Then:
�

�

�n
�

Dα,θ
n,τ ( f , x)− f (x)

�

�

�

�≤ (29)

θ
2n

n+ 2

�

�

�

�

f ′(x)
τ′(x)

�

�

�

�

�

τ (x) +
n

n+α

�

+

θ
n

(n+ 2) (n+ 3)

�

�

�

�

f ′′(x)

(τ′(x))2
− f ′(x)

τ′′(x)

(τ′(x))3

�

�

�

�

�

(n− 3)φτ (x) +
� n

n+α

�2�

+Λn (x) ; x ∈ [0,ξn] ,

where Λn (x)→ 0 as n→∞.

Proof. Let f ∈ C2[0, 1] and consider the Taylor expansion of f as follows:

f (t) =
�

f ◦τ−1
�

(τ (t)) = (30)
�

f ◦τ−1
�

(τ (x)) +
�

f ◦τ−1
�′
(τ (x)) (τ (t)−τ (x))+

1
2

�

f ◦τ−1
�′′
(τ (x)) (τ (t)−τ (x))2 + R (t, x) (τ (t)−τ (x))2 ,

where the remainder R (t, x) satisfies lim
t→x

R (t, x) = 0. Now, consider the difference:

n( f (t)− f (x)) = (31)

n
�

f ◦τ−1
�′
(τ (x)) (τ (t)−τ (x)) +

n
2

�

f ◦τ−1
�′′
(τ (x)) (τ (t)−τ (x))2+

nR (t, x) (τ (t)−τ (x))2 .

By applying the operator Dα,θ
n,τ we get:
�

�

�n
�

Dα,θ
n,τ ( f , x)− f (x)

�

�

�

�≤ n
�

�

�

�

f ◦τ−1
�′
(τ (x))

�

�

�

�

�

�Dα,θ
n,τ (τ (t)−τ (x) , x)

�

�

�+ (32)

n
2

�

�

�

�

f ◦τ−1
�′′
(τ (x))

�

�

�

�

�

�Dα,θ
n,τ

�

(τ (t)−τ (x))2 , x
�

�

�

�+

n
�

�

�Dα,θ
n,τ

�

R (t, x) (τ (t)−τ (x))2 , x
�

�

�

�≤

θn
�

�

�

�

f ◦τ−1
�′
(τ (x))

�

�

�

�

�

�µαn,1 (x)
�

�

�+ θ
n
2

�

�

�

�

f ◦τ−1
�′′
(τ (x))

�

�

�

�

�

�µαn,2 (x)
�

�

�+

n
�

�

�Dα,θ
n,τ

�

R (t, x) (τ (t)−τ (x))2 , x
�

�

�

� .

We will treat separately nDα,θ
n,τ

�

R (t, x) (τ (t)−τ (x))2 , x
�

by using Cauchy-Schwarz inequality. Now, because x ∈ [0,ξn], we
have:

n
�

�

�Dα,θ
n,τ

�

R (t, x) (τ (t)−τ (x))2 , x
�

�

�

�≤
Ç

�

�Dα,θ
n,τ (R2 (t, x) , x)

�

�

Ç

n2
�

�Dα,θ
n,τ

�

(τ (t)−τ (x))4 , x
��

�≤
Ç

�

�Dα,θ
n,τ (R2 (t, x) , x)

�

�

Ç

n2θ
�

�µαn,4 (x)
�

�.
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We have that n2
�

�

�µαn,4 (x)
�

�

� = n2O
�

1
n2

�

= O (1) . The next step is to show that
�

�

�Dα,θ
n,τ

�

R2 (t, x) , x
�

�

�

�→ 0, but from the approximation

properties Dα,θ
n,τ possess, we obtain:

lim
n→∞

Dα,θ
n,τ

�

R2 (t, x) , x
�

= R2 (x , x) = 0. (33)

Denote n
�

�

�Dα,θ
n,τ

�

R (t, x) (τ (t)−τ (x))2 , x
�

�

�

� := Λn (x) , and by using the expression of the central moments µαn,1 (x) and µαn,2 (x)
from Lemma 3.5, we get:

�

�

�n
�

Dα,θ
n,τ ( f , x)− f (x)

�

�

�

�≤ (34)

θ
2n

n+ 2

�

�

�

�

f ◦τ−1
�′
(τ (x))

�

�

�

�

τ (x) +
n

n+α

�

+

θ
n

(n+ 2) (n+ 3)

�

�

�

�

f ◦τ−1
�′′
(τ (x))

�

�

�

�

(n− 3)φτ (x) +
� n

n+α

�2�

+Λn (x) ; x ∈ [0,ξn] .

In order to have a more explicit expression for the result, we will use the following:

�

f ◦τ−1
�′
(τ(x)) =

f ′(x)
τ′(x)

, (35)

�

f ◦τ−1
�′′
(τ(x)) =

f ′′(x)

(τ′(x))2
− f ′(x)

τ′′(x)

(τ′(x))3
.

Theorem 5.2. For f ∈ C2 [0,1] and x ∈ [0, 1), we have:

limsup
n→∞

�

n
�

Dα,θ
n,τ ( f , x)− f (x)

��

= (36)

2θ

�

�

�

�

f ′(x)
τ′(x)

�

�

�

�

(τ (x) + 1) + θ

�

�

�

�

f ′′(x)

(τ′(x))2
− f ′(x)

τ′′(x)

(τ′(x))3

�

�

�

�

τ (x) (1−τ (x)) ; x ∈ [0,1).

Proof. From the Lemma 5.1 passing to lim sup with n→∞ we get the desired result but taking into account that as n→∞,
ξn→ 1.
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